ebook img

On The Intrinsic Diversity of Type II-Plateau Supernovae PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On The Intrinsic Diversity of Type II-Plateau Supernovae

DRAFTVERSIONMAY27,2015 PreprinttypesetusingLATEXstyleemulateapjv.05/12/14 ONTHEINTRINSICDIVERSITYOFTYPEII-PLATEAUSUPERNOVAE ONDRˇEJPEJCHA1 DepartmentofAstrophysicalSciences,PrincetonUniversity,4IvyLane,Princeton,NJ08540,USA AND JOSEL.PRIETO 5 Nu´cleodeAstronom´ıadelaFacultaddeIngenier´ıa,UniversidadDiegoPortales,Av.Eje´rcito441,Santiago,Chileand MillenniumInstituteofAstrophysics,Santiago,Chile 1 DraftversionMay27,2015 0 2 ABSTRACT y Hydrogen-richTypeII-PlateausupernovaeexhibitcorrelationsbetweentheplateauluminosityL ,thenickel a pl massM ,theexplosionenergyE ,andtheejectamassM . Usingourglobal,self-consistent,multi-band M Ni exp ej modelofnearbywell-observedsupernovae,wefindthatthecovariancesofthesequantitiesarestrongandthat theconfidenceellipsoidsareorientedinthedirectionofthecorrelations,whichreducestheirsignificance. By 6 propertreatmentofthecovariancematrixofthemodel,wediscoverasignificantintrinsicwidthtothecorrela- 2 tionsbetweenL ,E andM ,wheretheuncertaintiesduetothedistanceandtheextinctiondominate.For pl exp Ni fixedE ,thespreadinM isabout0.25dex,whichweattributetothedifferencesintheprogenitorinternal ] exp Ni R structure. We arguethattheeffectsof incompleteγ-raytrappingare notimportantin oursample. Similarly, thephysicsoftheTypeII-PlateausupernovalightcurvesleadstoinherentlydegenerateestimatesofE and S exp M , whichmakestheirobservedcorrelationweak. Ignoringthe covariancesofsupernovaparametersorthe . ej h intrinsic width of the correlations causes significant biases in the slopes of the fitted relations. Our results p implythatTypeII-Plateausupernovaexplosionsarenotdescribedbyasinglephysicalparameterorasimple - one-dimensionaltrajectorythroughtheparameterspace,butinsteadreflectthediversityofthecoreandsurface o propertiesof their progenitors. We discuss the implicationsfor the physicsof the explosionmechanismand r t possiblefutureobservationalconstraints. s a Keywords:Methods:statistical—stars: distances—supernovae:general [ 2 1. INTRODUCTION luminosity such as MNi or the plateau luminosity Lpl are v plagued by systematic uncertainties in the distance or ex- 3 The observed light curves and expansion velocities of tinction. Similarly, a simultaneous change in several pa- 7 hydrogen-rich Type II-Plateau supernovae can be used to rameters can result in nearly identical light curves (Arnett 5 infer the properties of the explosions and progenitor stars. 1980; Woosley 1988; Popov 1993; Kasen&Woosley 2009; 6 Specifically,thedurationandluminosityoftheoptically-thick Dessartetal.2010;Nagyetal.2014). 0 “plateau” phase of nearly constant bolometric luminosity is Here, we evaluate whether or not the systematic uncer- . primarily set by the explosion energy E and ejecta mass 1 exp taintiesand parametercovariancesinfluencethe significance M (e.g. Arnett1980; Kasen&Woosley 2009). The subse- 0 ej of the correlationsbetween parameterestimates for Type II- quent nearly exponential fading is powered by the thermal- 5 ization of radioactive fission products of 56Ni and the lu- Plateau supernovae. We focuson Lpl, MNi, Eexp, andMej. 1 To this end, we employ the self-consistent global model of v: mHainmousiyty20is03th).usPaptrtoeprnosrtiinontahletodisthtreibnuitcioknesl amnadssthMe cNoirr(eel.ag-. nearbywell-observedTypeII-Plateausupernovaethatwede- i tionsbetweenthesequantitiescanguidethestellarevolution velopedinPejcha&Prieto(2015,hereafterPP15),whichsi- X multaneously fits multi-band light curves and expansion ve- and explosion models, where many open questions persist r locities and provides consistent distances, reddenings, bolo- (e.g.Burrows2013;Uglianoetal.2012;Pejcha&Thompson a metricluminositiesand,mostimportantlyforthepresentpur- 2012, 2015; Pejchaetal. 2012a,b; Prietoetal. 2008a,b,c, poses, their covariances. In Section 2, we describe how we 2012, 2013; Holoienetal. 2014; Ertletal. 2015). For ex- estimatethesupernovaparameters,thedatabaseofsupernova ample, it has been proposed that the supernova explosion observationsandtheestimatesofuncertainties. InSection3, energy is proportional to the ejecta mass and therefore also weinvestigatethesystematicuncertaintyduetodistanceand the progenitor mass (e.g. Hamuy 2003; Utrobin&Chugai discoverasignificantintrinsicwidthoftheE –M corre- 2009; Poznanski 2013). However, low-energy explosions exp Ni lation. InSection4, weaddressthesignificanceoftheM – might be an exception signaling significant fallback in mas- ej E correlation. In Section 5, we discuss the astrophysical sive progenitors (e.g. Zampierietal. 2003; Pastorelloetal. exp implicationsofourfindings. 