ebook img

On the kinematic age of brown dwarfs: Radial velocities and space motions of 43 nearby L dwarfs PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the kinematic age of brown dwarfs: Radial velocities and space motions of 43 nearby L dwarfs

Astronomy&Astrophysicsmanuscriptno.UVW˙Ldwarfs (cid:13)c ESO2010 January12,2010 On the kinematic age of brown dwarfs: Radial velocities and space motions of 43 nearby L dwarfs A.Seifahrt1,2,A.Reiners1,K.A.M.Almaghrbi1,andG.Basri3 1 Universita¨tGo¨ttingen,Institutfu¨rAstrophysik,Friedrich-Hund-Platz1,D-37077Go¨ttingen,Germany 2 PhysicsDepartment,UniversityofCalifornia,Davis,CA95616,USA e-mail:[email protected] 3 AstronomyDepartment,UniversityofCalifornia,Berkeley,CA94720,USA 0 asofJanuary12,2010 1 0 ABSTRACT 2 Wepresent radial velocitymeasurements of asampleof L0–L8dwarfsobserved withVLT/UVESandKeck/HIRES.Wecombine n thesemeasurementswithdistanceandpropermotionfromtheliteraturetodeterminespacemotionsfor43ofourtargets.Weidentify a J ninecandidatemembersofyoungmovinggroups,whichhaveagesof50–600Myraccordingtotheirspacemotion.Fromthetotal velocity dispersion of the 43 L dwarfs, we calculate a kinematic age of ∼ 5 Gyr for our sample. This age is significantly higher 2 thanthe∼ 3Gyr ageknownfor lateMdwarfsinthesolarneighbourhood. WefindthatthedistributionsoftheU andV velocity 1 componentsofoursampleareclearlynon-Gaussian,placingtheageestimateinferredfromthefullspacemotionvectorintoquestion. TheW-componentexhibitsadistributionmoreconsistentwithanormaldistribution,andfromW alonewederiveanageof∼3Gyr, ] R which is the same age found for late-M dwarf samples. Our brightness-limited sample is probably contaminated by a number of outliersthatpredominantlybiastheUandVvelocitycomponents.Theoriginoftheoutliersremainunclear,butwesuggestthatthese S browndwarfsmayhavegainedtheirhighvelocitiesbymeansofejectionfrommultiplesystemsduringtheirformation. . h Keywords.Stars:low-mass,browndwarfs–Techniques:radialvelocities p - o r 1. Introduction 2. Sampleandanalysis t s a Early-andmid-Ldwarfsencompassamassrangethatincludes Reiners&Basri(2008,hereafterRB08)presenthighresolution [ very low mass stars as well as more massive brown dwarfs (R >∼ 30,000) optical spectra of 45 L dwarfs1 obtained with 1 around the hydrogen-burningminimum mass (HBMM≈ 0.07– VLT/UVES and Keck/HIRES. They measure rotational veloc- v 0.08 M⊙, Chabrier&Baraffe 1997). The kinematics of these itiesandchromosphericactivitytoinvestigaterotationalbraking 0 stars, especially within the solar neighbourhood, is important in M and L dwarfs. The sample selection and observationsare 8 because the intrinsic velocity dispersion of the stars can be presented in Sect. 2 of RB08, the targets being essentially the 7 used to determine their age (Wielen 1977; Fuchsetal. 2001). brightestL dwarfsdistributedoverthe wholesky (Mart´ınetal. 1 BrowndwarfsmaythenserveinturnasGalacticchronometers 1999; Kirkpatricketal. 2000; Cruzetal. 2003; Kendalletal. 1. (Burgasser2009),giventhattheyconstantlycoolovertimeand 2004;Reidetal.2008).Nopreselectionofanyotherparameter 0 neverreachastablestateonthemainsequence. wasmade. 0 While an age of ∼ 3 Gyr for the nearby late-M dwarfs WeuseGl406asourprimaryradialvelocitystandard(M6V, 1 is now well established (Reidetal. 2002; Reiners&Basri v =19±1kms−1,Mohanty&Basri2003)andemployacross- rad v: 2009), kinematic ages of L and T dwarfs remain preliminary. correlationtechniquetomeasuretheradialvelocityofeachstar i ZapateroOsorioetal. (2007) derive an age ∼ 1 Gyr for 21 L forvariousspectralorders(see,e.g.,Mohanty&Basri2003and X and T dwarfs based on space motions of these objects, while Basrietal. 2000 for a detailed description of the method). We r Fahertyetal.(2009)deriveanageof3–6Gyrsforalargesam- focused on the resonance lines of CsI and RbI as well as the a pleofLandTdwarfs,basedontheirdistanceandpropermotion. prominent features of TiO, VO and, most importantly, FeH. Thediscrepancybetweentheseresultsisprobablyduetodiffer- TelluricabsorptionlinesoftheO A-bandaswellasstrongH O 2 2 encesbetweentheagecomputationsbutmayalso beattributed lines around λλ 930–960nm were used to correct for shifts in to thesmall numberof objectswith measuredradialvelocities, thewavelengthsolutionofeachspectrumwithrespecttoourra- andthus,3Dspacemotions. dialvelocitystandard.Wefollowedtheconservativeapproachof Kinematic studies of brown dwarfs have been predom- adoptingthestandarddeviationoftheradialvelocitiesobtained inantly based on proper motion measurements (see, e.g., in differentspectralordersas the intrinsic error of our final ra- Schmidtetal. 2007; Jamesonetal. 2008; Casewelletal. 