Mon.Not.R.Astron.Soc.000,1–??(2002) Printed30January2014 (MNLATEXstylefilev2.2) On the (im)possibility of testing new physics in exoplanets using transit timing variations: deviation from inverse-square law of gravity 4 1 Yi Xie1,3⋆ and Xue-Mei Deng2,3 0 1School of Astronomy and Space Science, Nanjing University,Nanjing 210093, China 2 2Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China n 3Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University,Ministry of Education, Nanjing 210093, China a J 9 Accepted .Received;inoriginalform 2 ] ABSTRACT P Ground-based and space-borne observatories studying exoplanetary transits now and E in the future will considerably increase the number of known exoplanets and the . h precisionofthe measuredtimes of transitminima. Variationsin the transit times can p not only be used to infer the presence of additional planets, but might also provide - opportunities for testing new physics in the places beyond the Solar system. In this o work, we take deviation from the inverse-square law of gravity as an example, focus r t on the fifth-force-like Yukawa-type correction to the Newtonian gravitational force s a whichparameterizesthisdeviation,investigateitseffectsontheseculartransittiming [ variationsandanalyzetheirobservabilityinexoplanetarysystems.Itisfoundthatthe mostoptimisticvaluesofYukawa-typeseculartransittimingvariationsareatthelevel 1 of ∼ 0.1 seconds per year. Those values unfortunately appear only in rarely unique v casesand, mostimportantly,they are stillat leasttwo ordersofmagnitude below the 7 current capabilities of observations. Such a deviation from the inverse-square law of 0 4 gravity is likely too small to detect for the foreseeable future. Meanwhile, systematic 7 uncertainties, such as the presence of additional and unknown planets, will likely be . exceptionally difficult to remove from a signal that should be seen. 1 0 Key words: gravitation– celestial mechanics – planetary systems 4 1 : v i X 1 INTRODUCTION planets (e.g. Holman & Murray 2005; Agol et al. 2005; Heyl& Gladman2007;Nesvorny´ et al.2012)andstudythe r Currently, more than 880 exoplanets have been discov- a dynamics of multiple planets systems (e.g. Holman et al. ered and about 300 of them are in the transiting sys- 2010; Lissauer et al. 2011; Fabryckyet al. 2012; Ford et al. tems.1 Now and in the future, ground-based and space- 2012; Steffen et al. 2012; Nesvorny´ et al. 2013). Recently, borne observatories used for studying transits of exo- the Kepler mission (Koch et al. 2010; Borucki et al. 2010) planets will considerably increase the number of known released a catalog of transit timing measurements of the exoplanets and the precision of the observed times of first twelve quarters, which identifies the Kepler objects of transit minima.2 The measured transit timing variations interest with significant TTVs (Mazeh et al. 2013). Such a (TTVs) can be used to infer the presence of additional largeamountofconfirmedandpotentialtransitingexoplan- etsprovideopportunitiesfortestingphysicallawsofnature, especially fundamental theories of gravity,in theplaces be- ⋆ E-mail:[email protected] yondthe Solar system. 1 http://exoplanet.eu/catalog/ 2 As pointed out by Kipping (2011), the so-called “mid-transit But, what is the necessity of performing these tests in time” in the exoplanet literature is highly ambiguous. Follow- exoplanetary systems? After all, modified and alternative ingtheterminologyinKipping(2011),wewilluse“transitmini- relativistic theories of gravity have been tested in the So- mum”and“timeoftransitminimum”inthispaper.Because,for lar system with very high precision (see Will 1993, 2006; a limb-darkened star, the transit minimum occurs when the ap- Turyshev 2008, for reviews), whereas tests in exoplanetary parent sky-projected separation between the exoplanet and the star reaches a minimum, which has a completely unambiguous systems in current stage are expected tobe much worse for definition. So “transit timing variations” also refers to “changes lack of high-accuracy observations. However, some obser- oftimesoftransitminimum”. vationsindicate thefundamental constants of naturemight (cid:13)c 2002RAS 2 Y. Xie & X.