2004;Nomotoetal.2006). Atthesametime, directprogen- itor detections show significant scatter but little correlation 2. SUPERNOVAPARAMETERSDERIVEDFROMOBSERVATIONS betweentheprogenitormassandM (Smartt2009). Ni We calculate the bolometric luminosity of the optically- Naturally,notallsupernovaparameterscanbeinferredin- thickplateauphaseL as dependently. For example, quantities based on bolometric pl L =L (t +∆t ), (1) pl bol 0 pl [email protected] whereL isthebolometriclightcurveobtainedbyintegrat- bol 1HubbleandLymanSpitzerJr.Fellow ingthespectralenergydistributionfromabout0.19to2.2µm 2 PEJCHA & PRIETO and extrapolating the Rayleigh-Jeans tail (PP15), and t is unity, which increases the values in Ca relative to the un- 0 the zero point of our model fits, which coincides with the adjusted fit3. We use a subset of the observational sample explosion epoch for the purposes of this paper. The lumi- of PP15 that does not include SN2007od, SN2006bp, and nosity is evaluated at a fixed interval ∆tpl after the explo- SN2002hh due to reasons mentioned in PP15. In addition, sionepocht0. FollowingHamuy(2003), ourfiducialchoice weincludearecentTypeII-PSN2013am(Zhangetal.2014), is ∆tpl = 50days, but we will investigate the sensitivity of which we fit using the publicly available version of our fit- someofourresultsto∆tpl. WeestimatethenickelmassMNi tingtool4. ForSN2013am,wefindanexplosionepocht0 = fromtheexponentialdecaytailofthelightcurveafterHamuy 2456373.0±2.4,totalreddeningE(B−V)=0.81±0.02,and (2003)as adistancemodulus29.2±0.3mag. Foreverychoiceof∆t pl and ∆t we select a subset of supernovaewith data before ∆t −6.1d Ni MNi =7.866×10−44Lbol(t0+∆tNi)exp Ni M⊙, and after these dates to prevent extrapolation of the model. (cid:18) τ (cid:19) Ourfiducialchoiceof ∆t and∆t thusleavesuswith 19 (2) pl Ni supernovae,whichsatisfytheseconstraints. where τ = 111.26days. Our fiducial choice for the time We calculate the covariance matrix Cf of f = elapsed after explosion, where we estimate M , is ∆t = Ni Ni log(L ,M ,E ,M ) using the standard procedure for 200days. TheunitsonL areergss−1. pl Ni exp ej bol uncertaintypropagation We estimate the explosion energy E and ejected mass exp Mejusinglinearrelationsoftheform ∂f ∂f T Cf = Ca . (5) log Eexp =α·b+η , (3) (cid:18)∂a(cid:19) (cid:18)∂a(cid:19) (cid:18)1050ergs(cid:19) exp Theconfidenceellipsoid forf is a quadraticequationin the log Mej =β·b+η , (4) offsetsδf (cid:18)M⊙(cid:19) ej ∆χ2 =δf(Cf)−1δfT, (6) whereb=(M ,logt ,logv),andM istheabsolutemag- V P V where ∆χ2 dependson the desired confidencelevel and the nitude in the V band, t is the duration of the optically- P number of variables. In the subsequent discussion, we will thick plateau phase measured at the midpoint of the drop exclusivelyfocusonpairsdrawnfromf,(f ,f ),their2×2 to the exponential decay phase2, and v is the expansion ve- i j locity of the photosphere in the units of 1000kms−1 com- covariancesubmatrixCfi,fj,andthe68.3%confidencelevel, where ∆χ2 ≈ 2.30 (Pressetal. 1992, p. 697). For two pa- monly measured on the Fe II 5169A˚ line. M and v are V rameters at a time, Equation (6) can be solved to obtain the evaluated at the midpoint of the plateau, corresponding to positionsontheconfidenceellipsoidbytransformingthepair time t0 + tP/2. The coefficient vectors α and β are typ- ofvariablesδf = (δf ,δf )topolarcoordinates,varyingthe ically obtained either from analytic models of supernova i j polar angle, and solving for the radial distance at each po- lightcurves(e.g.Arnett1980;Popov1993;Kasen&Woosley lar angle. Note that the off-diagonalelements of Cf can be 2009) or from the fits to the simulated light curves and ex- non-zero even if Ca is diagonal. In our covariance matrix, pansion velocities (e.g. Litvinova&Nadezhin 1983, 1985; weproperlytakeintoaccounttheuncertaintiesint andtheir Kasen&Woosley 2009). Here, we use coefficients from 0 associatedcovarianceswiththedistanceandplateauduration. the analytic model of Popov (1993), α = (0.4,4.0,5.0), We model the dependencies between individual compo- β = (0.4,4.0,3.0), η = −3.311, and η = −2.089, exp ej nents of f = log(L ,M ,E ,M ) with a straight and the simulations of Litvinova&Nadezhin (1985), α = pl Ni exp ej line allowing for an intrinsic width Σ. We use the like- (0.135,2.34,3.13),β =(0.234,2.91,1.96),η =−3.205, exp lihood function of Hoggetal. (2010), which assumes that andη = −1.829. Litvinova&Nadezhin(1985) claim that ej the observationsare offset from a linear relation by a Gaus- Equations(3–4)canreproducetheirnumericalresultstoabout 30%andtheir resultshavebeencommonlyusedin theliter- sian described by the covariance matrix Cfi,fj convolved ature(e.g.Elmhamdietal.2003;Hamuy2003;Hendryetal. with a Gaussian intrinsic scatter with standard deviation Σ, which is perpendicular to the linear relationship. We ob- 2006;Boseetal.2013). We emphasizethatthe pointofthis taintheconfidenceintervalswiththeMCMCsampleremcee