ebook img

On the inability of Comptonization to produce the broad X-ray iron lines observed in Seyfert nuclei PDF

5 Pages·0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the inability of Comptonization to produce the broad X-ray iron lines observed in Seyfert nuclei

DRAFTVERSIONFEBRUARY1,2008 PreprinttypesetusingLATEXstyleemulateapjv.04/03/99 ONTHEINABILITYOFCOMPTONIZATIONTOPRODUCE THEBROADX-RAYIRONLINESOBSERVEDINSEYFERTNUCLEI CHRISTOPHERS.REYNOLDS1,2ANDJO¨RNWILMS3 DraftversionFebruary1,2008 ABSTRACT Ithas recentlybeen suggestedthatComptondownscatteringmay giverise to the broadironlines seen in the X-rayspectra ofSeyfert1 galaxies. Thischallengesthe standardmodelinwhich these linesoriginatefromthe innermostregionsof the black hole accretion disk with Doppler shifts and gravitationalredshiftsgiving rise to 0 the broadenedline profile. Here, we apply observationalconstraints to the Compton downscatteringmodelfor 0 MCG−6-30-15 and NGC 3516, the two best cases to date of Seyfert galaxies with relativistically broad lines. 0 WeshowthatthecontinuumsourceinMCG−6-30-15requiredbytheconstrainedmodelviolatestheblackbody 2 limit. InthecaseofNGC3516,onlyaverysmallregionofparameterspaceiscompatiblewiththeconstraints. n Hence,weconcludethattheComptonizationmodelisnotaviableoneforthebroadlineseeninthesetwoobjects. a Theaccretiondiskmodelremainsthebestinterpretationofthesedata. J Subjectheadings:galaxies:Seyfert,galaxies:individual:MCG−6-30-15,galaxies:individual:NGC3516, 1 2 line:formation,X-ray:galaxies 2 1. INTRODUCTION photons. F95 rejected this modelon the basis that the Comp- v tonizingcloudmusthavea radiusofR < 1014cminorderto 0 The X-ray study of Seyfertnucleiand other typesof active maintaintherequiredhighionizationstateandthat,withsucha 12 bgyaltahcetiocbnsuecrlveait(ioAnGoNf)rehlaastibveisetniceanlleyrgbirzoeaddfiorornthKeαpalsintefeswinytehaerisr smallradius,gravitationaleffectsfromacentral107M⊙ black holewouldbeimportantanywayfordeterminingthelinepro- 2 X-rayspectra(Tanakaetal.1995;Nandraetal.1997;Reynolds 1 1997). Inparticular,theSeyfertgalaxyMCG−6-30-15hasbe- file. Theprincipalaim of F95was to demonstratethe need to 9 comeanimportanttestinggroundformodelsofbroadironline include strong gravity in any model of the iron line, so they 9 formation. A long observation of MCG−6-30-15 by the Ad- terminatedtheirchainofreasoningatthatpoint. Thequestion / remains,however,astowhetherComptondownscatteringhasa h vanced Satellite for Cosmology and Astrophysics (ASCA) re- significantaffectonthelineprofileorwhetherwecaninterpret p vealed a high signal-to-noise broad iron line with a velocity ironlineobservationsintermsofnakedaccretiondiskmodels. - width of ∼ 105kms−1 and a profile which is skewed to low o Misra & Kembhavi (1998) and Misra & Sutaria (1999; energies(Tanakaetal. 1995). Theexcitementstirredbythese r hereafter MS99) have recently developed the Comptonization t studiesisduetothewidelyheldbeliefthattheironlinesorig- s modelfurther. Intheircurrentmodel,theysuggestthatacloud inate from the surface layers of an accretion disk which is in :a orbit abouta supermassiveblack hole, and that the line width with opticaldepthτ = 4 andtemperaturekT ∼< 0.5keV sur- v roundsthe centralengine. The upper limit to the temperature andprofileprovideadirectprobeofthevelocityfieldandstrong i oftheComptoncloudcomesfromthefactthattheironKαline X gravitationalfieldwithinafewSchwarzschildradiioftheblack photonsneedtobeprimarilydownscattered,ratherthanupscat- hole. Modelsoflineemissionfromtheinnerregionsofablack r tered,inordertoreproducetheobservedlineprofile. Thecen- a holeaccretiondisk(e.g.,Fabianetal. 