ebook img

On the Influence of the Mass Definition in the Stability of Axisymmetric Relativistic Thin Disks PDF

0.39 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Influence of the Mass Definition in the Stability of Axisymmetric Relativistic Thin Disks

Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 Physical Sciences On the Influence of the Mass Definition in the Stability of Axisymmetric Relativistic Thin Disks Eduar A. Becerra1,, Fredy L. Dubeibe1,2, Guillermo A. Gonz´alez1,∗ 7 1 1EscueladeF´ısica,UniversidadIndustrialdeSantander,Bucaramanga,Colombia 0 2FacultaddeCienciasHumanasydelaEducacio´n,UniversidaddelosLlanos,Villavicencio,Colombia 2 n a J Abstract 3 Thestudyonthestabilityofrelativisticdisksisoneofthemostimportantcriteriaforthecharacterization 1 of astrophysically relevant galactic or accretion disks models. In this paper, we perform an analysis of the stability of static axisymmetric relativistic thin disks, by introducing a first-order perturbation into the ] energy-momentumtensorofthefluid. Theformalismisappliedtothreeparticularmodelsbuiltwiththeaid c q of the displace-cut-reflect (DCR) method, and previously considered in literature (Ujevic and Letelier, - 2004),butmodifyingthemasscriteria,i.e.,usingtheKomarmassinsteadofthetotalsurfacemass. Under r thisconditions,itisfoundthatthetotalmassvaluesareindependentoftheparametersoftheDCR-method, g which let us choose the boundary condition for the cutoff radius, such that it takes the maximum value [ that allows an appreciable and well-behaved perturbation on the disk. As a general result, we found that 1 theKomarmassismoreappropriatetodefinethecutoffradius. v 6 Key words: GeneralRelativity,Relativisticthindisks,Stability. 8 6 Influencia de la definici´on de masa en la estabilidad de discos relativistasaxialsim´etricos 3 Resumen 0 . 1 Uno de los criterios m´as importantes para la caracterizaci´on de modelos gal´acticos o discos de acrecio´n 0 astrof´ısicamente relevantes, es el an´alisis de la estabilidad de dichos modelos. En este trabajo, se re- 7 aliza un an´alisis de la estabilidad de discos delgados esta´ticos relativistas con simetr´ıa axial, mediante 1 la introducci´on de una perturbaci´on de primer orden en el tensor de energ´ıa-impulso del fluido. El : formalismo se aplica a tres modelos construidos con el m´etodo de desplazamiento-corte-reflexi´on (DCR), v previamente considerados en la literatura (Ujevic and Letelier, 2004), pero modificando el criterio de i X masa, es decir, usando la masa de Komar en lugar de la masa total superficial. Bajo estas condiciones, se encuentra que los valores de masa total son independientes de los para´metros del m´etodo DCR, lo r a que permite elegir la condici´on de frontera para el radio de corte que tome el valor m´aximo y a la vez permitauna perturbaci´on apreciable ybiencomportada en el disco. Comoresultado general, seencuentra queparalamayor´ıademodosdeoscilaci´on,lamasadeKomaresmasapropiadaparadefinirelradiodecorte. Palabras clave: RelatividadGeneral,Discosdelgados Relativistas,Estabilidad. Introduction Einstein’s theories of gravity. Such models are of astro- physical interest because they can be used to model accre- tion disks, galaxies in thermodynamic equilibrium or galaxies During the last decades, considerable efforts have been made with black holes centers (Bic´ak, Lynden-Bell and Pichon, to obtain exact analytical solutions suitable to modeling ax- 1993, Ledvinka, Zofka and Bic´ak, 1998). Moreover, the isymmetric thin disks, within the framework of Newton’s and ∗Correspondence: G.A.Gonz´alez, [email protected],ReceivedxxxxxXXXX;Accepted xxxxxXXXX. 1 E.A.Becerra,F.L.Dubeibe,G.A.Gonza´lez Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 addition of electromagnetic fields in those space-times allows Derivation of First-Order Perturbation Equa- studying neutron stars formation, white dwarfs, and quasars tions (Mun˜oz et. al., 2011, Alpar, 2001). Since the seminal works on exact solutions represent- Following Ujevic and Letelier (2004), and for the sake of ing static thin disks carried out by Bonnor and Sack- self-consistencyofthecurrentpaper,inwhatfollowswepresent field (Bonnor and Sackfield, 1968) and Morgan and Mor- thederivation ofthefirst-orderperturbationequations forrel- gan (Morgan and Morgan, 1969), more realistic