2008; dialvelocities.Theintrinsicuncertaintiesrangefrom0.2kms−1 Fahertyetal. 2009). Absolute radial velocities of brown dwarfs have been obtained for small samples by, e.g., 1 Oneofthetargets(2MASSJ1159+00)hastoolowasignal-to-noise Basrietal. (2000), Bailer-Jones (2004), Blakeetal. (2007), or ratiotocomputearobustradialvelocity,reducingtheinitialsamplesize ZapateroOsorioetal. (2007). In this paper, we measure radial to 44. One more target (2MASS J1854+84) has no published proper velocitiesandprovidespacemotionsfor43L0–L8dwarfs,thus motionanddistance,reducingthenumberoffinaltargetsinoursample foramuchlargersamplethanobtainedbefore. to43. 2 A.Seifahrtetal.:Spacemotionsofbrowndwarfs 5 3 3.2.Spacemotions 4 To calculate the space motionsof our sample, we combineour s s der der 2 radial velocity measurements with distance and proper motion or 3 or data collected from the literature, mainly from the extensive mber of 2 mber of 1 dspaetacbtraospehooftoFmaheetrritcyeesttaiml.a(2te0s0a9n).dDhiasvtaencaetsyapriecablausendcemrtoaisntltyyoonf Nu Nu 1pc.AfewLdwarfsinoursamplehavemeasuredtrigonometric 1 parallaxes,whichnotablyreducestheirdistanceerrors.Wecom- paredthereportedpropermotionsanddistancesinFahertyetal. 0 0 26.0 26.2 26.4 26.6 26.8 27.0 27.2 −0.2 0.0 0.2 0.4 0.6 (2009)withothersourcesandusedthevalueswiththesmallest RV of stellar lines (km/s) RV of telluric lines (km/s) uncertainties.DetailsareprovidedinTable2. Fig.1.Exampleof the distributionofradialvelocitiesobtained Space motions were computed using the IDL routine in different spectral orders from stellar lines (left) and telluric gal uvw2. All space motions are relative to the sun. We adopt lines(right)inthespectrumof2M1645-1319(L1.5V).Seetext a sign convention for U that is positive towards the Galactic fordetails. Center.Wedetermineerrorsindistance,propermotion,andra- dialvelocityinaMonteCarlofashiontocomputeerrorestimates inU,V,andW.Inthiscomputation,wederivespacemotionsfor for the earliest L dwarfs up to 4 kms−1 for the latest and most all possible combinationsof inputparametersand their 1σ un- rapidly rotating targets. The final uncertainty in most cases is certainties.WethencalculatethestandarddeviationinU,V,and dominated by the uncertainty in the absolute radial velocity of W for each targetfrom this distribution and adoptthese values Gl406,whichweaddedinquadraturetotheintrinsicuncertainty asthe1σuncertaintiesinU,V,andW.Thecalculatedspacemo- of each target. All radial velocities were finally corrected for tionsandtheirrespectiveerrorsaregiveninTable2alongwith barycentricmotion. thedistanceandpropermotiondataobtainedfromtheliterature. Asanexample,weshowinFig.1theresultsobtainedforthe L1.5 dwarf 2M1645-1319.The radial velocities obtained from stellarlinesin11differentordersshowanearlyGaussiandistri- 3.3.Membershipinyoungmovinggroups bution with a mean of 26.6 kms−1 and a standard deviation of 0.21kms−1.Thetelluriclinesin4differentordersshowanoff- Youngmovinggroupsareassociationsofcoevalandcomoving setof0.2±0.16kms−1.Hence,wedeterminedaradialvelocity stars.Membersofmovinggroupscanbeidentifiedeitheronthe of26.4±1.0kms−1. basisof propermotionandpositiononthe sky,using themov- ingclustermethod(see,e.g.,Bannister&Jameson2007)orby For all L dwarfs later than L2, we also used the spectra comparingthe 3Dspace motionsofindividualobjectswith the of 2MASS1645-1319 (L1.5) and 2MASS1045-0149 (L1.0) as mean space motion of the moving group. We found members secondary radial velocity standards. Absolute radial velocities offouryoungmovinggroups(MG),namelyoftheHyades,the for both objects were determined against Gl406 with a preci- sion of ∼ 0.3 kms−1. Both targets are relatively slow rotators Pleiades MG, the AB Dor MG, and the UMa MG, with ages ranging from 50–600Myr. All these movinggroups are close- (vsini = 9 kms−1 and <3 kms−1, respectively, RB08) and by and located in or near the velocity ellipsoid of the young their respective VLT/UVES and Keck/HIRES spectra have a (thin)disk(−50 < U < +20kms−1,−30 < V < 0kms−1, and high signal-to-noise ratio, making them well suited as cross- −25< W < +10kms−1;see,e.g.,Leggett1992,andreferences correlation templates. Radial velocities of all targets measured therein). No members were found for other young and close relative to Gl406 and our L dwarf templates are always identi- movinggroupsconsideredin ouranalysis, suchas TWHydrae cal,butthelattercorrelationproducedmorerobustresultswith Association, the β Pictoris MG, and the Tucana/Horologium smaller uncertainties since the L dwarf templates are a closer Association (see, e.g., Zuckerman&Song 2004). While their match to the spectral features of the targets. Thus, we adopted UVW velocityellipsoidsarecloseto thoseofthePleiadesMG theradialvelocitiesobtainedfromthecross-correlationwithour and the AB Dor MG, we excludedmembershipsbased on dis- secondaryvelocitystandardsforalltargetslaterthanL2asour tanceorpositionontheskyinallcaseswhereconfusioninthe finalresults. UVW spacelimitedourabilitytoassignmembershipsbasedon spacemotionsonly. 