-M. Deng haveatemporalandspatialvariation(e.g.Webb et al.1999; beavailable in thefuture. It will also provideopportunities Murphyet al. 2001a,b,c,d; Webb et al. 2001; Murphy et al. to test the fundamental theories of gravity in quite a large 2003,2007,2008;Webbet al.2011),whichimplysomefun- number of different and unique locations beyond the Solar damental laws of nature may also have variations in such system. This will make transiting exoplanets very similar a manner although it ought be very small. Furthermore, to binary pulsars in testing physical laws describing grav- scalar-tensor theories of gravitation, as alternatives of gen- ity (e.g. Bell et al. 1996; Damour & Esposito-Far`ese 1996; eral relativity (GR), also theoretically imply these subtle Kramer et al. 2006; Iorio 2007b; Deng et al. 2009; Li 2010; variations may exist even in the scale of planetary systems Deng 2011; Li 2011; DeLaurentis et al. 2012; Ragos et al. due to the possible couplings between matter and scalar 2013; Xie 2013). fields (see Fujii & Maeda 2007, for a review). In order to Hence,wewill investigatethe(im)possibility of detect- (dis)prove it empirically, we need to go to different times ingfifth-force-likeYukawa-typeeffectsonthesecularTTVs andplaces.Exoplanetarysystemscanserveastestbedsout- as an example of trying to test new physics in exoplanets. side the Solar system for conducting those tests owning to Afteranalysingtheirobservabilityinexoplanetarysystems, theiruniquelocations.Therefore,inthiswork,wewillfocus we find that the most optimistic values of this type secular on testing theinverse-squarelaw (ISL) of gravity. TTVsareatthelevelof 0.1secondsperyear.Thosevalues ∼ A way to parameterize deviation from the ISL of unfortunately appear only in rarely uniquecases and, most gravity, which might be caused by new physics beyond importantly, they are still at least two orders of magnitude the standard model of particles and GR, is the fifth- below the current capabilities of observations. Such devia- force-like Yukawa-type correction to the Newtonian grav- tion from theISL of gravity is likely too small to detect for itational force, which has been intensively studied (e.g. theforeseeablefuture.Meanwhile,systematicuncertainties, Fischbach et al. 1986, 1992; ?; Adelberger et al. 2003; Iorio suchasthepresenceofadditionalandunknownplanets,will 2007a; Lucchesi& Peron 2010; Haranas & Ragos 2011; likelybeexceptionallydifficulttoremovefromasignalthat Haranas et al.2011;Lucchesi2011;Iorio2012b;Deng& Xie should be seen. 2013).The gravitational potential with this correction is The rest of the paper is organized as follows. Section 2 is devoted to describing TTVs under the Yukawa-type V =VN(r)+VYK(r), (1) correction. In section 3, we present an analysis about its wheretheNewtonianpotentialandYukawa-typecorrection observability in the secular TTVs. Finally, in section 4, we are, respectively, summarize our results. VN(r) = GM1M2, (2) r 2 TTVS CAUSED BY YUKAWA-TYPE VYK(r) = GM1M2αexp r . (3) CORRECTION r (cid:18)− λ(cid:19) To describe the dynamics of a transiting exoplanetary sys- Here G is the gravitational constant, M (i = 1,2) is the i tem, understand its transit light curve and represent the massoftheithbodyandr isthedistancebetweenthem.