mod- ativistic thin disks. Let us start considering that the energy- els have been proposed (Pichon and Lynden-Bell, 1996, momentum tensor for an isotropic fluid with a discoid shape Gonz´alez and Letelier, 2000). The superposition of static and without heat flow can bewritten as and stationary thin disks with black holes at the cen- Tµν =Qµνδ(z), (1) ter, has been considered by Lemos, Letelier and Semerak (Lemos and Letelier, 1993, Semer´ak, 2002b, 2004). Vogt where δ denotes theDirac delta function and andLetelierstudiedtheinclusionofelectromagneticfieldsinto Qµν =σUµUν +p XµXν +p YµYν, thin disks made of dust (Vogt and Letelier, 2004a) and of r ϕ charged perfect fluid (Vogt and Letelier, 2004b). Also in- with σ the surface energy density, p and p the radial and r ϕ teresting is the case of thick disks proposed by Gonz´alez and azimuthalpressure,respectively,andUµ,Xµ,andYµ thenon- Letelier (Gonz´alez and Letelier, 2004), who extended the zerocomponentsoftheorthonormaltetrad. Assumingthatthe DCR method to include thick disks in their models.∗ first-orderperturbations in theEinstein field equations do not modify thebackground metric, theperturbedequation for the Stability is an essential criterion to determine whether or not energy-momentum tensor reads as a model can be applied to describe an astrophysical system presentinnature. Ingeneral,therearetwoapproachestostudy (δTµν);µ=0. (2) the stability of relativistic disks: The first option is based on Introducing the definition of energy-momentum tensor for a analyzing the stability of particle orbits along geodesics (see thin disk (1), in the perturbed equation (2), and integrating e.g., (Letelier, 2003) and (Vogt and Letelier, 2003)), while with respect to thecoordinate z, we find thesecondoptionconsistsinperturbingtheenergy-momentum tensor (see e.g., (Seguin, 1975)). From a theoretical point of (δQµν);µδ(z)+δQzν[δ(z)],z √gzzdz=0. (3) view,thelatteroptionismorerigorous,becauseinthiscasethe Z n o collectivebehavioroftheparticlesistakenintoaccount. Work- As a consecuence of theDCR method, themetric components ing on this line, Ujevic and Letelier(2004) investigated the should only depend on r and z (Vogt and Letelier, 2003). stability of three particular models for relativistic thin disks, Additionally,ifwedefinetheva|lu|eof z atz=0equalszero, ,z performingafirst-orderperturbationanalysiswithvariableco- theperturbed equation reduces to | | efficients. However, as a pathological result, the authors find that the total mass of the disk depends on the parameters of (δQµν) =0. (4) ;µ the DCR method, such that the boundary conditions are also (cid:12)z=0 (cid:12) dependenton theseparameters. Takingintoaccountthattheper(cid:12)turbedvectorsmustsatisfythe (cid:12) orthonormality condition, and assuming that δXϕ = 0 (since With the aim to avoid the undesired dependencies between thefour-velocityandthethermodynamicalvariablesdonotde- parameters and to observe the possible changes in the sta- pend on thisquantity),we obtain bility, in the present paper we redo the calculations made by Ujevic and Letelier(2004)usingtheKomarmassdefinition δYr =δUt =δXr =δYϕ =0, instead of the mass definition (along the paper we will call it X Y (5) total surface mass) introduced in Vogt and Letelier (2003). δXt = rδUr, δYt = ϕδUϕ. −Ut −Ut Thenewresultsletustochoosetheboundaryconditionforthe Duetothefactthatthemetricisstaticandaxisymmetric,and cutoffradiussuchthatittakesthemaximumvalueallowingan the lack of z-dependences in Tµν, all the coefficients depend appreciable and well-behaved perturbation on thedisk. only on the radial coordinate; therefore, the general perturba- tion can bechosen as δξµ(t,r,ϕ)=δξµ(r)ei(kϕ−wt), (6) ∗Fortheinterestedreader,acompletereviewofthestate-of-the-artonrelativisticdiskswasmadebySemer´ak(2002a). 