3. Results ThespacemotionofourtargetsareshowninFig.2.Weover- plot the velocity ellipsoids of the young moving groups in the 3.1.Radialvelocities same figure, adopting a typical dispersion of 10 kms−1 for the Hyadesand7kms−1 forthePleiades,ABDor,andUMainac- We present the final results from our radial velocity measure- cordancewith Chenetal. (1997) and Chereuletal. (1999). We mentsinTable2.TwelvetargetswereobservedwithVLT/UVES comparethe computedspace motion of our targetsto the typi- andKeck/HIRESatdifferentepochs.Inallcases,theradialve- calspacemotionofboththeyoungdiskandtheyoungmoving locities obtained from both runs were fully consistent within groupslistedinZuckerman&Song(2004).Wefoundatotalof their individual uncertainties, showing no sign of significant radial velocity variability on a kms−1 level. We also com- 11objectsthatbelongtothegalacticyoungdiskpopulation(see Table2)andanother9objectsthatbelongtotheyoungmoving pared our results to radial velocities reported in the litera- groups(seeTable1).Commentsonindividualtargetsaregiven ture(Basrietal.2000;Bailer-Jones2004;ZapateroOsorioetal. inSect.3.5. 2007;Blakeetal.2007).Wefoundgoodagreementwithourval- uesin16cases.However,wefoundtwocases,namely2M0255- 47and2M1305-25,whereourradialvelocitiesareinconsistent 2 Written by W. Landsman and S. Koposov, based on withothermeasurements.WediscusstheseobjectsinSect.3.5. Johnson&Soderblom(1987). A.Seifahrtetal.:Spacemotionsofbrowndwarfs 3 Table1.Candidatemembersofyoungmovinggroupsbasedon must apply a weight of |W| to all data points when calculating ourUVW analysis thedispersionsineachdimension.Theweightsaccountforthe fact that we are limited to objects within a small volume close Movinggroupa UVW(kms−1) Age(Myr) tothemidplaneoftheGalacticdisk,andenableustoinferages fromthekinematicalheatingofthewholedisk. HyadesCluster −40,−17,−3 ∼600 We briefly summarise the results from three papers deal- 2MASSJ02550357-4700509 ing with the kinematic age of low-mass objects. Schmidtetal. 2MASSJ10452400-0149576b (2007) infer an age estimate of 3.1 Gyr for their sample of 2MASSJ10473109-1815574b M7–L8 L dwarfs, which agrees with the value reported by 2MASSJ14413716-0945590 2MASSJ22000201-3038327 Fahertyetal.(2009)andappearsconsistentwithresultsforlate- M samples (Reidetal. 2002; Reiners&Basri 2009). On the UrsaMajorisMG +14,+1,−9 ∼300 other hand, ZapateroOsorioetal. (2007) report an age of only 2MASSJ03140344+1603056 ∼1GyrfortheirsampleofLandTdwarfs.Wenotethatanim- 2MASSJ17054834-0516462 portantdifferencewithrespecttoourworkisthatSchmidtetal. (2007), ZapateroOsorioetal. (2007), and Fahertyetal. (2009) PleiadesMG −12,−21,−11 ∼100 calculatethetotalvelocitydispersionasthedispersionofv in- 2MASSJ06023045+3910592 tot 1/2 ABDoradusMG −8,−27,−14 ∼50 stead of σtot = (cid:16)σ2U +σ2V +σ2W(cid:17) , which may underestimate the dispersion and thus the age. Unfortunately, an error intro- 2MASSJ17312974+2721233 duced in the formula computing age from velocity spread had theeffectofalmosteliminatingthisoffset,sothatintwoofthe a UVWandagefromZuckerman&Song(2004). papers,anageof3Gyriscomputed.3Amoredetaileddiscussion b Membership already suggested by Jamesonetal. (2008), see also of the computationsof kinematic age by Schmidtetal. (2007), Sect.3.5 ZapateroOsorioetal.(2007),andFahertyetal.(2009)isgiven inReiners&Basri(2009). We reanalysethe space motionsofthe sample of 21brown We note that only five out of 43 targets (∼ 12%) are can- dwarfs of spectral type L4V–T8V of ZapateroOsorioetal. didate members of the Hyades. This is in notable contrast to (2007) and calculate |W|-weighted velocity dispersions of the ∼ 40% (8 out of 21 targets) of L and T dwarfs reported (σ ,σ ,σ ) = (35.0,15.1,15.3)kms−1 fromthe valuesgiven U V W by ZapateroOsorioetal. (2007) that are within or close to the in Tables 3 and 4 of their paper. The |W|-weighted total veloc- 2σellipsoidoftheHyades.Whilethismembershipcriterionis ity dispersion is σ = 41.1 kms−1. This dispersion is an in- tot weakerthan thatappliedby ourselves,the space motionof our dicative of an age of ∼ 3.0 Gyr, which is in good agreement samplehaveamuchwiderdispersioninUVW thanthesample withagesderivedforlate-Mdwarfs.Reidetal.