α observables, we adopt the coordinate systems defined and is a dimensionless strength parameter of thecorrection and applied in Kipping (2011). The plane of Xˆ-Yˆ is defined as λ is a length scale for it (see Fischbach & Talmadge 1999, the plane of the sky, the host star is at the origin O and for a review of constraints on α and λ). Under this param- the observer is located at (X,Y,Z)=(0,0,+ ). Then , in eterization, if the inverse-square law of gravity is violated, theXˆ-Yˆ-Zˆ system,theinclination ofatransit∞ingexoplanet an extraforce will exert onexoplanetsand causeadditional i is close to 90◦. Hereafter, we take widely used notations secular TTVs. in celestial mechanics: a is the semi-major axis, e is the Among mainly known sources of secular TTVs, eccentricity, i is the inclination, Ω is the longitude of the the general relativistic periastron advance (GRPA) con- ascending node, ω is the argument of periastron, M is the tributes. Its observability in exoplanets has been in- mean anomaly and f is the true anomaly. The normalized vestigated in several works (e.g. Miralda-Escud´e 2002; apparent(sky-projected)separationbetweentheplanetand Adams& Laughlin 2006a,b,c; Iorio 2006; Heyl& Gladman thestar is defined as (Kipping 2011) 2007; Jord´an & Bakos 2008; Pa´l & Kocsis 2008; Li 2010; Iorio 2011a,b; Li 2012; Zhao & Xie 2013). It is found that 1 S X2+Y2 GRPAcanbedetectableontimescalesoflessthanabout10 ≡ R∗p years with current observational capabilities by observing a = ̺(f) 1 sin2(ω+f)sin2i, (4) thetimes of transits in exoplanets (Jord´an & Bakos 2008). R∗ q − This means that, like the well-known phenomena in where ̺(f) (1 e2)/(1+ecosf) and R is the radius the Solar system, such as the anomaly in the perihelion ≡ − ∗ of the star. For mathematical convenience in the following shift of Mercury (Nobili & Will 1986) that gave a hint at parts of this paper, we will also use theexpression for S2: new physics about GR and the dynamics of planets which could be used to test fundamental laws of physics (e.g. a2 S2 = ̺2(f)[1 sin2(ω+f)sin2i]. (5) Iorio 2005a,b,c,d; Iorio & Giudice 2006; Ruggiero & Iorio R2 − ∗ 2007; Folkner 2010; Pitjeva 2010; Fienga et al. 2011; Iorio 2010; Iorio et al. 2011; Iorio 2011c, 2012a,c; Pitjeva 2012; 2.1 Transit minima Pitjev & Pitjeva 2013; Pitjeva & Pitjev 2013; Xie& Deng 2013),observingofsecularTTVscanalsoserveasatestbed For a Kelperian transiting exoplanet, the instants of tran- with the help of high-precision measurements which might sit minima (and maxima) occur when dS/dt = 0 (Kipping (cid:13)c 2002RAS,MNRAS000,1–?? Impossibility of testing ISL by TTVs 3 2011),which leads to Ifatwo-bodyproblemwiththefifth-force-likeYukawa-type correction is considered, we can find that dS dSdf = =0. (6) dηT h+e2 dω dt df dt 1 = cos2i , (13) (cid:28) dt (cid:29) −(1+h)2 (cid:28)dt(cid:29) It is worth mentioning that condition defined by equation dη2T = k2+h+e2 cos4i dω , (14) (6)isapuregeometriccriterionwithoutanyambiguity.Be- (cid:28) dt (cid:29) − (1+h)3 (cid:28)dt(cid:29) causedf/dt=0forplanetaryorbitalmotions,thecondition dηT 1 dS/dt=0is6equivalenttodS/df =0.Aneasierwaytohan- 3 = (1+h)−5(2h3k2+2hk4+h2k2 2k4 2h3 (cid:28) dt (cid:29) 2 − − dlethemathematicsistomakeuseofdS2/df =0,andsuch dω a condition can be proven to be equivalent to dS/df = 0 7hk2 4h2 6k2 2h)cos6i . (15) − − − − (cid:28)dt(cid:29) (Kipping 2011). To obtain the true anomaly at the transit minima fT (the subscript “T” denotes transit), one needs Here,thesecularvariationsofa,e,iandΩarezeroandonly to solve a quartic equation involving cosf [see eq. (4.5) in dω/dt contributesin theaboveones [see eqs. (18)–(22) in h i Kipping(2011)].Althoughsolvingitismathematicallypos- Deng& Xie(2013)]because sible,thesolutionsareprettylengthyandimpractical.Treat- ing cos2i as a small quantitywhich is very close tozero for dω =αna√1−e2 exp a I1 ae , (16) transiting exoplanets and using the Newton-Raphson iter- (cid:28)dt(cid:29) eλ (cid:18)− λ(cid:19) (cid:18) λ (cid:19) ation method, Kipping shows the series expansion solution where I1(z) = dI0(z)/dz and I0(z) is the modified Bessel for fT can bewritten as (Kipping2011) function of thefirst kind(Arfken & Weber2005). However,thesecularvariationoff isnotanobservable T n π practicallysothat,forrealisticmeasurements,itneedstobe f = ω ηT, (7) T (cid:20)2 − (cid:21)− j convertedtothesecularvariationoftimeoftransitminimum