exerciseisnottocompetewithdetailedmodelingemploying (Foreman-Mackeyetal.2013). We will quotemedianofthe sophisticatedcodes, butto illustratethelimitationsposedby the physicsof the supernovalight curvesto the estimates of distribution for our best-fit parameters, and 16 and 84 per- centilesastheirconfidenceintervals. E and M – the analytic results for α and β of Popov exp ej Wequantifythesignificanceofthecorrelationsinthedata (1993)alreadyimplythattheestimatesofE andM are exp ej highlycorrelated. WewillshowinSection4thatsimilarde- usingtwoapproaches. First,wecalculatetheBayesfactorB ofthelinearfitrelativetoamodel,whichassumesnocorrela- generacyispresentalsointhemoresophisticatedmodels. tionbetweenthetwovariables.Specifically,weevaluate To estimate the above parameters, we use the model and databaseofobservationsfromPP15. Thelightcurvesarede- scribedby a set of phenomenologicalparametersa obtained π1 −ππ/2/2P(θ)dθ B ≡ , (7) by least-squares fitting of the data, which also provides the max[P(θR=0),P(θ =π/2)] full covariance matrix Ca of our model. This allows us to properlypropagateuncertaintiesinatoL ,M ,E ,and 3 Werepeatedtheanalysiswithunadjustedcovariance matrixandfound pl Ni exp that line slopes, intercepts and their uncertainties remain unchanged. The M . In this work, we employ a model fit with observa- ej intrinsicwidthsareabout20%higherwhenusingtheunadjustedfullcovari- tional uncertainties rescaled so that the final reduced χ2 is ancematrix.TheBayesfactorsBchangebyonlyabout20%,butRincreases inallcasesbyafactorof∼ 2.5. Finally,theunadjustedcovariancematrix 2TheplateaudurationtPshouldnotbeconfusedwiththetime,whenthe willyieldsmallerconfidenceellipsoidsintheFigures. plateauluminosityismeasured,∆tpl. 4http://www.astro.princeton.edu/˜pejcha/iip/ ON THEINTRINSIC DIVERSITY OF TYPEII-PLATEAUSUPERNOVAE 3 whereθistheanglebetweenthelineandthexaxisandP(θ) IntheleftpanelofFigure1,weshowtheestimatesofL pl is the likelihoodmarginalizedover the line interceptand in- and M with uncertainties simply represented by the diag- Ni trinsic width togetherwith their priors; we assume flat prior onal terms of Cf, as is commonly done (e.g. Hamuy 2003; in θ. Taking the maximum of P(θ = 0) and P(θ = π/2) Andersonetal.2014;Spiroetal.2014). Wewouldinferthat in the denominator of Equation (7) ensures that B ≈ 1 for thereisalinearcorrelationbetweenlogL andlogM with pl Ni uncorrelated data when the scatter in the x and y directions aslopeof1.51+0.17 andR = 4.2,implyingastrongcorrela- differs.Equation(7)isalsoinsensitivetorescalingtheuncer- −0.17 tion. More importantly,consideringonlythe diagonalterms taintiesofthedata,becausetheseenterinthesamewayboth givesafalseimpressionthatallthepointsarecompatiblewith inthenumeratorandthedenominator. AccordingtoJeffreys thebest-fitlinegiventheiruncertainties.Quantitatively,there (1983),B > 101/2 impliesthatthesupportforthefittedline isnoevidenceforintrinsicscatter,withΣ=0.05+0.04. is“substantial”,and“decisive”ifB >102. Whentheconfidenceellipsoidsareproperlyinc−lu0.d0e3dasin Theemployedlikelihoodmodelisonlyconcernedwithdis- the right panel of Figure 1, the picture changes. The confi- placementsoftheobservationsperpendiculartothefittedline denceellipsoids are significantlyelongated, because of their andprovidesnoinformationonthedistributionalongtheline mutualdependenceondistances, asindicatedbythearrow6. (Hoggetal.2010). Togiveaquantitativemeasureofthedy- The correlation is noticeably less significant, R = 3.0, al- namicrangeofthedataalongthebest-fitline,weprojectthe though there is no doubt this correlation exists given the dataandtheirconfidenceellipsoidsonthebest-fitlineandcal- large dynamic range of the parameters. The Bayes factor is culate the weighted standard deviation of the data along the B ≈ 9 × 107 implying strong support for the correlation. best-fit line V and the median uncertainty along the best-fit More importantly, we discover a statistically significant in- lineW. Wedefine trinsic width of the relation Σ = 0.12+0.03, which implies V −0.02 R≡ . (8) ascatterof0.2dexinMNi forafixedLpl. Furthermore,ne- W glectingtheoff-diagonaltermsortheintrinsicwidthofthere- In the case of one-dimensional data, R is a measure of the lationcanbiasthe inferredslope (e.g.Tremaineetal.2002). intrinsic scatter, for example, R = 3 would imply approxi- Neglectingtheoff-diagonaltermsincreasestheslopebyabout mately 3σ significance of the intrinsic scatter. Here, the in- 0.19 with a corresponding change in the intercept. Not ac- formationprovidedbyRiscomplementarytothefittedslope countingfortheintrinsicscatter leadsto slopesof1.83+0.07 −0.06 anditsuncertainty.VerylargevaluesofRtogetherwithsmall and1.56+0.12forthefullanddiagonalcovariancematrix,re- −0.11 relative uncertainty on the slope and high B imply a strong