(2002)inferan of ZapateroOsorioetal. (2007) and significantlyfewer objects age of 3 Gyr from the velocity distribution of a sample of 31 fallinornearthevelocityellipsoidoftheHyadesinourcase. M7.5–M9dwarfs,andReiners&Basri(2009)findthesameage foravolume-limitedsampleof63M7.5–M9dwarfsinthesolar neighbourhood. 3.4.Kinematicageofthesample 3.4.1. Generalconsiderations 3.4.2. Kinematicageofoursample Thecomputationofkinematicagesisbasedonthedispersionof We now turn to our new sample of L dwarfs; we find that truespacemotionsandrequiresacompletesetof3Dvelocityin- the velocity dispersion of our 43 targets is (σ ,σ ,σ ) = formation.Thetranslationofthetotalvelocitydispersion(σ ) U V W tot (33.8,28.0,16.3)kms−1andcalculateatotalvelocitydispersion totangentialvelocitiesbymeansofσ = (3/2)1/2σ assumes tot tan ofσ =46.8kms−1.Our|W|-weightedvelocitydispersionsare that the dispersions in v are spread equally between UVW. tot tan (σ ,σ ,σ ) = (39.8,29.7,17.4)kms−1 and the |W|-weighted Evenforalargesampleofobjects,thisassumptionmightintro- U V W totalvelocity dispersionis σ = 52.7kms−1. From this value duce a bias in the age determinationfrom tangential velocities tot and Eq. (16) of Wielen (1977), we derive an age of ∼ 5.1 Gyr alone,andradialvelocitymeasurementsareneededtocomplete foroursample. thefullsetofvelocityvectors. Our result of ∼ 5.1 Gyr is much higher than the ∼ 3 Gyr The velocity dispersion of a statistically significant sam- we derived for the 21 L and T dwarfs in the sample of ple of stars allows an estimate of the age of the sample, given ZapateroOsorioetal. (2007). This valuealso seemscounterin- the dynamical evolution of the Galaxy (see, e.g., Wielen 1977 tuitivecomparedtotheageof∼3Gyrforlate-Mdwarfs.Ifany- or Fuchsetal. 2001). Examples of age estimations for sam- thing,onewouldexpectasampleofL0–L8dwarfstobeyounger ples including L dwarfs are given in Schmidtetal. (2007), thana sampleof M7.5–M9dwarfs:the hydrogen-burningmin- ZapateroOsorioetal. (2007), and Fahertyetal. (2009). While imum mass (HBMM) divides late-type objects into low mass the results of Schmidtetal. (2007) and Fahertyetal. (2009) stars and brown dwarfs. Comparing the effective temperatures are based on large samples of tangential velocities only, ofthelowestmassstarsat1–10GyrgiveninChabrier&Baraffe ZapateroOsorioetal. (2007) present radial velocities and thus (1997)withthetemperaturescaleofVrbaetal.(2004)forLand true space motionsof 21 L and T dwarfs. We revisit the popu- lation of early- to mid-L dwarfs and estimate its age based on 3 Thiscanbeillustratedwhenconsidering,e.g.,thetotalvelocitydis- the total velocity dispersion of the space motions in our larger persionsinTable5of ZapateroOsorioetal.(2007).ForG-typestars, sample. the dispersion peaks at σ = 35.9 kms−1, which should yield an tot To computethe ageof a sample ofstars basedon the work age lower than ∼ 2.2 Gyr (see Fig. 1 in Fuchsetal. (2001) and ta- ofWielen(1977),onehastocalculatethevelocitydispersionin bles in Wielen (1977)). An age of 9Gyr is reported in Table 5 of U, V, and W accordingto Eqs. 1–3 in Wielen (1977), i.e., one ZapateroOsorioetal.(2007). 4 A.Seifahrtetal.:Spacemotionsofbrowndwarfs 20 20 UMa UMa 0 0 Young disk Pleiades −20 −20 Pleiades Hyades Young disk Hyades /s) −40 AB Dor /s) −40 AB Dor m m k k ( ( V V −60 −60 −80 −80 −100 −100 −100 −50 0 50 −60 −40 −20 0 20 40 U (km/s) W (km/s) Fig.2.SpacevelocitiesintheU–V (left)andW–V (right)plane.Thevelocityellipsoidsfortheyoungdiskaswellforsomeyoung movinggroupsareshown.Movinggroupsconsideredintheanalysisbutwithoutmembersinoursamplearenotshownforclarity. Objectsincolourarecandidatemembersoftherespectivemovinggroups,asindicatedinTable2. T dwarfs, this boundaryoccurs at spectral type L1–L2. Brown marginally consistent with our data. The closest fit is obtained dwarfsbelowtheHBMMcoolovertimeandmovetomuchlater forthedistributionoftheWcomponent,whiletheUandVcom- spectraltypesthanearly-L.Thiscausesadepletionofoldbrown ponents show notable deviations from a Gaussian distribution. dwarfswithmassesjustbelowtheHBMMinasampleofearly- Usingourmeasuredvelocitydispersionσ andtherelationbe- W to mid-L dwarfs (see Burgasser 2004). Given this depletion of tweenσ andσ giveninWielen(1977),wecomputeanage W tot oldbrowndwarfswithspectraltypesofearly-tomid-L,theav- of 3.2 Gyr fromσ alone, which is indeedconsistentwith the W erageageofasampleofL0–L8dwarfsaspresentedheremight ageoflate-Mdwarfsamples. beyounger,notolder,thanasampleoflate-Mdwarfs. Thenon-Gaussiandistributionofthespacemotionisproba- Sincewecanexpectthistoaffectearly-Ldwarfsclosetothe bly not due to the limited size of our sample. Reiners&Basri HBMM differently from the