2 Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 StabilityofAxisymmetricRelativisticThinDisks with k the wave number and w the angular frequency of the p B B B +B +B B C =A ,r 1 2,r 1,r 4 5 3,r+ perturbation. We will focus on the term δξµ(r), which has a 1((cid:18)σ,r(cid:19),r(cid:20) B22 − B2 (cid:21)− B2 significant role for thesystem stability,. p B B +B ,r 2,r (B +B ) 4,r 5,r + Therefore,aftersubstitutingtheperturbation(6)intoequation (cid:18)σ,r(cid:19)(cid:20) B22 4 5 − B2 (cid:21) (4),andreplacingtheconditions(5)intheresultingexpression, B B B p A C p the respective perturbedequations for t,r, and ϕ, read as 2B,r22 3 − B12 (cid:18)σ,,rr(cid:19),rr)− C312 (cid:18)σ,,rr(cid:19)−A4 δσUUr,tr(cid:18)2σΓUt t−+ΓUpµrt(cid:19)+δUXrnr(cid:0)σUpt(cid:1)X,rr+ whereA−i,BBAi22,(anBd1C(cid:18)i,σpa,,rrre(cid:19)t,rhe+fa(cid:18)cσtpo,,rrrs(cid:19)m[Bul4ti+plByi5n]g+thBe3p)er,turbed tr µr −(cid:18)Ut(cid:19),r r − (7) variables in equations (7), (8), and (9), respectively, with the (cid:0) (cid:1) indexes in numerical order according to their order of appear- X Ur (prXr),r+prXr 2Γttr+Γµµr + ance. δUtϕhik σUt pϕ (cid:0) δσ iwUtU(cid:1)ti(cid:27)=0, Duetothecumbersomeformofequation(10),itmustbesolved (cid:20) (cid:18) − Ut(cid:19)(cid:21)− numerically. Forthispurpose,weshallimposeDirichletbound- (cid:0) (cid:1) aryconditions,oneatthecenterofthediskandtheotheroneat thefinalboundaryofthedomain. However,itshouldbenoted thatthediskhasaninfiniteradialextension,forthisreason,it p is necessary to introduce a cutoff on theradial coordinate. δUr iw r σUt +δσ UtUtΓr + (cid:20) (cid:18)Ut − (cid:19)(cid:21) tt δp (XrXr) +XrXr Γr (cid:0)+Γµ (cid:1)+ (8) r ,r rr µr Thermodynamic variables δp h(XrXr)+δp Yϕ(cid:0)YϕΓr =0(cid:1)i, r,r ϕ ϕϕ In the previous section, we explicitly wrote down the per- (cid:0) (cid:1) turbed equations for thin disks, nevertheless, such expressions aregivenintermsofthethermodynamicvariablesofthefluid, δUϕ w pϕ σUt +δp (kYϕYϕ)=0, (9) which requires finding explicit formulas for the surface energy ϕ (cid:20) (cid:18)Ut − (cid:19)(cid:21) density and the pressures on the disk. To this end, let us rep- resent thematterdistribution on ahypersurfaceΣ, definedby the function l(xα) = z, which divides the space-time into two Finally, from the set of differential equations presented above, regions: M+ on top and M− at the bottom. Therefore, the and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r), normalvectortothehypersurfaceΣisgivenbyn =l =δz, α ,α α thedifferentialequationfortheperturbedenergydensitytakes and the componentsof themetric tensor must satisfy the form g− (r,z)=g+ (r, z), (11) µν µν − Aδσ +Bδσ +Cδσ=0, (10) ,rr ,r such that g− (r,z)= g+ (r, z), (12) whose coefficient A, B, and C, are given by µν,z − µν,z − where g+ and g− , should be understood as the metric ten- αβ αβ sors for the regions defined by z > 0 (M+) and z < 0 (M−), A B p A= 1 1 ,r , respectively. − B2 (cid:18)σ,r(cid:19) Bytakingthelimitz 0,thediscontinuitiesinthefirstderiva- → tives of themetric tensor take theform p B B B +B +B B B=A1(cid:26)(cid:18)σ,,rr(cid:19)(cid:20) 1B222,r − 1,r B24 5(cid:21)− B32− bµν =[gµν,z]=gµ+ν,z(cid:12)z=0− gµ−ν,z(cid:12)z=0=2gµ+ν,z(cid:12)z=0, (13) 2B1 p,r A2B1 p,r , withbµν,thejumpofthe(cid:12)(cid:12)(cid:12)firstderivat(cid:12)(cid:12)(cid:12)ivethrough(cid:12)(cid:12)(cid:12)Σ. Usingthe B2 (cid:18)σ,r(cid:19),r)− B2 (cid:18)σ,r(cid:19) distributionsmethod(Papapetrou,1968,Poisson,2004),the 3 E.A.Becerra,F.L.Dubeibe,G.A.Gonza´lez Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 metric can bewritten as which,inquasi-cylindricalcoordinatesxα=(t,r,ϕ,z)andcon- g =Θ(l)g+ +Θ( l)g− , (14) sidering thehypersurface Σ definedby the function l(xα)=z, αβ αβ − αβ with normal vectorn =δz, takes theform α α where Θ(l) is the usual Heaviside function. Performing the 1 derivativeof equation (14) we obtain κQµ = bzµδz gµzδzbα +gµzbz gzzbµ β 2 β− β α β− β (24) gαβ,γ =Θ(l)gα+β,γ+Θ(−l)gα−β,γ+nγδ(l)[gαβ]. (15) −(cid:8)(bzz−gzzbαα)δβµ . Fromtheaboveequation,andasn(cid:9)otedbyVogt and Letelier The last term in the right-hand side of equation (15) is singu- (2003), it can be shown that the non-zero components of the lar, consequentlytheChristoffel symbolswould not bedefined surface energy-momentum tensor are as a distribution. An alternative way to avoid this difficulty, istoimposethatthemetriciscontinuousonthehypersurface, Qt =σ= 1 gzz br +bϕ , (25) i.e.,[g ]=g+ g− =0, such that t 16π r ϕ αβ αβ− αβ (cid:0) (cid:1) Γαβγ =Θ(l)Γαβ+γ+Θ(−l)Γαβ−γ, (16) Qrr =pr = 161πgzz btt+bϕϕ , (26) whose derivativereads as 1 (cid:0) (cid:1) Qϕ =p = gzz bt +br . (27) Γαβγ,δ =Θ(l)Γαβ+γ,δ+Θ(−l)Γαβ−γ,δ+nδ(l)[Γαβγ]. (17) ϕ ϕ 16π t r (cid:0) (cid:1) The corresponding Riemann curvaturetensor is given by Rα =Θ(l)Rα+ +Θ( l)Rα− +δ(l)Rα , (18) Mass Definition βγδ βγδ − βγδ βγδ where Rα± are the tensors