spectively. correlation.Iftheconfidenceellipsoidsareorientedalongthe SinceL doesnothaveanimmediatephysicalinterpreta- pl observedcorrelationandtheoff-diagonalelementsofCf are tion,we showM asafunctionofE in Figure2 forthe Ni exp ignored,Rwillbeartificiallyhigherandtheobservedcorrela- scalingrelationsofLitvinova&Nadezhin(1985) andPopov tionwillappearstronger.UnlikeB,theparameterRdepends (1993). Therelativepositionofthemajorityofthedatapoints ontheabsolutevaluesofdatauncertainties. remainsunchangedwhencomparedtotherightpanelofFig- ure 1, which indicates that L is a good proxy for E . pl exp 3. INTRINSICSCATTERINTHELpl,EexpANDMNi There are small differences between the two scaling rela- CORRELATION tions, but the relative positions of the majority of the points Significant off-diagonal terms in Cf occur when the un- areunchanged. FortheLitvinova&Nadezhin(1985)coeffi- certainties are dominated by a single systematic uncertainty cients, we find that the Eexp–MNi correlation is less signif- σsyst, typically in the distance or the extinction5. Quanti- icant than Lpl–MNi with R = 2.8 and 3.7 for the full and ties linearly proportional to L such as L and M are diagonalcovariancematrix,respectively. TheBayesfactoris bol pl Ni particularly susceptible. In other words, a bias in the dis- B ≈1.7×105indicatingstrongcorrelation,butweakerthan tance will move Lpl and MNi in the same direction simul- Lpl–MNi. Theinferredintrinsicwidthorthogonaltotheline taneously by the same amount, introducing a covariance in is slightly higher than in the Lpl–MNi correlation but again these two parameters. Schematically, the covariance matrix statisticallysignificant,Σ=0.14+0.04or0.25dexinM for −0.03 Ni oflog(L ,M )is fixed E . The intrinsic width fromthe Popov(1993) cali- pl Ni exp brationisΣ=0.19+0.05. σ2 +σ2 σ2 −0.04 ClogLpl,logMNi = pl syst syst , (9) The intrinsic width of the Eexp–MNi correlation could (cid:18) σs2yst σt2ail+σs2yst (cid:19) be due to the γ-ray trapping efficiencies Aγ varying among supernovae with the same E . Since the exp whereσ andσ aretheuncertaintiesintheobservedmag- pl tail exponential decay luminosity is proportional to [1 − nitudesduringtheplateauandtheexponentialdecaytail, re- exp(−A /∆t2 )]exp(−∆t /τ) (e.g. Chatzopoulosetal. spectively. Usually,σ ,σ ≪ σ andtheconfidenceel- γ Ni Ni pl tail syst 2012;Nagyetal.2014),where∆t isthetimeelapsedsince lipsoidisstronglyelongatedinthedirectionofthesystematic Ni the explosion, supernovaewith significantγ-rayleakage not uncertainty. If logL and logM are perfectly correlated, pl Ni only appear fainter at any point of this phase but also de- neglectingthe off-diagonalterms in Equation(9) will imply cay faster (Andersonetal. 2014), and their light curves di- avalueofR thatistwicethetruevalue. Evenifthefullco- vergefromthoseofsupernovaewithfullγ-raytrappingover variance matrix is not available, an approximate covariance time. Sinceoursamplecontainssupernovaewithdecayrates matrixsimilartoEquation(9)canbeconstructedtoproperly compatiblewithfulltrappingasevidencedbytheexponential visualizetheconfidenceellipsoids. 6Notethattheuncertaintiesinabsolutemagnitudeandexpansionvelocity 5Ourdistanceestimatesarecomparedtopreviousresultsandothertech- (e.g. Poznanski 2013) should not be very correlated, unless the velocities niques (Cepheids, Type Ia supernovae) in PP15 and yield generally good wereusedforanestimateofthedistancemodulus,inwhichcasethereshould agreement.Similarlygoodagreementisobtainedforreddenings. beasignificantcorrelation. 4 PEJCHA & PRIETO SN2009js -0.5 -0.5 SN2008bk SN2001dc SN2008in SN2009dd -1.0 -1.0 SN1992H M/M)O •Ni -1.5 M/M)O •Ni -1.5 SSSSNNNN1122990099005644aWdAdj SSSSNNNN1222900081000354Kacesmt g ( g ( SN2009N lo -2.0 lo -2.0 SSNN12909099ebmw SN2012A SN2012aw -2.5 -2.5 log (MNi /MO • ) = 1.53–+00..1178 log (Lpl /LO • ) – 14.3+–11..54 Σ = 0.05–+00..0034 log (MNi /MO • ) = 1.38–+00..1146 log (Lpl /LO • ) – 13.1+–11..32 Σ = 0.10–+00..0023 -3.0 -3.0 7.5 8.0 8.5 9.0 9.5 7.5 8.0 8.5 9.0 9.5 log (Lpl /LO • ) log (Lpl /LO • ) Figure1. ThecorrelationbetweentheplateauluminosityLpl(Eq.[1])andthenickelmassMNi(Eq.[2]).Thebest-fitrelationisshownwithsolidlineandthe intrinsicwidthΣisindicatedwithdashedlines.Left:Therelationasusuallypresented,treatingtheparameteruncertaintiesasiftheyareuncorrelated.Weshow one-dimensionaluncertaintyprojectionsandthecorrelationdoesnotexhibitinternalspread. Right: Thefullconfidenceellipsoidsforeachsupernovaimplya significantinternalspreadinthecorrelation.Thearrowshowsthedirectionofthecovariancecreatedbythedistanceuncertainty. Litvinova & Nadezhin (1985) calibration Popov (1993) calibration -0.5 -0.5 -1.0 -1.0 M)O • -1.5 M)O • -1.5 /Ni /Ni M M og ( -2.0 og ( -2.0 l l -2.5 -2.5 log (MNi /MO • ) = 1.49–+00..2217 log (Eexp /1050 ergs) – 2.90+–00..2240 log (MNi /MO • ) = 1.13–+00..2216 log (Eexp /1050 ergs) – 2.45+–00..2117 -3.0 Σ = 0.14–+00..0034 -3.0 Σ = 0.19–+00..0045 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 2.0 log (E /1050 ergs) log (E /1050 ergs) exp exp Figure2. NickelmassMNiasafunctionofexplosionenergyEexp,withtheconfidenceellipsesproperlyvisualized. Thecolorsoftheindividualsupernovae arethesameasintherightpanelofFigure1.WeusethescalingrelationsofLitvinova&Nadezhin(1985,leftpanel)andPopov(1993,rightpanel). 