mid to late-L dwarfs, we divided (2009) show probability plots for their sample of 63 late-M oursampleinhalfandcomputedthevelocitydispersionandage dwarfs,whichareverywellreproducedbyasingleGaussiandis- for objects for spectral types L0V-L1.5V and L2V-L8V sepa- tribution.Oursampleisonly∼ 30%smallerbutexhibitsstrong rately. We found no statistically significant difference between deviationsfromaGaussiandistribution.Theparticularchoiceof thedispersionsandagesofthesetwogroups,nordidwenotice the targets for the sample might instead produce a bias. Since any velocity outliers related to only one of the groups. This is oursamplecomprisesthebrightestobjectsperspectralbin,the consistentwithasimilaranalysisbySchmidtetal.(2007),who sampleshouldbebiasedtowardsyoungerobjects.Thisis,how- analyse the tangential velocity of a sample of M7–L8 dwarfs ever, not what we found. From σ , the sample appears much tot andfindnosignificantdifferencesinthevelocitydispersionand older.Ontheotherhand,thederivedagefromσ aloneissub- W numberofoutliersbetweensubsamplesofM7V–L2VandL3V– stantially younger than the one inferred from σ . In fact, the tot L8V. 3Gyrderivedfromσ issimilartotheageofthelate-Msam- W ples,whichmaybeexpectedtobeofcomparableage.Because thedispersionsinU andV donotfollowaGaussiandistribution 3.4.3. Potentialexplanationsoftheoldage while the onein W does,onemightarguethatthe agefromW Wecanspeculateaboutthereasonforthisresult: aloneis a morereliableestimate ofthe trueage ofoursample. (1) The velocity dispersion of our sample might not al- Unfortunately,at this pointwe have noexplanationof whythe low us to determine an age of our sample because of the non- distributionsinU andV differfromtheoneinW. Gaussianity of the distribution. While a dispersion can be for- (2) The lowest mass stars and brown dwarfs might have a mallyobtainedfor anydistributionofvelocities,the dispersion differentinitialvelocitydispersionatthetimeofformationfrom canonlybeusedasanageindicatorifthedistributionisnormal. highermassstars(v =10kms−1 inWielen1977).Bihainetal. 0 WeshowthedistributionsofU,V,andW velocitiesinoursam- (2006)findthatthevelocitydispersionofthebrowndwarfmem- pleinthe toprowofFig.3.Inthebottomrowofthesamefig- bersin the Pleiades is aboutfour timesthe dispersionof solar- ure, we show probabilityplots(see, e.g., Lutz&Upgren1980; typemembersofthecluster.Ahigherv wouldnaturallyleadto 0 Reidetal. 2002) to help assess how closely a single Gaussian a differentvelocitydispersionas a functionoftime withoutin- distributionfits ourdata. Ascan beseen in the plots,a straight vokingadifferentfeedbackbythelowestmassstarsandbrown line, corresponding to a single Gaussian distribution, is only dwarfs on the Galactic potential. This effect, however, should A.Seifahrtetal.:Spacemotionsofbrowndwarfs 5 haveidenticalinfluencesonU,V,andW.Weseenoreasonwhy the high rotational velocity of the components in the sys- onlyU andV shouldbeaffectedbysuchamechanism. tem (vsini ≈ 76 kms−1, RB08), we are unable to iden- (3)Individualkinematicaloutlierscansignificantlybiasthe tifytheindividualcomponentsinthespectrum.Wenotethat velocitydispersionsofsmallsamples. Thiseffectwouldbeen- Basrietal.(2000)reportaradialvelocityofv ∼17kms−1 rad hancedbythe|W|-weighting,asdiscussedinReidetal.(2002). measuredinJune1997.Thisvaluedifferssignificantlyfrom However,we find no clear correlationof |W| with either v or the v = 5±2.2 kms−1 that we measure in our spectrum tot rad v inoursample,andtheremovaloffiveobjectswiththehigh- fromMay 2006,althoughthe differenceseems too large to tan est v only marginally lowers the age of the sample. On the beexplainedbytheorbitalmotiononly. tot otherhand,theremovalofsixobjectswiththehighesttangential – 2MASS1441-09:Bouyetal. (2003) foundthis objectto be velocity(v >70kms−1)lowersthemeanageofthesampleto a close binary (ρ ∼ 0.4′′) composed of two L1 dwarfs. tan 3.0Gyr,ascomputedfromσ .Thiseffectmaybeexpectedbut Bouyetal. (2008) present follow-up astrometric observa- tot aremovalofthoseobjectscanonlybejustifiedifthedistribution tionsandestimate the orbitalperiodto be 120-230yr. This of tangentialvelocitiesidentifies them as clear outliers. This is period is too long and the brightness difference in the two not evident for our sample. We note that the error in the spec- components too small to bias our radial velocity measure- trophotometricdistances of some targets mightbe much larger ment in any significant way. Seifahrtetal. (2005) demon- than the ±1pc given in Fahertyetal. (2009), which could con- strate that this L dwarf binary forms a common proper tribute to a few moderate v outliers. In any case, it