defined in M± and βγδ b Themass concept in general relativity isnot uniqueand there Rα =[Γα ]n [Γα ]n , (19) βγδ βδ γ− βγ δ are several different definitions that are applicable under dif- 1 ferent circumstances. Inthecaseof stationary spacetimes, the with [Γαβγ]= 2 bbαβnγ +bααnβ−bβγnα . commonly accepted definitions are: the total volumetric (or (cid:0) (cid:1) surface) mass, Komar, ADM and Bondi-Sach masses. How- From the last expression, it is clear that Riemann tensor, the ever, it is a well-known fact that for stationary spacetimes Ricci tensor, and Ricci scalar on the hypersurfaceare the ADM and Bondi-Sach masses are exactly alike (Poisson, 1 Rα = bαn n bαn n +b nαn b nαn , 2004). Besides, in the asymptotically flat case, it can be βγδ 2 δ β γ− γ β δ βγ δ− βδ γ shown that the ADM and the Komar masses are equivalent Rbβδ = 21{b(cid:8)αδnβnα−bααnβnδ+bβαnαnδ−bβδnαnα}(cid:9), (Jaramillo and Gourgoulhon, 2009). Then, in the station- ary, axisymmetric, asymptotically flat, vacuum solutions of Rb={bµαnαnµ−bααnαnα}. Einstein’s equation, there are only two possibilities to choose (20) from,thetotalvolumetric(orsurface)massortheKomarmass. On tbhe other hand, the energy-momentum tensor Tβδ can be Ascommentedintheintroduction,themaindifferencebetween expressed as thepresentpaperandtheonebyUjevic and Letelier(2004), T =Θ(l)T+ +Θ( l)T− +δ(l)Q , (21) is that they used the total surface mass, while along this pa- βδ βδ − βδ βδ per,weusetheKomarmassdefinition,whichisindependentof whereQ istheenergy-momentumtensorassociatedwiththe βδ themethodsusedtobuildtheparticularsolutionsofEinstein’s hypersurface,and T± aretheenergy-momentumtensorsasso- βδ equation. ciatedtoM±. Hence,wecanwritetheEinsteinfieldequations as follows A necessary condition for the definition of mass, is that must 1 R± g R± =κT± not involve any dependence with the specific choice of coor- βδ− 2 βδ βδ (22) dinates. This property is achieved for stationary and axially 1 Rβδ− 2gβδR=κQβδ. symmetricspacetimes, through theKomar formula Mk,which reads as Given that the only source of gravitational field is a thin dis- b b 1 tribution of matter, theenergy-momentum tensor satisfies M =2 T Tg nαξβ √h d3y, (28) k αβ− 2 αβ (t) κQ =1 b n nα bα n n +b nαn b nαn ZΣ(cid:18) (cid:19) βδ 2{ αδ β − α β δ βα δ− βδ α (23) whereΣisspacelikehypersurface,nα istimelikevectornormal (b nαnµ bα nαn )g . toΣ, ξβ istimelikeKillingvectorandhisthedeterminantof − µα − α α βδ} (t) 4 Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 StabilityofAxisymmetricRelativisticThinDisks metric associated to Σ. For a static and diagonal metric, the From (30), (31) and (32), and in accordance with Eq. (12) of following relations holds Vogt and Letelier(2003), we find nα =− gαgβtt δβt, ξ(βt) =δtβ, h=gzz grr gϕϕ, Ms =m 1+ 4ma , (35) | | and (cid:16) (cid:17) such that thpeKomar mass takes theform m ma m M =m 1+ 2+ . (36) Mk = 2π ∞(σ+pr+pϕ) gtt √gzz√grr√gϕϕ drdϕ. rc (cid:16) 4a(cid:17)− 2rc (cid:18) 2rc(cid:19) | | On the other hand, from the Komar mass definition (29) and Z0 Z0 p (29) using (31),(32) and (33), we get The Komar mass definition differs from thetotal surface mass Mk =m, (37) in the fact that the former one considers all the contributions and totheenergy-momentumtensor,whilethesurfacemass, given ma M =m . (38) by rc − rc 2π ∞ Hence,theresultingexpressionforthecutoffradiuswhencon- Ms = σ√gzz√grr√gϕϕ drdϕ, (30) sidering Eq. (30) is Z0 Z0 takes only intoaccount thesurface energy density. 2a2+a 4a2+m(1 n)(4a+m) r∗ = − , (39) c (1 n)(4a+m) p − while using Eq. (29), we get Case 1: Isotropic Schwarzschild Thin Disk a r = (40) c 1 n The isotropic Schwarzschild thin disk metric in quasi- − InFig. 1weshowacomparisonbetweenthecutoffradiir and c cylindrical Weyl-Papapetrou coordinates was obtained by r∗, using different values of the parameters m and a. Taking Vogt and Letelier(2005),and can bewritten as c intoaccountthatvaluesofnsmallerthan0.9arenotusednor ds2= 2R−m 2dt2+ 1+ m 4(dr2+r2dϕ2+dz2) (31) physically appropriate, we plot the difference rc −rc∗ in the − 2R+m 2R range n [0.9,1]. (cid:18) (cid:19) (cid:16) (cid:17) ∈ where m is a positive constant and R2 =r2+(z +a)2. | | 8 Thus, the corresponding expressions for the pressure compo- nentsandsurfaceenergydensity(seee.g.,Vogt and Letelier m=0.1,a=0.2 6 (2003)), are obtained by using equations (25-27), m=0.2,a=0.3 16maR2 m=0.3,a=0.4 σ= π(2R0+m0)5, (32) *-rc 4 m=0.4,a=0.5 rc m=0.5,a=0.6 8m2aR2 p= 0 , (33) π(2R +m)5(2R m) 2 0 0 − with R =R(r,z=0) and p=p =p . 