Xj=1 t , i.e. secular TTV, T where, by h esinω and k ecosω, dt dt df 1 df ≡ ≡ T = T T = ̺2 T , (17) (cid:28) dt (cid:29) (cid:28)dfT dt (cid:29) n√1 e2 T(cid:28) dt (cid:29) k − ηT = (cos2i)1, (8) 1 (cid:18)1+h(cid:19) where̺T ̺(fT)andn=2π/P.Bysubstitutingequations ≡ (7), (12) and (16) into above one, we can have k 1 ηT = (cos2i)2, (9) 2 (cid:18)1+h(cid:19)(cid:18)1+h(cid:19) dtT = 1 ̺2 dω + (cos2i) k 6(1+h)+k2(1 2h) (cid:28) dt (cid:29) −n√1 e2 T(cid:28)dt(cid:29) O η3T = (cid:18)1+h(cid:19)(cid:20) 6(1+h)3− (cid:21)(cos2i)3. (10) = −αe λa̺2T−exp(cid:18)− λa(cid:19)I1(cid:18)aλe(cid:19)+O(cos2i).(18) It is demonstrated (Kipping 2011) that using a first-order Foratimeduration∆t,theYukawa-typesecularTTV ∆t expansion solution can reduce the error to less than a mil- T is lisecond for a highly eccentric planet with a short period. SfoouluntdioinnsKeixpppainngde(d20t1o1)h.igher orders (up to n = 6) can be ∆∆ttT =−αeξ̺2Texp(−ξ)I1(ξe)+O(cos2i), (19) where ̺ =(1 e2)/(1+esinω)+ (cos2i), (20) T − O and 2.2 Yukawa-type secular TTVs ξ a/λ. (21) ≡ With the same approach used in Iorio (2011a) to work out Itisworthmentioningthatalthoughequation(19)doesnot long-termtimevariationsofsomeobservablesfortransiting divergewhen e=0 because exoplanets, for a given observable Γ that is a function of Keplerian orbital elements, i.e. Γ = Γ( σ ), where σ = 1 ξ { } { } lim I1(ξe)= , (22) a,e,i,Ω,ω,M , if perturbations on the Keperlian orbital e→0e 2 { } motion are taken into account, we can calculate its secular it is not suitable for the case that e is extremely close to variation by averaging: 0 because it makes ω ill-defined. In order to avoid this, one needstoreformulateitintermsofsingularity-freeorbitalel- dΓ 1 P dΓ 1 P ∂Γdκ ements (Danby 1962). While the orbit may precess rapidly = dt= dt, (11) (cid:28)dt(cid:29) P Z dt P Z ∂κ dt nearzeroeccentricity,itseffectwouldsimplybeachangeto 0 0 κX∈{σ} the measured orbital period (yielding an orbital frequency where P is theKeplerian period of theorbit. Applyingthis of 2π/Pmeasured = 2π/Ptrue +ω˙). The TTV signal in this caseisthedeviation from aconstant intervalbetween tran- approach to f ,we can obtain its secular changes as T sits. Thus, the changing angular velocity of a planet on an elliptical orbit is an essential aspect of thesignal. However, df dω n dηT T = j . (12) due to the requirement of an elliptical orbit, short-period (cid:28) dt (cid:29) −(cid:28)dt(cid:29)−Xj=1(cid:28) dt (cid:29) planets(withperiodsofonlyafewdays)arenotlikelytobe (cid:13)c 2002RAS,MNRAS000,1–?? 4 Y. Xie & X.-M. Deng good candidates because of the circularization of the orbit e = 0.01; (b) e = 0.1; (c) e = 0.3; and (d) e = 0.6. These from tides. It can also befound that,from equation (20), sub-cases share identical logarithmic color bars in the unit of second per year (s yr−1) and are all generated by taking (1 e)2+ (cos2i)6̺2 6(1+e)2+ (cos2i), (23) − O T O ω=270◦ whichmakes̺T maximum.Itcanbecheckedthat which makes ∆t /∆t not sensitive to ω according to equa- theirpatternsbarelychangefordifferentvaluesofωaccord- T tion(19).And,sinceξ isadimensionlessparameterasara- ing to equation (23). They tell us that the most optimistic tioof thesemi-major axisaand thelength scale ofYukawa valuesofYukawa-typesecularTTVsareatthelevelof 0.1 ∼ correctionλ,itsuggeststhatitwillbeverydifficulttodeter- secondsperyear.Unfortunately,thosevaluesappearonlyin mine λ by observations on TTVs alone. In ∆t /∆t, α and rarely uniquecases (very small regions surrounding ξ 2.2 e play more important roles (see nextsection fTor details). and α = 10−8 in each sub-figures) and, most importa≈ntly, Equation(19)describeschangesoftimesoftransitmin- theyarestillatleasttwoordersofmagnitudebelowthecur- imum for a time duration which may be much longer than rent capabilities of observations. Therefore, such deviation the Keplerian period of the orbit. In practice, an impor- from the ISL of gravity is likely too small to detect for