remains motion pair with the M4.5V star G124-62. The radial ve- tan truethateven43objectsmustbeconsideredtoosmallasample locity of G124-62 reported by the same authors is v = rad when robustness to kinematic outliers is important, especially −29.3 kms−1, which is in close agreement with our radial when the sample is not volume-limited and prone to selection velocity for the L dwarf binary.Seifahrtetal. (2005) argue effects. thatthe system is a probablememberof the Hyades super- In summary,an age of ∼3 Gyr forour sample seems likely cluster,whichweconfirmwithimprovedpropermotionfor given the non-Gaussian distribution of the U and V velocities thesystem. andtheagedeterminedfromσ alone.Furthermore,thatthere- – 2MASS1854+84:This objecthas no publishedproper mo- W movalofthemostsignificantoutliersinthe distributionoftan- tion and distance. Hence, we have to exclude it from our gentialvelocitiesreducestheageofthesampletoasimilarvalue analysisofspacemotions,reducingtheoriginalsamplesize mayindicatethatahandfuloffastmovingoutliersarecontained to 43 objects. We obtain a radial velocity of v = −3.5± rad inthesample.Theseoutliersmayhavebeenacceleratedduring 1.0kms−1forthistarget. a very early phase of their evolution, perhapsby ejection from – 2MASS2200-30:Burgasser&McElwain(2006)resolvethis multiplesystems. target into a close binary (ρ ∼ 1′′) with spectral types of M9V+L1V and estimate the orbital period to be 750– 1000yrs.Hence,ourradialvelocitymeasurementshouldbe 3.5.Notesonindividualobjects unaffectedbythebinarity,giventhelongperiodandsimilar – 2MASS 0036+18 and 2MASS 0825+21 are both listed in brightnessofbothcomponents. Bannister&Jameson (2007) as belonging to the Hyades MovingGroupbasedonthemovingclustermethod.Weare 4. Summary unable to confirm this finding. Although both objects be- long to the young disk population, their space motions are We have measured the radial velocities of 44 L0–L8 dwarfs inconsistent with the space vector of the Hyades in V and in the solar neighbourhood from high resolution optical W (2MASS0036+18)andU andW (2MASS0825+21),re- VLT/UVES and Keck/HIRES spectra. We combined these spectively. measurements with distance and proper motion data to com- – 2MASS 0255-47:We reporta radialvelocityfor thisobject pute space motions for 43 of our targets. For one target ofv = 25±4.1kms−1, whichisinconsistentwith v = (2M1854+84),no propermotion and distance was available in rad rad 17.5±2.8kms−1 reportedinZapateroOsorioetal.(2007), theliteratureandwehadtoexcludethetargetfromthesample. and v = 13.0± 3.0 kms−1 in Basrietal. (2000). Given We formally derived an age of 5.1 Gyr from the |W|-weighted rad the late spectral type, ranging from L6 to L8, and the high totalvelocitydispersionofthesampleandtheage-velocityrela- rotationalvelocityofthesystem(vsini ≈ 67kms−1,RB08) tion of Wielen (1977). However,the space motioncomponents the uncertaintiesin all the reportedradial velocity values – UandVofoursamplearenotnormallydistributed,compromis- includingours–mightbeunderestimated.Nevertheless,we ingtheagecomputationfromσ .Wefoundthatthedistribution tot noteaslighttrendwithtimeintheradialvelocitythatshould inW is,however,quiteconsistentwithaGaussianshape.From beverifiedwithadditionalobservations. W alone,wecomputeanageof∼3Gyr. – 2MASS1045-01and2MASS1047-18:Jamesonetal.(2008) We note thatthe formallyderivedage of 5.1 Gyr fromσ tot listbothobjectsasprobableHyadesmembers,basedonnew for the whole sample is in disagreement with the mean age of propermotionmeasurements.Wecanconfirmtheirmember- the lowest mass stars in the solar neighbourhood (∼ 3 Gyr, shipbasedonthefullspacemotionsofbothobjects. Reidetal.2002;Reiners&Basri2009)andtheexpectationthat – 2MASS1305-25:Thisobject,alsoknownasKelu1,isatight early-tomid-Ldwarfsshouldbeyoungerthanthelowestmass binary(ρ∼ 0.3′′,Liu&Leggett2005)consistingofaL1.5- stars of spectral type M7.5–M9. We speculate that either the L3andaL3-L4.5component.Itsorbitishighlyeccentricand initial velocity dispersion of brown dwarfs is notably different the orbitalperiodis estimatedto be ∼ 38yrs(Stumpfetal. fromthatofsolar-typeandlower-massstars,orthatourparticu- 2008). Using the orbital elements of Stumpfetal. (2008), larsampleisbiasedtowardsolderand/orkinematicallypeculiar we estimate that our radial velocity measurementmight be objects.Thelatterseemsthemostlikelyexplanationsinceafew affected by the orbital motion of the binary at a level of a high-velocityobjectscouldbiasourstatistics.Suchabiaswould few kms−1 depending on the fractional light contribution be enhancedby the |W|-weightingof the dispersionswhencal- from each component in our