0 r ϕ 0 Let us define a general cutoff radius as the radial distance at 0.90 0.92 0.94 0.96 0.98 1.00 whichthematterwithinthethindiskformeduptosuchradius n corresponds to the n% of the total matter of the infinite disk, FIGURE 1. Comparison between the cutoff radii r and r∗ i.e. c c using different values of theparameters m and a. nM =M , (34) T rc with M the total mass of the infinite disk and M the mass In all that follows, except where especially noted, we define T rc up to the cutoff radius. As noted in the previous section, the cutoff radius r using the 95% of the total mass of infinite c the total mass value may depend on theconsidered definition, disk,†and theremaining5% of matterisdistributedalong the such that the cutoff radius could depend also on this choice. plane z = 0 from r to infinity. Moreover, we assume that c †Thispercentage correspondstotheoptimalvaluetogetanon-negligibleperturbationonthedisk. 5 E.A.Becerra,F.L.Dubeibe,G.A.Gonza´lez Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 at r = 0, the perturbation equals 10% of the unperturbed en- Fig. 3it can beseen thattheoscillation amplitudeisnot only ergydensityvalueandatr=r theperturbationvanishes,i.e. smaller for Eq. (29) (upper panel) than for Eq. (30) (upper c δσ(r=r )=0. panel),butalso disappearsinapproximatelythemiddleofthe c disk. It means that for the set of parameters here considered, Bysettingm=0.5anda=0.6,whicharethesetofparameters the density and pressure in the disk are stable independently that best fit the expected energy density profile in a realistic of themass definition used. model, we find r 12 and r∗ 10. In Fig. 2 we present c ≈ c ≈ the numerical solution to the differential equation (10) using 1.´10-4 theKomarmassdefinition(upperpanel) andthetotalsurface w=1,k=0 mass (lower panel). In this figure, we show the perturbed en- 5.´10-5 w=1,k=1 ergydensityprofilefordifferentvaluesofw. Itcanbeseenthat w=1,k=2 theparameterwisproportionaltothefrequencyofoscillations withinthedisk,i.e. thenumberofring-likestructuresincreases ~∆p 0. withincreasingw. Also,itisworthnotingthattheoscillations quicklydecay to zero regardless of theoscillation modes, how- -5.´10-5 ever the oscillation amplitude is smaller for Eq. (29) (upper panel) than for Eq. (30) (upperpanel). -1.´10-4 0 2 4 6 8 10 12 6.´10-4 r 1.´10-4 w=1,k=0 w=1,k=0 3.´10-4 w=2,k=0 w=3,k=0 5.´10-5 w=1,k=1 w=1,k=2 ~Σ 0. ∆ ~p 0. ∆ -3.´10-4 -5.´10-5 -6.´10-4 0 2 4 6 8 10 12 -1.´10-4 0 2 4 6 8 10 r 6.´10-4 r w=1,k=0 FIGURE 3. Perturbed pressure profiles δp˜= √gzzδp for the isotropic Schwarzschild thindisk using Eq. (29) (upperpanel) 3.´10-4 w=2,k=0 and Eq. (30) (lower panel). w=3,k=0 Afullanalysisofthesystemrequiresalsoacomparisonbetween ~Σ 0. ∆ the amplitude of the perturbed velocities with the escape ve- locity of the constituents in the disk. In Fig. 4 we show the -3.´10-4 profiles for the perturbed radial δUr velocities using Eq. (29) (upperpanel)andEq. (30)(lowerpanel),settingtherespective -6.´10-4 cutoff radii for the 95.776% of the total mass of infinite disk‡. 0 2 4 6 8 10 Both velocities exhibit an increase in the frequency of oscilla- r tionswithincreasingw;moreover,weseethattheenvelopesof FIGURE 2. Perturbed energy density profiles δσ˜ = √gzzδσ theoscillating functions increase at theexternalradial bound- for different values of w using Eq. (29) (upperpanel) and Eq. ary, however, the perturbed radial velocity grows faster in the (30) (lower panel) in theisotropic Schwarzschild thin disk. lower panel than in theupperpanel. Ontheotherhand,in Fig. 3we presenttheprofile of theper- Concerning the escape velocity v , it is well known that it e turbed pressure. When fixing w and varying k, the amplitude should belarger than theperturbed radial velocity, otherwise, forδphasanoscillatorybehaviorsimilartotheoneofδσ. From themodel will nothaveanyastrophysical validity. Theescape ‡Wesetthispercentage becauseitgivesplacetounstabilities. 