0.5 1.0 mag] mag] ∆) [tNi0.4 ) [00 d 0.8 + 2 ()-(Mt+50 dMt0000..23 ∆()-(Mt+tMt+0pl000..46 Dispersion of 00..01 Dispersion of 00..02 150 200 250 300 350 400 0 20 40 60 80 100 ∆t [days] ∆t [days] Ni pl Figure3. Weightedstandarddeviation ofthebolometric magnitude difference between theplateau andtheexponential tailareshownwithfilledcircles as functionof∆tNi(leftpanel)or∆tpl(rightpanel).Thereislittledependenceon∆tNiindicatingthatthedifferentγ-raytrappingefficienciesarenotresponsible fortheintrinsicwidthseeninFigures1and2.Inotherwords,theexponentialdecayisnearlyparallelforstarsinoursample. Opentrianglesindicatethemean uncertaintyoftheindividualmeasurementsused.Onlysupernovaewithdataspanning∆tpland∆tNiareused. ON THEINTRINSIC DIVERSITY OF TYPEII-PLATEAUSUPERNOVAE 5 decay slopes (PP15), the 0.25dex difference in the inferred InFigure4weshowM andE asinferredforoursam- ej exp M at∆t = 200daysshouldincreasetoabout0.7dexat ple and the two scaling relations. The uncertaintyellipsoids Ni Ni ∆t = 400d, if the scatter is dueto γ-rayleakagein some are elongated along the correlation, as expected. We find Ni objects. significant systematic offsets between the scaling relation- To test whether the late light curves of supernovae in our ships,inparticularPopov(1993)calibrationproducessmaller sample diverge with time due to incomplete γ-ray trapping and more realistic M , and smaller E . The relative po- ej exp insomeobjects,weshowtheweightedstandarddeviationof sitions of the individual supernovae remains unchanged in thebolometricmagnitudedifferencebetweentheplateauand mostcases. FortheLitvinova&Nadezhin(1985)calibration, the exponential tail as a function of the time elapsed since we find a relatively high uncertainty for the slope 2.09+0.64 −0.46 explosion,∆tNi,intheleftpanelofFigure3. Weseethatthe andastatisticallysignificantintrinsicwidthtothecorrelation, bolometricmagnitudedispersionincreasesfrom0.37mag at Σ = 0.14+0.04. We find R = 2.0 and the Bayes factor of ∆tNi = 200d to 0.45mag at ∆tNi = 400days, much less B ≈ 200,w−0h.i0c3himpliesthatthiscorrelationismuchweaker than what we would expectif some supernovaeshowed full than E –M , albeit the evidence is still “decisive” in the exp Ni trappingandsomeonlypartial. Thismeansthattheslopesof classification of Jeffreys (1983). The results are similar for theexponentialdecayareverysimilaramongourobjectsand thePopov(1993)calibration. arecompatiblewithfullγ-raytrapping. There are two outliers to the M –E correlation: ej exp For the sake of completeness, we test what is the impor- SN1995adand SN1980K.TheType II-LinearSN1980Khas tanceofwhenistheplateauluminositydetermined.Weshow well-constrained distance (PP15) and relatively good light theweightedstandarddeviationofthebolometricmagnitude curve covering the transition to the exponential decay. Re- difference between the plateau and the exponential tail but cent investigationsof large samples of hydrogen-richsuper- now as a function of ∆tpl in the right panel of Figure 3. novaeindicatethatthereisacontinuumoflightcurveshapes Forsmall∆tpl, thedispersionisrelativelyhigh,presumably betweenTypeII-PlateauandTypeII-Linear(Andersonetal. duetodifferencesinthepropertiesoftheshock-heatedejecta 2014andSandersetal. 2015, butsee also Arcavietal. 2012 shortlyaftershockbreakout,butfor∆tpl & 40dthedisper- andFaranetal.2014),suggestingthatalargerunbiasedsam- sion remains approximately constant. We conclude that the pleofsupernovaemightfillthespacebetweenSN1980Kand intrinsicwidthoftheEexp–MNicorrelationisrobustwithre- therestofoursample. spect to when exactly the plateau and exponentialdecay tail SN1995ad has distinctively shorter t ≈ 85days than P luminositiesaremeasured,andthatitisnotduetovariations mostsupernovaeinoursample,asfoundalsobyInserraetal. intheγ-rayleakage7. (2013), which is responsible for the outlying results. The explosion epoch of Inserraetal. (2013) is about 12days 4. THECORRELATIONBETWEENMejANDEexp later than ours and their adopted distance modulus is Correlated uncertainties in f = log(L ,M ,E ,M ) about 0.3mag closer (although the distances are compat- pl Ni exp ej can also occur when some of the vectors∂f /∂b are nearly ible within their 1σ limits) than what we obtained in i parallel.Equations(3–4)implythatthecovarianceoflogM PP15.Fromradiation-hydrodynamicalmodelingInserraetal. ej andlogEexpis (2013) found log(Eexp,Mej) ≈ (0.3,0.7) in the units of Equations (3–4), while we find (0.4,0.3) and (0.9,0.8) us- ClogMej,logEexp ∼ α·β , (10) ingthe relationsof Popov(1993) andLitvinova&Nadezhin C C |α||β| (1985), respectively. Without the outlying SN1995ad and logMej,logMej logEexp,logEexp SN1980K,theM –E correlationexhibitsasteeperslope p ej exp iftheuncertaintiesintheindividualcomponentsofbareap- of2.60+0.41 (compatiblewiththeresultofPoznanski2013), −0.30 proximatelythe same. Thisis reasonable,because5 to 10% significantly smaller intrinsic width Σ = 0.05+0.02, and uncertaintiesinthedistancemodulus,t andv areexpected. −0.01 P R = 1.9. The Bayes factor increases to B ≈ 1.8 × 104, We obtain a high correlationof 0.94 and 0.97for the α and asexpectedwhenoutliersareremoved. β from Litvinova&Nadezhin(1985) and Popov (1993), re- Since we are not interested in the specific values of E spectively.ThisdegeneracycomesthephysicsoftheTypeII- exp and M , but rather in the process of their estimation, the Plateau supernova light curves, where higher kinetic energy ej results of the analytic scaling relations of Equations (3–4) makes the material transparent earlier, which can be com- are only approximate and must be confronted with more pensated for by increasing ejecta mass to produce approxi- detailed models. In Figure 5 we show t and v of the matelythesameplateaudurationandluminosity(e.g.Arnett P radiation-hydrodynamicmodelsofexplosionsofnon-rotating 1980; Litvinova&Nadezhin 1985; Kasen&Woosley 2009; red supergiant progenitors of Dessartetal. (2010) with Dessartetal.2010,2013). Thedegeneraciesbetweenparam- informationon E and M encoded in symbols and their etersdescribingsupernovalightcurveswerealsoinvestigated exp ej colors. The models do not include heating by radioactive byNagyetal.(2014)usingsemi-analyticmodels.Asaresult, nickel and thus underestimate t . The coverage of the inferencesof E and M will be highly correlated in any P exp ej parameter space by the theoretical models is not uniform, techniquebasedonlightcurvesandexpansionvelocities. and in particular some observedsupernovaefall in the areas where there are no models, making interpolation in these 7Anadditionalpieceofanecdotalevidenceagainstsignificantγ-rayleak- theoretical models to estimate the supernova parameters age comes from comparing SN2013am and SN2005cs, which have nearly identical luminosities for the first ∼ 70days. However, SN2013am has difficult. More importantly, the bulk of the observed su- a noticeably shorter tP and a higher inferred MNi than SN2005cs. This pernovae cluster at tP ≈ 120days and v ≈ 3500kms−1, impliesthatSN2013amhasslightlysmallerEexp andsignificantlysmaller andthese parameterscan beexplainedby a rangeofmodels MejthanSN2005cs(Fig.4). Ifγ-rayescapewereimportant,wewouldex- going from low explosion energy (E = 0.1×1051ergs) ipnecStNsm20a0ll5ecrs.infYeerrt,edthMeeNxipoanndenftaiasltedreecxapyonsleonpteialisdaelcmayositnthSeNs2a0m13eaimnbthoatnh and low ejecta mass (Mej ≈ 6M⊙ex)pto normal explosion objects(Zhangetal.2014)andSN2013amhashigherinferredMNi. 6 PEJCHA & PRIETO Litvinova & Nadezhin (1985) calibration Popov (1993) calibration 2.0 1.5 lΣo g= (0E.1ex4p –+/001..0003450 ergs) = 2.09–+00..4664 log (Mej /MO • ) – 1.78+–00..5894 1.5 lΣo g= (0E.1ex6p –+/001..0003450 ergs) = 1.81–+00..3445 log (Mej /MO • ) – 1.12+–00..4386 s) s) g g er er 1.0 500 1.0 500 1 1 E/exp E/exp 0.5 g ( 0.5 g ( o o l l 0.0 0.0 -0.5 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.5 1.0 1.5 log (Mej /MO • ) log (Mej /MO • ) Figure4. ExplosionenergyEexpasafunctionofejectamassMej.ThecolorsoftheindividualsupernovaearethesameasintherightpanelofFigure1. We usethescalingrelationsofLitvinova&Nadezhin(1985,leftpanel)andPopov(1993,rightpanel). 180 0.1 1122 160 0.3 1.0 ] s 140 3.0 y a 1100 d [ on 120 ]MO • i at [ r s u s d 100 ma 88 u a a e ct t e a 80 Ej l P 66 60 40 44 0 2000 4000 6000 8000 Expansion velocity at 50 days [km/s] Figure5. Plateaudurationsandexpansionvelocities fromthetheoreticalmodelsandtheobservations. Theresultsofthetheoreticalnon-rotatingprogenitor explosionsofDessartetal.(2010)areshownwithplussigns,stars,diamondsandtrianglesforexplosionenergiesof0.1,0.3,1.0and3.0×1051ergs.Thecolor ofthesymbolsindicatetheejectamass. Theobservationsareshownwithgraysolidcirclesandtheirconvexhullismarkedwiththegraypolygon. Thetypical parametersofTypeII-Plateausupernovae(tP ≈ 120days,v ≈ 3500kms−1)canbeexplainedbyarangeofmodelsgoingfromlowEexpandlowMejto moderateEexpandhighMej.Finerdetailsofthelightcurvesandspectraneedtobeanalyzedtobreakthisdegeneracy. energy (Eexp = 1.0× 1051ergs) and relatively high ejecta 5. DISCUSSIONSANDCONCLUSIONS mass(Mej & 10M⊙). Inotherwords, verydifferentsets of We show that the correlated uncertaintiesbetween param- theoreticalparameterswill yieldverysimilar observables,at eters derived from supernova light curves and velocities are