optical spectra. Because of culatingσ andthusthemeanageofoursample. tot 6 A.Seifahrtetal.:Spacemotionsofbrowndwarfs Fig.3.Toprow:HistogramsofthespacemotioncomponentsinU,V,andW (fromlefttoright).Bottomrow:Probabilityplotsfor inU,V,andW (fromlefttoright).Dataareshownwiththeiruncertaintiesaserrorbars.Thedashedlinemarksthe1.5σcutofffor thefitshownasasolidredline.TheslopeofthelinearfitistheσoftheclosestmatchingGaussiandistribution. The most likely age of nearby early- to mid-L type dwarfs Blake,C.H.,Charbonneau,D.,White,R.J.,Marley,M.S.,&Saumon,D.2007, is of the order of 3Gyr, and we have found no evidence of an ApJ,666,1198 agelowerthanthis.However,astatisticallyclearlydefined,and Bouy,H.,Brandner,W.,Mart´ın,E.L.,Delfosse,X.,Allard,F.,&Basri,G.2003, AJ,126,1526 perhaps larger sample of L and T dwarfs with accurate radial Bouy,H.,etal.2008,A&A,481,757 velocities would be necessary to robustly determine the mean Burgasser,A.J.2004,ApJS,155,191 ageofbrowndwarfsfromakinematicanalysis. Burgasser,A.J.2009,IAUSymposium,258,317 Burgasser,A.J.,&McElwain,M.W.2006,AJ,131,1007 Casewell,S.L.,Jameson,R.F.,&Burleigh,M.R.2008,MNRAS,390,1517 Acknowledgements. This work is based on observations obtained from the Chabrier,G.,&Baraffe,I.1997,A&A,327,1039 EuropeanSouthernObservatory,PIDs077.C-0449and078.C-0025,andonob- Chen,B.,Asiain,R.,Figueras,F.,&Torra,J.1997,A&A,318,29 servationsobtainedfromtheW.M.KeckObservatory,whichisoperatedasasci- Chereul,E.,Cre´ze´,M.,&Bienayme´,O.1999,A&AS,135,5 entificpartnershipamongtheCaliforniaInstituteofTechnology,theUniversity Costa,E.,Me´ndez,R.A.,Jao,W.-C.,Henry,T.J.,Subasavage,J.P.,&Ianna, of California and the National Aeronautics and Space Administration. Based P.A.2006,AJ,132,1234 onobservations madewiththeEuropeanSouthernObservatorytelescopes ob- Cruz,K.L.,Reid,I.N.,Liebert,J.,Kirkpatrick,J.D.,&Lowrance,P.J.2003, tainedfromtheESO/ST-ECFScienceArchiveFacility.Thisresearchhasbene- AJ,126,2421 fittedfromtheM,L,andTdwarfcompendiumhousedatDwarfArchives.organd Cruz,K.L.,Kirkpatrick,J.D.,&Burgasser,A.J.2009,AJ,137,3345 maintainedbyChrisGelino,DavyKirkpatrick,andAdamBurgasser.Wethank Faherty, J. K.,Burgasser, A. J.,Cruz, K. L.,Shara, M. M.,Walter, F. M., & the referee, Kelle Cruz, forher constructive report. AS and ARacknowledge Gelino,C.R.2009,AJ,137,1 financial support from the Deutsche Forschungsgemeinschaft under DFG RE Fuchs, B., Dettbarn, C., Jahreiß, H., & Wielen, R. 2001, Dynamics of Star 1664/4-1.ASfurtheracknowledges financialsupportfromNSFgrantAST07- ClustersandtheMilkyWay,228,235 08074.GBthankstheNSFforgrantsupportthroughAST06-06748. Henry,T.J.,Jao,W.-C.,Subasavage,J.P.,Beaulieu,T.D.,Ianna,P.A.,Costa, E.,&Me´ndez,R.A.2006,AJ,132,2360 Jameson, R. F., Casewell, S. L., Bannister, N. P., Lodieu, N., Keresztes, K., Dobbie,P.D.,&Hodgkin,S.T.2008,MNRAS,384,1399 References Kendall,T.R.,Delfosse,X.,Mart´ın,E.L.,&Forveille,T.2004,A&A,416,L17 Bailer-Jones,C.A.L.2004,A&A,419,703 Kirkpatrick,J.D.,etal.2000,AJ,120,447 Bannister,N.P.,&Jameson,R.F.2007,MNRAS,378,L24 Leggett,S.K.1992,ApJS,82,351 Basri,G.,Mohanty,S.,Allard,F.,Hauschildt,P.H.,Delfosse,X.,Mart´ın,E.L., Liu,M.C.,&Leggett,S.K.2005,ApJ,634,616 Forveille,T.,&Goldman,B.2000,ApJ,538,363 Lodieu, N., Scholz, R.-D., McCaughrean, M. J., Ibata, R., Irwin, M., & Bihain,G.,Rebolo,R.,Be´jar,V.J.S.,Caballero,J.A.,Bailer-Jones,C.A.L., Zinnecker,H.2005,A&A,440,1061 Mundt,R.,Acosta-Pulido, J.A.,&ManchadoTorres,A.2006,A&A,458, Lutz,T.E.,&Upgren,A.R.1980,AJ,85,1390 805 Martin,E.L.,Basri,G.,Delfosse,X.,&Forveille,T.1997,A&A,327,L29 A.Seifahrtetal.:Spacemotionsofbrowndwarfs 7 Mart´ın,E.L.,Delfosse,X.,Basri,G.,Goldman,B.,Forveille, T.,&Zapatero Osorio,M.R.1999,AJ,118,2466 Mohanty,S.,&Basri,G.2003,ApJ,583,451 Perryman,M.A.C.,etal.1997,A&A,323,L49 Reid,I.N.,Kirkpatrick, J.D.,Liebert,J.,Gizis,J.E.,Dahn,C.C.,&Monet, D.G.2002,AJ,124,519 Reid,I.N.,Gizis,J.E.,&Hawley,S.L.2002,AJ,124,2721 Reid,I.N.,Cruz,K.L.,Kirkpatrick,J.D.,Allen,P.R.,Mungall,F.,Liebert,J., Lowrance,P.,&Sweet,A.2008,AJ,136,1290 Reiners,A.,&Basri,G.2008,ApJ,684,1390(RB08) Reiners,A.,&Basri,G.2009,ApJ,705,1416 Schmidt,S.J.,Cruz,K.L.,Bongiorno,B.J.,Liebert,J.,&Reid,I.N.2007,AJ, 133,2258 Seifahrt,A.,Guenther,E.,&Neuha¨user,R.2005,A&A,440,967 Johnson,D.R.H.,&Soderblom,D.R.1987,AJ,93,864 Stumpf,M.B.,Brandner,W.,Henning,T.,Bouy,H.,Koehler,R.,Hormuth,F., Joergens,V.,&Kasper,M.2008,arXiv:0811.0556 Vrba,F.J.,etal.2004,AJ,127,2948 Wielen,R.1977,A&A,60,263 ZapateroOsorio,M.R.,Mart´ın,E.L.,Be´jar,V.J.S.,Bouy,H.,Deshpande,R., &Wainscoat,R.J.2007,ApJ,666,1205 Zuckerman,B.,&Song,I.2004,ARA&A,42,685 Table2.Radialvelocitiesandspacemotionsofourtargets.Dataondistanceandpropermotionsareobtainedfromtheliterature. 