6 Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 StabilityofAxisymmetricRelativisticThinDisks velocityrequiredtoovercometheforcegeneratedbyagravita- ratify that,underfirstorderperturbationsoftheform (6)and tional potential Φ can be calculated as v =√2Φ, which from using the Komar mass definition, the isotropic Schwarzschild e theweak-fieldapproximationisgivenas2Φ=g 1. So,from thin disk has a stable behavior for a large set of parameters tt − (31), we find such that it can be used to describe astrophysical models. 2√2mR 2.´10-4 v = . (41) e 2R+m w=1,k=0.05 1.´10-4 w=2,k=0.05 For the set of parameters a = 0.6 and m = 0.5, the resulting w=3,k=0.05 escape velocities for Eq. (29) and Eq. (30) are v = 0.26 and e ve = 0.28, respectively. From Fig. 4 it is clear that using Eq. ~j∆U 0. (29)theperturbedradialvelocityisalwayslessthantheescape velocity (reddashedline),suchthatallparticles remaininside -1.´10-4 the disk. Conversely, using Eq. (30) the perturbed radial ve- locitycanbegreaterthantheescapevelocity(reddashedline), -2.´10-4 meaning that theparticles may escape of thedisk. 0 2 4 6 8 10 12 r 4.´10-1 2.´10-4 w=1,k=0.05 2.´10-1 1.´10-4 w=2,k=0.05 w=3,k=0.05 ~r∆U 0. ~j∆U 0. w=1,k=0 -2.´10-1 w=2,k=0 -1.´10-4 w=3,k=0 -4.´10-10 2 4 6 8 10 12 14 -2.´10-40 2 4 6 8 10 r r 4.´10-1 FIGURE 5. Profiles of the perturbed azimuthal velocities for different oscillation modes in Schwarzschild isotropic thin disk 2.´10-1 using Eq. (29) (upperpanel) and Eq. (30) (lower panel). ~r∆U 0. Case 2: Chazy-Curzon Thin Disk w=1,k=0 -2.´10-1 w=2,k=0 TheChazy-Curzon thindisk metricin Weylcoordinates is de- w=3,k=0 scribed as (Bic´ak, Lynden-Bell and Katz, 1993) -4.´10-1 0 2 4 6 8 10 ds2 = e2Φdt2+e−2Φr2dϕ2+e2(Λ−Φ)(dr2+dz2), (42) − r where themetric functions Φ y Λ are given by FIGURE 4. Profiles of the perturbed radial velocities δU˜r for different oscillation modes in Schwarzschild isotropic thin disk m m2r2 Φ= , Λ= , (43) using Eq. (29) (upperpanel) and Eq. (30) (lower panel). The −R − 2R4 red dashed line denotes the value of the respective escape ve- with R2 =r2+(z +a)2. From (42) and (43), and equations locities. | | (25),(26),and(27),weobtaintheexpressionsforthepressure and thesurface energydensity of theChazy-Curzon thindisk, In Fig. 5 we show the profiles of the perturbed azimuthal ve- locities. Inbothcasesthevelocitiesarestableandsomeorders ma mr2 σ= 1 e2(Φ0−Λ0), (44) of magnitude smaller than the escape velocity. These results 2πR3 − R3 0 (cid:20) 0 (cid:21) 7 E.A.Becerra,F.L.Dubeibe,G.A.Gonza´lez Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 m2a r2 Case 3: Zipoy-Voorhees Thin Disk p = e2(Φ0−Λ0), p =0, (45) ϕ 2πR4R2 r 0 0 where R0, Λ0 and Φ0 are thefunctions evaluated at z=0. The Zipoy-Voorhees thin disk metric in Weyl coordinates has theform (Ujevic and Letelier, 2004) 1.5´10-1 ds2= e2Φdt2+e−2Φr2dϕ2+e2(Λ−Φ)(dr2+dz2), (46) k=0,w=0.7 − with metric functions Φ and Λ, given by k=0,w=1 7.5´10-2 m R + z +a k=0,w=1.5 Φ= ln a | | , b a R + z +b − (cid:20) b | | (cid:21) ~Σ 0. ∆ (47) -7.5´10-2 1.´101000 Λ= (b2ma2)2 ln (Ra+R4bR)2R−(b−a)2 , -1.´10100 − (cid:20) a b (cid:21) 0 2 4 6 8 where R2 = r2+(z +a)2, R2 = r2+(z +b)2 and b > a. -1.5´10-1 a | | b | | 0.0 0.2 0.4 0.6 0.8 1.0 Hence, by applying the same procedure used for the previous r disksmodels,weobtainexpressionsforthesurfaceenergyden- 1.5´10-1 sity and theazimuthal pressure, w=1,k=0 a b 7.5´10-2 ww==11,,kk==01..64 σ= m2e−2(Λ0−Φ0) 2(Ra0+Rb0)(cid:18)Ra0 + Rb0(cid:19) − 2π(b a)2 (Ra0+Rb0)2 (b a)2 − − − (48) ~∆Σ 0.  a b  me−2(Λ0−Φ0) 1 1 1.´10100 + + , -7.5´10-2 0 −(cid:18)Ra20 Rb20(cid:19)(cid:21) 2π(b−a) (cid:18)Ra0 − Rb0(cid:19) -1.´10100 a b -1.5´10-10.0 0.2 0.4 r 0 0.26 4 60.88 1.0 pϕ =m22πe−(b2(−Λ0a−)Φ20) 2(R(Ra0a0++RRb0b)0)(cid:18)2R−a(0b+−Ra)b20(cid:19)− (49)   FIGURE6. Profiles of theperturbed energy density δσ˜ in the a b  Chazy-Curzon thin disk using Eq. (29), for different values of + , R2 R2 wandk. Theparametershavebeensetasa=0.4andm=0.5. (cid:18) a0 b0(cid:19)(cid:21) The insets show that for finite values of r, the perturbations with R , R , Λ and Φ the respective functions evaluated a0 b0 0 0 tend to infinity. at z = 0. Just like in the Chazy-Curzon model, the thin disk describedbytheZipoy-Voorheesmetrichasnoradialpressure. Substituting equations (43), (44) and (45), into the Komar Replacing (47), (48) and (49) into equation (29), we can cal- massequation(29),weobtain,accordingly,M =m. Apartic- k culate the Komar mass for the Zipoy-Voorhees thin disk as ularsetofvaluesthatsatisfy theenergyconditionsarea=0.4 M =m. and m=0.5, in which case