least for t and v (and likely also L due to the observed P pl strongandareorientedalongtheparametercorrelations. The L –v correlation),implyingthatalsothemoresophisticated pl covariancesbetweenthe quantitiesarise eitherdue to uncer- modelsarepronetothesamedegeneracyasthelinearscaling tainties in the distance affecting two quantities in the same relations. way (L and M , Fig. 1), or due to degeneracies inher- pl Ni ent to the physics of the supernova light curves (E and exp ON THEINTRINSIC DIVERSITY OF TYPEII-PLATEAUSUPERNOVAE 7 M , Fig. 4). As a result, the statistical significance ofthese with the initial mass, metallicity or final hydrogen mass ej correlations is reduced, but the correlations cannot be fully (Sukhbold&Woosley2014). explained away by the covariances. The correlation of M ThedegeneracybetweenM andE canbereducedby ej ej exp andE isweakerthantheothertwocorrelationsweinvesti- modelingfinerfeaturesinthelightcurveandspectra,suchas exp gated(Lpl,Eexp,andMNi)anditssignificanceissensitiveto theOI 6303-6363A˚ lineadvocatedbyDessartetal. (2010). whetherSN1980K(TypeII-Linear)andSN1995ad(TypeII- However,characterizingthesefeaturesgenerallyrequiressub- Plateauwithshortplateauduration)areincluded.Conversely, stantial observational effort on nearby objects (for example properly characterizing the uncertainty ellipsoids reveals an theOI6303-6363A˚ linefullydevelopsonly∼300daysafter intrinsic width to the Lpl–MNi and Eexp–MNi correlations explosion; Dessartetal. 2010), along with confidencein the (Figs. 1 and 2). Now we explore the astrophysical implica- underlying physics and considerable effort in its numerical tionsofthesefindings. implementation. Surveys focusing on bright, nearby super- Instudiesoftheneutrinomechanism,mostofEexp comes novaesuchasASAS-SN(Holoienetal.2014;Shappeeetal. from the neutrino-driven wind emanating from the nascent 2014)couldbeofhelpinthisregard. Itwillbemuchharder proto-neutron star (e.g. Schecketal. 2006; Uglianoetal. toobtainsuchdetailedinformationinthefuturedominatedby 2012; Pejcha&Thompson 2015). In a simple spherical primarilyphotometricdiscoverymachinessuchas the Large picture, the evolution of the neutrino-driven wind is deter- Synoptic Survey Telescope (e.g. Ivezicetal. 2014). As a mined by the thermodynamic structure of the layers below result, reliable recovery of supernova parameters from light the ejecta mass cut (Pejcha&Thompson 2015), while the curvesand(potentiallyscarce)expansionvelocitieswillonly ejected mass of 56Ni depends primarily on the mass of the growinimportance,mandatingrigorousuncertaintyanalysis shock-heatedejectaexposedtosufficientlyhightemperatures thatconsistentlyincludeallrelevantcontributionstothefinal (Weaver&Woosley 1980; Woosley 1988; Thielemannetal. uncertainty budget, as we have done here. Detailed investi- 1990). The intrinsic scatter in the Eexp–MNi relation there- gationsofthesupernovaparametercovariances,degeneracies fore implies that the progenitor structure below and above and multiple solutions based on detailed radiation hydrody- the mass cut cannot be fully described by a single pa- namic models is the next logical step in the preparation for rameter, such as the compactness (O’Connor&Ott 2011, the upcoming surveys. The understanding of the intricacies 2013; Nakamuraetal. 2014; Pejcha&Thompson 2015; oftheparameterrecoverywillnotonlyyieldgreaterphysical Peregoetal.2015). UsingtheresultsofPejcha&Thompson understandingofthesupernovapopulation,butcaninfluence (2015), we find a width of 0.10+−00..0011dex in their Eexp– backthedesignandstrategyofthesurveyscurrentlyinprepa- MNi correlation, which is consistent with the results pre- ration. sented here. The theoretical predictions of the correlation slope (Pejcha&Thompson 2015) approximately agree with ACKNOWLEDGEMENTS the observationspresented here, but disagree with the infer- We thank Jujia Zhang for providingus with the velocities ences presented by Hamuy (2003). A similar conclusionon of SN2013am. We thank Chris Kochanek, Michael Strauss, the presence of multiple parametersdeterminingthe proper- Bruce Draine, and ToddThompsonfor a detailed readingof ties of core-collapse supernova light curves was reached by themanuscript. We thanktherefereeforcomments. OPap- Sandersetal. (2015), who quantified a dispersion in the de- preciatesthe discussionswithAdamBurrows. We thankthe cline rate-peak magnitude relation of hydrogen-rich super- refereeforcommentsthathelpedtoimprovethemanuscript. novae. SupportforOPwasprovidedbyNASAthroughHubbleFel- Changes in the intrinsic width of the E –M correla- exp Ni lowship grant HST-HF-51327.01-A awarded by the Space tion as a function of E or other parameters can further exp Telescope Science Institute, which is operated by the Asso- constrain the explosion physics. For example, the spread in ciation of