1989;Laor1991)fitthe tral engine producesthe continuumemission which keeps the observedlineprofileswell. cloudionized,andanarrowironlinewhichisComptonbroad- Thesuggestionthatweareobservingtheimmediateenviron- ened to the observedwidth. They show that the resultant line mentofanaccretingsupermassiveblackholeisaboldoneand profilescanbebroughtintogoodagreementwiththeASCAob- certainlywarrantsa criticalexamination. Inthisspirit, Fabian servations. et al. (1995; hereafterF95) examineda numberof alternative A direct prediction of the Comptonization model (F95, hypotheses for the origin of these broad iron lines including MS99) is that the multiple Compton scatterings should pro- modelsin whichthe line isproducedin anoutflowor jet, and duce a break in the spectrum of the power-law continuumra- modelsinwhichthelineisintrinsicallynarrow(orevenabsent) diationatapproximatelyE ∼ m c2/τ2 (i.e.,∼ 30–40keV). and a complex underlying continuum mimics the broad line. br e Recently, it has been reported that BeppoSAX (Guainazzi et Bothoftheseclassesofmodelswerefoundtobeunphysicalor al. 1999)observationsconstrainthelocationofthecontinuum didnotreproducetheobservedspectrum. break to be at energies greater than 100 keV , thereby argu- Another alternative model, first proposed by Czerny, ing against the Comptonization model (Misra 1999). How- Zbyszewska & Raine (1991) but also considered by F95, is ever, a robust determination of the continuum break is not one in which the iron line is intrinsically narrow (i.e., emit- completely straightforward since it depends upon the param- tedinslowlymovingmaterialwhichisveryfarfromacompact etersassumedfortheComptonreflectioncomponent(e.g.,see object) and then broadened to the observed profile by Comp- Lee et al. 1999). Thus, while the lack of a spectral break at ton downscatteringin matter that surroundsthe source of line 1JILA,CampusBox440,UniversityofColorado,BoulderCO80303 2HubbleFellow 3Institutfu¨rAstronomieundAstrophysik–Astronomie,UniversityofTu¨bingen,Waldha¨userStraße64,D-72076Tu¨bingen,Germany 1 2 30–40keV remainsthe most compellingargumentagainst the ThefluxattheinneredgeoftheComptoncloudisthengiven Comptonizationmodel,itisinterestingtoconsiderconstraints by ontheComptonizationmodelthatareindependentofacontin- uumspectralbreak. hν3Lbb Lplf(ν) Inthispaper,weapplyanumberofobservationalconstraints Fν = 2σ T4c2R2(exp(hν/kT)−1) + 4πR2 Ξ, (2) SB in in to the MS99 model. We focus on the case of the iron line in MCG−6-30-15, but also address the line in NGC 3516, the where Rin is the inner radius of the Compton cloud, Lbb is other high signal-to-noise case of a relativistically broad line. the luminosity of the black body component, σSB = 5.67× WeshowthatthecontinuumsourceinMCG−6-30-15required 10−5ergcm−2s−1K−4theStefan-Boltzmannconstant,Lplis by the constrained model violates thermodynamic limits (i.e., theluminosityinthepower-lawcomponent,f(ν)=ν−1inthe the “black body” limit). We also show that only a very small rangeνmin < ν < νmax (andzeroelsewhere), andΞ isgiven regionofparameterspaceisopentotheComptonizationmodel by inthecaseofNGC3516. Hence,weconcludethattheComp- νmax Ξ=ln . (3) ton downscattering model is not a viable model for the broad (cid:18)ν (cid:19) min ironlinesinone,andpossiblyboth,ofthesesources. GuidedbythehardX-rayobservationsofMCG−6-30-15(e.g., 2. CONSTRAINTSFROMCONTINUUMVARIABILITYIN Leeetal. 