r 8. In Fig. 6 we show the nu- T c ≈ mericalsolutiontothedifferentialequation(10)withboundary To be consistent with the previous models, the calculations conditions at r =0 and r =rc = 8. As can be noted, regard- were performed for a particular set of values that satisfy the less of the values of w (upper panel) and k (lower panel), the energy conditions, m = 0.5, a = 1 and b = 2.15, such that profiles of the perturbed energy density grow rapidly to infin- the cutoff radius takes the value r 31. In the same way as c ity. To rule out that the above effect is due to the chosen cases 1 and 2, in Fig. 7 we show the≈numerical solution to the values of a, we perform an analysis varying δσ in the inter- differential equation (10) with boundary conditions at r = 0 val 0 m/a 1.3, observing the same tendency. The same and r=rc=31. ≤ ≤ procedure was performed using the total surface mass defini- tion,obtainingthesamebehavior. Theseresultsshowthatthe It can be seen from Fig. 7 that thereexist instabilities for the energy density, and hence the pressure and velocities, exhibit Zipoy-Voorhees thin disk strongly amplified before they reach instabilities for this model and are independent of the mass 10%ofitscutoffradius,andregardlessoftheangularfrecuency definition used in thecalculations. w(upperpanel)orwavenumberk(lowerpanel)theperturbed 8 Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 StabilityofAxisymmetricRelativisticThinDisks energy density tends to infinity. The results for the Zipoy- the disks are made of a perfect fluid, we found the differen- Voorhees thin disk when using the total surface mass are not tial equation for the perturbed energy density and the non- shownbecausetheyexhibitpracticallythesamebehaviorthan zerocomponentsofthesurfaceenergy-momentumtensor. The using the Komar mass. The independence of the results with differential equation was numerically solved, defining a cutoff the particular chosen values of a and b, was also analyzed ob- radius r , such that thematter up to r is approximately 95% c c servingthesametendency. Giventheinstabilityinthesurface ofthemassoftheinfinitediskandtheremaining5%ofmatter energy density,the other thermodynamic variables of the thin is distributed from r to infinity. Moreover, we assumed that c disk also are unstable. at the center of the disk the perturbation equals 10% of the unperturbed energy density, and at the external cutoff radius theperturbation vanishes. 4.´10-2 k=0,w=0.13 Once we derived the expressions for the pressure components, 2.´10-2 k=0,w=0.15 the surface energy density, and the metric functions for each k=0,w=0.17 particular case, we calculated the Komar mass. As a general result,wefindthatthemassparameterineachoneofthemet- ~Σ 0. ∆ rics equals the Komar mass for the disk, while by using the 1.´10100 totalsurface massdefinition,asisthecaseof thereviewed pa- -2.´10-2 0. per, the total mass depends on the parameters of the DCR -1.´10100 0 5 10 15 20 method. TheuseoftheKomardefinitionletsussetthephysi- -4.´10-2 calparametersthatbestfittheexpectedenergydensityprofile 0.0 0.5 1.0 1.5 2.0 2.5 3.0 in arealistic model andsimultaneously satisfy theenergy con- r ditions. With this result, the cutoff radius only depends on 1.´103 1.´10100 the thermodynamic variables and the free parameters of each metric. 0. 5.´102 -1.´101000 5 10 15 As the main finding, we found that the cutoff radius is larger for theKomar mass definition than for thetotal surface mass. ~Σ 0. ∆ This result let us to increase the number of parameters that k=0.01,w=0.17 give place to stable Schwarzschild thin disk models. On the -5.´102 k=0.05,w=0.17 other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk modelsarenotstableunderfirst-orderperturbations,because k=0.3,w=0.17 thethermodynamicvariablesandfluidvelocitiestendtoinfin- -1.