8 Object SpT Distance µ cosδ µ RV U V W Ref. Comments α δ (pc) (mas/yr) (mas/yr) (kms−1) (kms−1) (kms−1) (kms−1) 2MASSJ03140344+1603056 L0.0 14.0±1.0 -241±18 -76±19 -8.0±1.1 16.4±1.4 5.4±1.4 -7.0±1.5 1 UMamovinggroup 2MASSJ12212770+0257198 L0.0 19.0±1.0 -115±30 -18±27 -9.0±1.4 -9.2±2.8 -2.6±2.5 -10.0±1.7 1 Youngdisk 2MASSJ17312974+2721233 L0.0 12.0±1.0 -82±15 -240±17 -30.5±1.1 -5.8±1.4 -30.0±1.3 -14.3±1.0 1 ABDormovinggroup 2MASSJ22000201-3038327 L0.0 35.0±2.0 210±48 -64±21 -25.3±1.0 -39.7±6.7 -19.7±3.8 -1.6±5.2 1 Hyadesmovinggroup 2MASSJ07464256+2000321 L0.5 12.2±0.04 -374± 1 -57± 0 53.0±1.1 -55.3±1.0 -15.1±0.4 -1.0±0.4 1 2MASSJ14122449+1633115 L0.5 25.0±2.0 29±16 -80±30 5.0±1.1 10.0±2.8 -4.8±3.1 1.7±1.5 1 Youngdisk 2MASSJ14413716-0945590 L0.5 27.5±2.7 -198± 3 -16± 4 -28.3±1.1 -34.7±1.8 -12.5±2.0 -10.4±1.3 1 Hyadesmovinggroup 2MASSJ23515044-2537367 L0.5 18.0±2.0 387±21 163± 9 -3.0±1.1 -35.7±4.4 -2.1±1.1 -4.1±1.4 1 Youngdisk 2MASSJ02355993-2331205 L1.0 21.3±0.5 84± 1 13± 0 15.3±1.1 -11.7±0.4 -7.7±0.3 -10.5±1.1 2 Youngdisk 2MASSJ06023045+3910592 L1.0 10.6±0.3 146±10 -501±10 7.6±1.1 -11.4±1.1 -24.4±0.9 -4.4±0.6 1 Pleiadesmovinggroup 2MASSJ10224821+5825453 L1.0 20.0±1.0 -360±99 -780±90 19.7±1.1 -40.0±8.1 -69.7±9.3 23.7±6.2 1 2MASSJ10452400-0149576 L1.0 17.0±1.0 -495±18 12±12 7.0±1.1 -35.7±2.5 -14.2±1.3 -12.9±1.6 1 Hyadesmovinggroup 2MASSJ10484281+0111580 L1.0 15.0±1.0 -442±13 -209±12 24.0±1.1 -24.9±1.6 -34.0±1.7 -2.2±1.8 1 2MASSJ13004255+1912354 L1.0 14.0±1.0 -820±18 -1244±19 -17.8±1.0 -1.6±1.3 -96.8±7.4 -27.0±1.3 1 A . 2MASSJ13595510-4034582 L1.0 21.0±1.0 38±11 -485±15 49.8±1.0 39.3±1.1 -50.5±1.5 -27.0±2.6 1 Se 2MASSJ14392836+1929149 L1.0 14.4±0.1 -1229± 1 407± 2 -27.2±1.1 -82.6±0.7 -39.2±0.3 14.1±1.1 1 ifa h 2MASSJ15551573-0956055 L1.0 13.0±1.0 950±15 -767±15 14.5±1.1 52.2±3.4 2.3±1.0 -56.1±5.2 1 r t 2MASSJ11455714+2317297 L1.5 44.0±3.0 155±16 -56± 6 3.3±1.0 32.9±3.9 2.4±1.9 10.3±1.4 1 et 2MASSJ13340623+1940351 L1.5 46.0±3.0 -58±12 98±16 2.0±4.1 -22.0±3.5 9.3±3.4 6.9±4.2 1 al.: 2MASSJ16452211-1319516 L1.5 12.0±1.0 -364±18 -804±16 26.4±1.0 32.6±1.2 -46.4±4.3 -0.3±1.3 1 S p 2MASSJ18071593+5015316 L1.5 14.0±1.0 35±19 -126±14 -2.0±3.2 7.6±1.3 -1.7±2.9 -4.3±1.9 1 Youngdisk a c 2MASSJ20575409-0252302 L1.5 16.0±1.0 10±20 -80±20 -25.0±3.2 -12.9±2.3 -20.3±2.4 9.0±2.1 1 Youngdisk e m 2MASSJ08283419-1309198 L2.0 11.6±1.4 -592± 6 14± 7 26.2±1.0 -33.1±2.5 -16.6±1.1 -19.4±3.3 3 Youngdisk o 2MASSJ09211410-2104446 L2.0 12.0±1.0 244±16 -908±17 80.0±1.1 18.1±3.8 -94.4±2.3 5.1±2.2 1 tio n 2MASSJ11553952-3727350 L2.0 13.0±1.0 50±12 -767±15 45.0±1.1 34.4±1.8 -50.6±1.5 -22.9±3.4 1 s o 2MASSJ13054019-2541059 L2.0 18.7±0.7 -285± 1 11± 1 5.0±2.2 -18.7±1.4 -17.0±1.6 5.2±1.4 1 Youngdisk f b 2MASSJ05233822-1403022 L2.5 13.0±1.0 90±17 166±17 11.3±1.0 -15.7±1.2 -2.6±1.1 3.4±1.3 1 Youngdisk ro 2MASSJ10292165+1626526 L2.5 23.0±2.0 359±15 -348±17 -28.2±1.4 58.5±4.5 -14.3±2.9 -11.8±1.9 1 w n 2MASSJ10473109-1815574 L2.5 22.0±2.0 -347±17 54±14 6.0±1.1 -34.0±3.6 -11.7±1.5 -9.3±1.9 1 Hyadesmovinggroup d w 2MASSJ09130320+1841501 L3.0 46.0±4.0 32±16 -187±17 -1.0±2.2 17.1±3.5 -37.1±5.0 -6.4±3.2 1 a r 2MASSJ12035812+0015500 L3.0 19.0±2.0 -1209±18 -261±15 -1.5±2.2 -83.7±9.2 -66.3±7.5 -31.9±3.9 1 fs 2MASSJ15065441+1321060 L3.0 14.0±1.0 -1087±13 14±11 -0.9±1.2 -41.4±3.2 -47.4±3.6 35.3±2.9 1 2MASSJ16154416+3559005 L3.0 24.0±2.0 -17±12 -512±15 -21.0±1.2 42.1±4.6 -42.5±3.0 -16.1±1.3 1 2MASSJ21041491-1037369 L3.0 17.0±2.0 614±16 -281±15 -20.5±2.2 -37.9±3.5 -28.9±2.7 -33.4±5.7 1 2MASSJ00361617+1821104 L3.5 8.8±0.1 899± 1 120± 2 21.0±1.8 -41.0±0.7 -3.2±1.2 -13.3±1.3 1 Youngdisk 2MASSJ07003664+3157266 L3.5 12.2±0.3 130± 1 -546± 1 -43.5±2.2 43.0±2.2 -28.6±0.8 -16.8±0.6 1 2MASSJ17054834-0516462 L4.0 11.0±1.0 129±14 -103±15 12.2±1.1 14.2±1.1 2.8±0.8 -3.7±1.1 1 UMamovinggroup 2MASSJ22244381-0158521 L4.5 11.4±0.1 457± 2 -871± 1 -39.0±1.1 -10.4±0.4 -64.9±0.8 -5.0±0.9 1 2MASSJ00043484-4044058 L5.0 13.0±0.7 643± 2 -1494± 1 30.0±1.4 11.4±0.5 -102.9±5.4 -15.3±1.6 4 2MASSJ08251968+2115521 L5.0 10.7±0.1 -510± 2 -288± 2 20.0±3.2 -27.5±2.6 -16.9±1.1 -15.5±1.6 1 Youngdisk 2MASSJ08354256-0819237 L5.0 7.0±1.0 -530±30 300±30 26.5±2.2 -31.2±1.6 -11.8±1.9 -0.5±1.2 1 Hyadesmovinggroup 2MASSJ15074769-1627386 L5.0 7.3±0.03 -161± 2 -888± 0 -40.4±1.8 -26.4±1.5 -16.7±0.4 -40.5±1.1 1 2MASSJ02550357-4700509 L8.0 5.0±0.1 999± 2 -565± 3 25.0±4.1 -5.4±0.4 -35.7±2.2 -7.3±3.6 5 References.– Distancesandpropermotion:(1)Fahertyetal.(2009,andreferencestherein),(2)HIPPARCOScatalogue (Perrymanetal.1997),(3)Lodieuetal.(2005),(4)Henryetal.(2006),(5)Costaetal.(2006)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.