Universities for Research in Astronomy, Inc., for M at constantE could be caused by a varying amount Ni exp NASA, under contract NAS 5-26555. Support for JLP is of 56Ni fallback in different progenitors. We would expect providedin part by the Ministry of Economy,Development, that the fallback will be generally less important at higher and Tourism’s Millennium Science Initiative through grant E and the spread of M should thus increase as E exp Ni exp IC120009, awarded to The Millennium Institute of Astro- decreases. In principle, this is testable given a large set of physics,MAS. well-observedsupernovaexplosions. New unbiased surveys ofbrightnearbysupernovaesuchasASAS-SN(Holoienetal. REFERENCES 2014;Shappeeetal.2014)areparticularlyusefulduetofea- sibilityofdetailedfollow-upobservationsandtheexploration Anderson,J.P.,Gonza´lez-Gaita´n,S.,Hamuy,M.,etal.2014,ApJ,786,67 ofnewpartsoftheparameterspace(e.g.,low-metallicitystel- Arcavi,I.,Gal-Yam,A.,Cenko,S.B.,etal.2012,ApJ,756,LL30 larenvironments). Arnett,W.D.1980,ApJ,237,541 Contrary to the common picture (e.g. Hegeretal. 2003; Bose,S.,Kumar,B.,Sutaria,F.,etal.2013,MNRAS,433,1871 Nomotoetal. 2006; Utrobin&Chugai2009, 2014), there is Bruenn,S.W.,Lentz,E.J.,Hix,W.R.,etal.2014,arXiv:1409.5779 little evidence from the parameterized studies of the neu- Burrows,A.2013,ReviewsofModernPhysics,85,245 Chatzopoulos,E.,Wheeler,J.C.,&Vinko,J.2012,ApJ,746,121 trino mechanism that the supernovapropertiessuch as E exp Dessart,L.,Livne,E.,&Waldman,R.2010,MNRAS,408,827 orMNiwillstronglycorrelatewiththemassoftheprogenitor Dessart,L.,Hillier,D.J.,Waldman,R.,&Livne,E.2013,MNRAS,433, (e.g.O’Connor&Ott2011;Uglianoetal.2012;Bruennetal. 1745 2014; Nakamuraetal. 2014; Pejcha&Thompson 2015; Elmhamdi,A.,Danziger,I.J.,Chugai,N.,etal.2003,MNRAS,338,939 Peregoetal. 2015; Ertletal. 2015), because the ultimate Ertl,T.,Janka,H.-T.,Woosley,S.E.,Sukhbold,T.,&Ugliano,M.2015, arXiv:1503.07522 fate of the star and the initiation of the explosion is set Faran,T.,Poznanski,D.,Filippenko,A.V.,etal.2014,MNRAS,445,554 by the physics and the thermodynamic structure on the in- Foreman-Mackey,D.,Hogg,D.W.,Lang,D.,&Goodman,J.2013,PASP, ner ∼ 2.5M⊙ of the progenitor, which is not monotonic 125,306 Hamuy,M.2003,ApJ,582,905 8 PEJCHA & PRIETO Heger,A.,Fryer,C.L.,Woosley,S.E.,Langer,N.,&Hartmann,D.H. Perego,A.,Hempel,M.,Fro¨hlich,C.,etal.2015,arXiv:1501.02845 2003,ApJ,591,288 Popov,D.V.1993,ApJ,414,712 Hendry,M.A.,Smartt,S.J.,Crockett,R.M.,etal.2006,MNRAS,369, Poznanski,D.2013,MNRAS,436,3224 1303 Press,W.H.,Teukolsky,S.A.,Vetterling,W.T.,&Flannery,B.P.1992, Hogg,D.W.,Bovy,J.,&Lang,D.2010,arXiv:1008.4686 Cambridge:UniversityPress,2nded. Holoien,T.W.-S.,Prieto,J.L.,Pejcha,O.,etal.2014,arXiv:1411.3322 Prieto,J.L.,Stanek,K.Z.,Kochanek,C.S.,etal.2008a,ApJ,673,L59 Inserra,C.,Pastorello,A.,Turatto,M.,etal.2013,A&A,555,AA142 Prieto,J.L.,Stanek,K.Z.,&Beacom,J.F.2008b,ApJ,673,999 Ivezic,Z.,Tyson,J.A.,Abel,B.,etal.2014,arXiv:0805.2366 Prieto,J.L.,Kistler,M.D.,Thompson,T.A.,etal.2008c,ApJ,681,L9 Jeffreys,H.1983,TheTheoryofProbability,3rded.,OxfordUniversity Prieto,J.L.,Lee,J.C.,Drake,A.J.,etal.2012,ApJ,745,70 Press Prieto,J.L.,Brimacombe,J.,Drake,A.J.,&Howerton,S.2013,ApJ,763, Kasen,D.,&Woosley,S.E.2009,ApJ,703,2205 L27 Litvinova,I.I.,&Nadezhin,D.K.1983,Ap&SS,89,89 Sanders,N.E.,Soderberg,A.M.,Gezari,S.,etal.2015,ApJ,799,208 Litvinova,I.Y.,&Nadezhin,D.K.1985,SovietAstronomyLetters,11,145 Scheck,L.,Kifonidis,K.,Janka,H.-T.,Mu¨ller,E.2006,A&A,457,963 Nagy,A.P.,Ordasi,A.,Vinko´,J.,&Wheeler,J.C.2014,A&A,571,AA77 Shappee,B.J.,Prieto,J.L.,Grupe,D.,etal.2014,ApJ,788,48 Nakamura,K.,Takiwaki,T.,Kuroda,T.,&Kotake,K.2014, Smartt,S.J.2009,ARA&A,47,63 arXiv:1406.2415 Spiro,S.,Pastorello,A.,Pumo,M.L.,etal.2014,MNRAS,439,2873 Nomoto,K.,Tominaga,N.,Umeda,H.,Kobayashi,C.,&Maeda,K.2006, Sukhbold,T.,&Woosley,S.E.2014,ApJ,783,10 NuclearPhysicsA,777,424 Thielemann,F.-K.,Hashimoto,M.-A.,&Nomoto,K.1990,ApJ,349,222 O’Connor,E.,&Ott,C.D.2011,ApJ,730,70 Ugliano,M.,Janka,H.-T.,Marek,A.,&Arcones,A.2012,ApJ,757,69 O’Connor,E.,&Ott,C.D.2013,ApJ,762,126 Utrobin,V.P.,&Chugai,N.N.2009,A&A,506,829 Pastorello,A.,Zampieri,L.,Turatto,M.,etal.2004,MNRAS,347,74 Utrobin,V.P.,&Chugai,N.N.2014,arXiv:1411.6480 Pejcha,O.,&Kochanek,C.S.2012,ApJ,748,107 Tremaine,S.,Gebhardt,K.,Bender,R.,etal.2002,ApJ,574,740 Pejcha,O.,Thompson,T.A.,&Kochanek,C.S.2012a,MNRAS,424,1570 Weaver,T.A.,&Woosley,S.E.1980,NinthTexasSymposiumon Pejcha,O.,Dasgupta,B.,&Thompson,T.A.2012b,MNRAS,425,1083 RelativisticAstrophysics,336,335 Pejcha,O.,&Prieto,J.L.2015,ApJ,799,215 Woosley,S.E.1988,ApJ,330,218 Pejcha,O.,&Thompson,T.A.2012,ApJ,746,106 Zampieri,L.,Pastorello,A.,Turatto,M.,etal.2003,MNRAS,338,711 Pejcha,O.,&Thompson,T.A.2015,ApJ,801,90 Zhang,J.,Wang,X.,Mazzali,P.A.,etal.2014,ApJ,797,5

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.