´103 0 1 2 3 4 5 ity for finite values of the radial coordinate. Such instabilities r are a consequence of the lack of radial pressure and are not related tothedefinition ofmass. Wealso haveshown that the FIGURE 7. Profiles of the perturbed energy density δσ˜ for infinite radial extension of the disk can be the reason for the different values of w (upper panel) and k (lower panel) in the instability,ashypothesizedbyUjevicet al.,nevertheless,some Zipoy-Voorhees thin disk. The parameters have been set as instabilitiescanbeartificiallyintroducedintothemodeldueto a=1, b=2.15 and m=0.5. The inset shows thetendency of theuseofanon-appropriatemassdefinitioninthecalculations. the curvesfor larger scales. Acknowledgments. We would like to thank the anonymous referee for useful comments and remarks, which improved the Concluding Remarks presentation of the paper. This research was partially sup- ported by VIE-UIS under grant numbers 1822 and 1785, and COLCIENCIASundergrantnumber8840. EABwould liketo In this paper, we have reviewed the results obtained by thankCOLCIENCIASfortheirsupportthrough theprogram: Ujevic and Letelier(2004) on thestability of threeparticu- J´ovenesInvestigadoreseInnovadores2014. FLDacknowledges larmodels,usinganalternativemassdefinition,i.e.,theKomar financial support from the Universidad de los Llanos provided mass. This formal concept of mass can be defined in any sta- undergrant Commission: Postdoctoral Fellowship Scheme. tionaryspacetime,soitisapplicabletoallthreeparticularthin disk models under consideration: the isotropic Schwarzschild, Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that 9 E.A.Becerra,F.L.Dubeibe,G.A.Gonza´lez Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-dddde2016 Conflict of interest. The authors declare that they have no Semer´ak, O. (2004). Exact power-law discs around static conflict of interest. black holes. Class. Quantum Grav. 21, 2203. Semer´ak,O.(2002).FollowingthePragueInspiration,toCel- ebratethe60thBirthdayofJiriBic´ak.WorldScientific,Sin- References gapore. Bic´ak, J.,Lynden-Bell,D.andKatz, J.(1993).Relativis- Bic´ak, J., Lynden-Bell, D. and Pichon, C. (1993). Rela- ticDisksasSourcesofStaticVacuumSpacetimes.Phys.Rev. tivisticDisksandFlatGalaxyModels.Mon.Not.R.Astron. D. 47, 4334. Soc. 265, 126. Vogt, D.andLetelier,P.S.(2004).Exactrelativisticstatic Ledvinka,T., Zofka, M. andBic´ak, J.(1998).Relativistic charged dust discs and non-axisymmetric structures. Class. Disks as Sources of the Kerr-Newman Fields. Proc. of the Quantum Grav. 21, 3369. MGM8 Meeting, Jerusalem. Vogt, D.andLetelier,P.S.(2004).Exactrelativisticstatic Mun˜oz, J. A. et. al. (2011). A study of gravitational lens charged perfect fluid disks. Phys. Rev.D. 70, 064003. chromaticitywiththehubblespacetelescopeBasedonobser- Gonz´alez, G. A. and Letelier, P. S.(2004). Exact general vationsmadewiththeNASA-ESAHubbleSpaceTelescope. relativistic thick disks. Phys. Rev.D. 69, 044013. Astrophys.J., 742, 67. Letelier, P.S. (2003). Stability of circular orbits of particles Alpar, M. A. (2001). On young neutron stars as propellers movingaroundblackholessurroundedbyaxiallysymmetric and accretors with conventional magnetic fields. Astrophys. structures. Phys. Rev.D.68, 104002. J. 554(2), 1245. Vogt, D. and Letelier, P. S.(2005). Newmodelsofgeneral Bonnor, W. B. and Sackfield, A. (1968). The interpreta- relativistic static thick disks. Phys.Rev. D.71, 084030. tion of some spheroidal metrics. Commun. Math. Phys. 8, Vogt, D. andLetelier, P. S.(2003).Exactgeneralrelativis- 338. tic perfect fluid disks with halos. Phys.Rev. D.68, 084010. Morgan, T. and Morgan, L.(1969).Thegravitationalfield Seguin, F.H. (1975). Stability of nonuniform rotation in rel- of a disk. Phys.Rev. 183, 1097. ativistic stars. Astrophys.J. 197, 745. Pichon, C. and Lynden-Bell, D. (1996). New Sources of Ujevic, M., and Letelier, P. S. (2004). Stability of general Kerr and other Metrics: Rotating Relativistic Disks with relativistic geometric thin disks. Phys.Rev.D. 70, 084015. PressureSupport.Mon.Not.R.Astron.Soc.280,1007Phys. Papapetrou A. and Hamouni A. (1968). Couches simples Rev.D.45, 3534. demati`ereenrelativit´eg´en´erale. Ann.Inst.HenriPoincar´e. Gonz´alez, G. A. and Letelier, P. S.(2000). Rotatingrela- 9, 179. tivistic thin disks. Phys. Rev.D.62, 064025. Poisson, E. A (2004). Relativist’s toolkit: the mathematics Lemos,J.P.S.andLetelier,P.S.(1993).Superpositionof of black-holemechanics. Cambridge university press. Morgan and Morgan discs with a Schwarzschild black hole. Jaramillo, J. L., and Gourgoulhon, E. (2009). Mass and Class. Quantum Grav. 10, L75. motion in general relativity. SpringerNetherlands. Semer´ak, O. (2002). Thin disc around a rotating black hole, but with support in-between. Class. Quantum Grav. 19, 3829. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.