1999),theparametersdescribingthepower-lawcom- MCG−6-30-15 ponentarefixedtohavethefollowingvalues: TheironlineinMCG−6-30-15hasbeenobservedtochange hν =0.1keV, (4) flux and profile on timescales of 104s (Iwasawa et al. 1996, min 1999). This is the shortest timescale on which detailed line hνmax =50keV, (5) changescancurrentlybeprobedandtheremayindeedbeline L =5×1043ergs−1 (6) pl variabilityonshortertimescales. MS99notethatsuchvariabil- ityisconsistentwiththelineoriginatingfromaComptoncloud TheresultingComptontemperatureisgivenby ofsizeR∼1014cm. 1 h(ν −ν ) However,intheComptonizationmodel,thecontinuumpho- T = T L+ max min , (7) tonsalso passthroughthesame Comptonizingmediumas the C 1+L(cid:18) 4kΞ (cid:19) iron line photons. Thus, continuumvariability can be used to whereListheratiooftheblackbodyluminositytothepower- place much tighter constraints on the size of the cloud. Any lawluminosity: variability of the central source would be smeared out as the L photonsrandomwalkthroughthecloudonatimescaleof L= bb. (8) L pl Rτ tMS ∼ c . (1) The line corresponding to a Compton temperature of TC = 0.5keVonthe(L,T)-planeisshownonFig.1a,andtheforbid- Appreciable continuum variability in MCG−6-30-15 is ob- denregionofparameterspace(givingT >0.5keV)isshaded served on timescales down to t ∼ 100s (Reynolds et al. C obs withlinesofpositivegradient. 1995; Yaqoobet al. 1997). Since we must have tobs ∼> tMS, For completeness, itshouldbe notedthatthe aboveexpres- anupperlimitontheComptoncloudisRcloud =1012cm,two sion for the Compton temperatureis only strictly valid due to ordersofmagnitudeless thanthe size assumed in MS99. As- thesoftnatureofourspectrum. TheComptontemperaturede- suming a geometricallythick cloud and solar abundances, the pends, of course, on the form of the radiation field inside the densityofthematerialisnH ∼>5×1012cm−3. cloud. Ignoring downscattering, this field is greater than the In assessing the robustness of this constraint, it should be external radiation field by a factor of τ. For the high-energy noted that the iron line in MCG–6-30-15 is always observed radiation (hν ∼> 50keV), τ has an energydependencedue to to be broad (although the width of the line does indeed vary, Klein-Nishinacorrections,therebyaffectingtheComptontem- e.g. Iwasawa et al. 1996), and the source is always observed perature. Theneglectofdownscatteringisalsoinvalidatthese to vary its flux with a temporal power spectrum that extends energies. However,thesecorrectionstotheComptontempera- downto100stimescales(Leeetal. 1999b;Nowak&Chiang turehaveanegligibleeffectinourcase. 1999; Reynolds1999). Thus, itis difficulttosupporta model The ASCA observationshows no evidence for a soft excess in which the Compton cloud is sometimes present (producing componentinMCG−6-30-15acrosstheentirewell-calibrated a broad line and a slowly varying continuum) and sometimes spectral range of the solid-state imaging spectrometers (SIS; absent (producinga narrow line and a rapidly varying contin- 0.6–10keV). Thus, we impose the condition that the black- uum). bodyfluxat0.6keVislessthanthepower-lawfluxatthesame energy: 3. THECOMPTONTEMPERATUREANDTHEBLACK-BODYLIMIT InthesituationpostulatedbytheMS99model,thetempera- hν3Lbb Lplf(ν) < (9) tureoftheComptoncloudwillbelockedtotheComptontem- 2σ T4c2R2 (exp(hν/kT)−1) 4πR2 Ξ SB in in peratureofthe(local)radiationfield. Wemodelthecontinuum spectrum of the central source as the superpositionof a black The regionon the (L,T)-planeforbiddenby this constraintis bodyspectrum(whichmayrepresentthermalemissionfroman shadedwithlinesofnegativegradientinFig.1a. accretion disk) and a power-law spectrum with energy index Finally,wemaketheobservationthatthereisafundamental α=1whichextendsuptohardX-rayenergies(whichmaybe limittotheblackbodyluminositywhichisimposedbythermo- identifiedasaccretiondiskphotonsthathavebeensubjectedto dynamics: multipleComptonupscatteringbyanaccretiondiskcorona). L <4πR2 σ T4 (10) bb max SB 3 0.08 0.08 MCG-6-30-15 NGC 3516 0.06 0.06 V] V] ke ke T [ 0.04 T [ 0.04 k k 0.02 0.02 0.00 0.00 0 2 4 6 8 10 0 2 4 6 8 10 L /L L /L bb pl bb pl FIG. 1.—ConstraintsdiagramsfortheComptonizationmodelappliedtoMCG−6-30-15(left)andNGC3516(right). Thealmostverticallinecorrespondstoa ComptontemperatureofkTC = 0.5keV,withtheregionleftofthelinebeingexcludedsinceitwouldproducetoomuchComptonupscatteringoftheironline photons.TheregionshadedwithlinesofnegativeslopeisforbiddensinceitwouldproduceasoftexcessintheASCA(MCG−6-30-15)orBeppoSAX(NGC3516) bands(whichisnotobserved).Theshadedregionisforbiddensincethesourcewouldviolatetheblackbodylimit. where R is the maximum allowed size of the black body higher energies. Either of these effects will raise the Comp- max source. Sincethecontinuumsourceishypothesizedtobeinte- ton temperature of the power-law component and require an riortotheComptoncloud,wemusthaveRmax ∼< Rcloud. The evencoolerblackbodycomponentinordertocooltheComp- regionofthe(L,T)-planeforbiddenbythisconstraintisshown toncloudbelowthe0.5keVlimit. Itshouldalsobenotedthat insolid-shadeinFig.1a. we have ignored any infra-red emission from the continuum Weseethatapplyingthesethreeconstraintseliminatesallre- source. Due to the high densities of the matter in the Comp- gionsofthe(L,T)-plane.OnemustconcludethattheCompton toncloud,IRemissionsredwardsof∼ 10µmwillbefree-free cloudmodeldiscussedbyMisra&Kembhavi(1998)andMS99 absorbed and act to heat the cloud rather than Compton cool isnotvalidinthecaseofMCG−6-30-15. it. Again,theneglectoftheIRemissionsisaconservativeas- NGC 3516 also displays a strong broad iron line that has sumptionforourpurposes. been observed at high signal-to-noise with ASCA (Nandra et Thereisanother,independent,problemfacedbytheComp- al. 1999). We have also examined constraints on the Comp- ton cloud model: it is very difficult to maintain the required tonization model for this iron line. Continuum variability in ionization state. F95 treated this problem by considering the thisobjectisobservedontimescalesdownto∼ 2000s(Edel- required cloud size necessary to acheive some critical ioniza- son&Nandra1998;K.Nandra,privatecommunication),giving tion parameter ξc ≡ Lion/nR2. According to F95, the AGN amaximumsizeofRcloud ∼2×1013cmfortheComptonizing spectrumofMathews&Ferland(1987),ξc = 104ergcms−1 cloud,ratherlargerthanthecaseofMCG−6-30-15.Also,Bep- canbeconsideredthepointatwhichaphotoionizedplasmabe- poSAXobservationsfailtoseeasoftexcessintheX-rayspec- comes completely ionized. Using the observed luminosity of trumallofthewaydownto0.2keV(Stirpeetal.1998).Noting MCG−6-30-15,they deducedthat the cloud must have a size that L ≈ 1×1044ergs−1 producesthe constraintdiagram R<1014cminordertoachieveatleastthiscriticalionization pl showninFig.1b. Itisseenthattheseconstraintseliminateall parameter. As we will now show, this is a very conservative butaverysmallregionofparameterspace. Thus,althoughthe argumentand, in fact, ionization balance imposes much more broad line in NGC 3516 could in principle be explained with severelimitsonthecloudsize. theComptonizationmodel,theamountoffinetuningnecessary Whiletheformalionizationparametermaybeveryhigh,the forfindingthelineparametersmakesthemodelimprobablein very soft continuum spectrum postulated by MS99 may still thiscase. havetroublefullyionizingtheironthroughoutthewholecloud. Toseethis,notethatallcontinuumphotonscapableofionizing 4. DISCUSSION hydrogenlike iron (FeXXVI) reside in the power law compo- Itshouldbestressedthatwehaveusedconservativeparam- nentofthecontinuum. ThecontinuumsourceinMCG−6-30- eters in our assessment of these observational constraints. In 15emitsFeXXVIionizingphotonsatarate particular,weassumethatthepower-lawcomponentofthecon- L tinuum emission possesses an energy index of α = 1 (corre- Nion ≈ pl , (11) E Ξ spondingtoaphotonindexofΓ =2)andahighenergycutoff ion of 50keV. In fact, the overall X-ray spectrum is harder than where Eion = 9.3keV is the ionization potential of FeXXVI. this (especiallyoncethe Comptonreflectioncomponentis ac- ThisevaluatestoN ≈3×1050s−1. Theradiativerecombi- ion countedfor)andthehighenergycutoffmaywelloccuratrather nationrateofthepostulatedComptoncloud,ontheotherhand, 4 isgivenby samepartsoftheComptoncloudthatbroadenstheironline(in order to Compton cool it), one concludes that the black body 4π T −Xrad photonsand broad iron lines photonswill follow very similar Nrec ≈ 3 R3n2Arad(cid:18)104K(cid:19) (12) paths through the system. Hence, it is impossible to hide the soft excess emission from view in a system in which we ob- serveaComptonbroadenedironline. wherethecoefficientsA andX aregivenbyShull&van rad rad Thirdly,theblackbodylimitcanbebypassedifthesoftcon- Steenberg (1982). For a temperature of kT = 0.5keV and tinuumsourceisplacedoutsideoftheComptoncloud.Whileit R =1012cm,thisgivesN =3×1050s−1. Thus,thereare rec isdifficulttoconstructrigorousargumentsagainstthiscase,we just enough ionizing photons present in the entire power law considerthatplacingapowerful(L /L >3)softcontinuum tail toionize the hydrogen-likeiron. Ifthe temperatureof the bb pl sourceatlargedistancesfromthecentralhardX-raycontinuum Compton cloud is below 0.5keV, or the radiusof the cloud is sourceisanad-hocsolution. larger4, it will be impossible to photoionize the cloud. Very large iron edges would then be present in the observed X-ray 5. CONCLUSIONS spectrum, contrary to observations. Thus, ionization balance imposesasizelimitofR ∼< 1012cm,independentlyofcontin- Inthiswork,wehaveconstrainedtheComptoncloudmodel forthe broadironline in bothMCG−6-30-15andNGC 3516 uumvariabilityconstraints. by considering two observational constraints which are inde- Finally, we address whether there are reasonable modifica- pendent of the detection of a spectral break in the continuum tionsthatcanbemadetotheMS99scenariothatwillavoidthe spectrum: thecontinuumvariabilitytimescaleandtheabsence constraintsimposedinthispaper. Therearethreesuchmodifi- ofanobservedsoftexcess. Wehavethendemonstratedthatthe cationsthatweshouldconsider.Firstly,ifthegeometryissuch constrainedmodelrequiresacontinuumsourcewhichviolates thattheX-raycontinuumsourceisvieweddirectly(ratherthan the black body limit. We also point out that the difficulty of throughtheComptoncloud),onemightimaginethatthesizeof photoionizingtheComptoncloudtotherequiredlevels. Thus, theComptoncloudandtheX-raycontinuumvariabilitywould weruleouttheComptonizationmodelforthebroadironlinein bedecoupledtherebyrelaxingtheconstraintsdiscussedabove. MCG−6-30-15,andshow thatfine tuningis requiredin order AnexampleofsuchageometryisiftheComptoncloudforms for the model to explain the line in NGC 3516. We conclude atorusaroundthecentralX-raysource.Insuchageometry,the thatthe combinationof relativistic Dopplershiftsand gravita- X-ray continuum source illuminates and ionizes the observed tionalredshiftsstillprovidesthebestexplanationforthebroad face of the Compton cloud and powers iron line fluorescence from an optical depth of τ ∼ 4 into the cloud. However, in ironlinesseeninAGN. thiscase,onewouldexpectionizedironlines(fromtheionized zonesthatoverlaythenear-neutralzonesintheComptoncloud) We are indebted to Jim Chiang, Andrew Fabian, Mike ratherthanthe observedcoldironlines. Also, the illuminated Nowak, and Firoza Sutaria for insightfuldiscussionsthrough- surface of the Compton cloud, which must be highly ionized outthecourseofthiswork. Wearealsogratefultotheanony- so as notto be a strong narrowironline emitter, wouldact as mousrefereeforseveralusefulsuggestions. We thanktheAs- aComptonmirrorandsmearouttheobservedcontinuumvari- penCenterforPhysicsfortheirhospitalityduringtheX-rayAs- ability, even though the continuum source is viewed directly. trophysicsWorkshopinAugust1999,atwhichtimethiswork Of course, anysuchmodificationto the basic Comptonization wasstarted. CSRappreciatessupportfromHubbleFellowship modelinwhichtheComptoncloudisallowedtobebiggerthan grantHF-01113.01-98A.ThisgrantwasawardedbytheSpace R ∼ 1012cm must be subject to the ionization problem de- Telescope Institute, which is operated by the Association of scribedabove. UniversitiesforResearchinAstronomy,Inc.,forNASAunder Secondly, a large regionof parameterspace would openup contractNAS5-26555.WealsoappreciatesupportfromNASA iftheComptoncloudexperiencedadifferentsoftcontinuumto under LTSA grant NAG5-6337 and the RXTE guest observer thatobserved(i.e.ifthesoftexcesscanbe‘hidden’fromview). grantNAG5-7339aswellasDeutscheForschungsgemeinschaft Notingthattheblackbodycomponentmustscatterthoughthe grantSta173/22. REFERENCES Czerny B., Zbyszewska M., Raine D. J., 1991, in Treves A., ed., Iron Line Diagnostics in X-ray Sources. Spring-Verlag, Berlin, p.226. EdelsonR.,NandraK.,1999,ApJ,514,682 FabianA.C.,ReesM.J.,StellarL.,WhiteN.E.,1989,MNRAS,238,729 FabianA.C.etal.1995,MNRAS,277,L11(F95) GuainazziM.etal.,1999,A&A,341,L27 IwasawaI.etal.,1996,MNRAS,282,1038 IwasawaI.,FabianA.C.,YoungA.J.,InoueH.,MatsumotaC.,1999,MNRAS,306,L191 LaorA.,1991,ApJ,376,90 LeeJ.C.,FabianA.C.,BrandtW.N.,ReynoldsC.S.,IwasawaK.,1999,MNRAS,inpress LeeJ.C.,FabianA.C.,ReynoldsC.S¿,BrandtW.N.,IwasawaK.,1999b,MNRAS,submitted. MathewsW.G.,FerlandG.J.,1987,ApJ,323,456 MisraR.,1999,IUCAApreprint32/99. MisraR.,KembhaviA.K.,1998,ApJ,499,205 MisraR.,SutariaF.K.,1999,ApJ,517,661(MS99) 4NotethatthequantitynRisproportionaltotheopticaldepthofthecloudandsoisfixedbythewidthofthebroadironline. 5 NandraK.,GeorgeI.M.,MushotzkyR.F.,TurnerT.J.,YaqoobT.,1997,ApJ,477,602 NowakM.A.,ChiangJ.,1999,ApJ,submitted ReynoldsC.S.,1999,ApJ,submitted ReynoldsC.S.,1997,MNRAS,286,513 ReynoldsC.S.,FabianA.C.,NandraK.,InoueH.,KuniedaH.,IwasawaK.,1995,MNRAS,277,901 StirpeG.M.,WilkesB.J.,ComastriA.,MathurS.,O’BrienP.T.,1998,inScarsiH.,GiommiP.,FioreF.,ed.,TheActiveX-raySky: ResultsfromBeppoSAXandRXTE,NuclearPhysicsBProceedingsSupplements,69,505 TanakaY.etal.,1995,Nat,375,659 YaqoobT.,McKernanB.,PtakA.,NandraK.,ServemitsosP.J.,1997,ApJ,490,L25

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.