the tant directly measurable quantity is the temporal interval foreseeable future. PT between successive transits. It will change as well be- There are some other effects that will make the causeofω˙.Thisvariationgivestheobserveddeviationsfrom detection more complicated. For example, GR, a stellar alinear ephemeris. Up tothefirst orderof e,thederivative quadrupole moment, tidal deformations and an ad- of the transit period PT is given by (Miralda-Escud´e 2002; ditional planet (perturber) (e.g Miralda-Escud´e 2002; Heyl& Gladman 2007; Jord´an & Bakos 2008) Holman & Murray2005;Agol et al.2005;Heyl& Gladman 2007; Jord´an & Bakos 2008; Iorio 2011a, 2012d; ω˙ 2 P˙ =4πe sin(M ) (24) Nesvorny´ et al. 2012; Iorio 2013) can also cause secu- T (cid:18)n(cid:19) T larperiastron advancesrespectively: ω˙ , ω˙ , ω˙ h iGR h iquad h itide so that the contribution caused by Yukawa-type correction and ω˙ [seeeqs.(1),(3),(5)and(7)inJord´an & Bakos h ipert is (2008) for their expressions]. It is found (Jord´an & Bakos P˙ =4πα2ξ2e−1(1 e2)exp( 2ξ)I2(ξe)sin(M ), (25) 2008) that ω˙quad is usually much less than ω˙GR; ω˙tide T − − 1 T and ω˙pert are of comparable magnitude to ω˙GR. The where M is themean anomaly at transit (Miralda-Escud´e GR periastron advance can result in secular TTVs as T 2002)andisrelatedtothetrueanomalyattransitf ofthe (Jord´an & Bakos 2008; Iorio 2011a; Zhao & Xie 2013) T first order of e by M =f 2esinf . T T T − ∆t √1 e2 GM T = 3 − ∗ + (cos2i) 3 OBSERVABILITY OF YUKAWA-TYPE ∆t (cid:12)(cid:12)GR − (1+h)2 c2a O SECULAR TTVS (cid:12)(cid:12) 47.7s M 2/3 P −2/3 ∗ (1 2h) This section will be dedicated to an important is- ≈ −(cid:18) 1yr (cid:19)(cid:18)M⊙(cid:19) (cid:18)1day(cid:19) − sue: the observability of these Yukawa-type effects. + (cos2i,e2), (27) O Based on the literature about Yukawa-type correction (e.g. Fischbach & Talmadge 1999; Adelberger et al. 2003; Denget al. 2009; Lucchesi & Peron 2010; Deng 2011; wherecisthespeedoflight andM isthemassofthehost ∗ Lucchesi 2011; Iorio 2012b) and the catalog of confirmed star. It means, in a transiting exoplanet system with Sun- transiting exoplanets 3, we will focus on the domain of the likemass,periodof 1dayandrelativelysmalleccentricity parameters in equation (19) as of 0.1, the TTVs∼caused by GR can reach 40 seconds ∼ ∼ = (ξ,α,e,ω) 10−2 6ξ6101, 10−12 6α610−8, inayear.TocomparethemagnitudesofTTVstriggeredby D { | GR and Yukawacorrection, we can calculate theratio as 0.016e60.6, 06ω62π . (26) } Intheconstructionofthisspaceofparameters,wetakecon- firmed transiting exoplanets as samples of orbital configu- η (∆tT/∆t)GR = hω˙iGR rations. We also consider constraints on Yukawa correction GR/YK ≡ (∆tT/∆t)YK hω˙iYK in the Solar system. For instance, one of the upper bounds = 3κ1/3c−2µ2∗/3P−2/3f1gYK, (28) ofYukawacorrection isgivenbyIorio(2007a)usingtheSo- larsystemplanetsorbitalmotion withEPM2004 ephemeris (Pitjeva 2005): α∼10−9 and λ∼0.18 au. A crucial differ- where κ 4π2, µ∗ GM∗ and ence between the case of the Solar system and the one of ≡ ≡ exoplanetary system is that we know major objects in the Solarsystemverywellbutmostexoplanetswithlowmasses f1 = e(1 e2)−3/2, (29) (.M⊕)currentlyremainunknown.Inordertoincludemore − exp(ξ) possible and potential cases, even some of which have not gYK = . (30) been observed yet,we enlarge thedomain as well. αξI1(ξe) D Figure1showscolor-indexed∆t /∆tinfourcases:(a) T Similarly, we also can have three other ratios involving the 3 http://exoplanet.eu/catalog/ stellarquadrupolemoment,tidaldeformations andtheper- (cid:13)c 2002RAS,MNRAS000,1–?? Impossibility of testing ISL by TTVs 5 turberas withlowmassesarecurrentlydifficulttodetectandremain unknowninmostcases.Theresultinguncertaintieswillruin ηquad/YK ≡ ((∆∆ttTT//∆∆tt))qYuKad aannydtehffeoyrtwsitllolitkeesltyIbSeLeoxfcegprativointyalluysidnigffiecxuoltptlaonreetmaroyveTfTroVms 3 ≈ 2κ2/3J2∗µ−∗2/3R∗2P−4/3f2gYK, (31) asignalthatshouldbeseen.Separating,discriminatingand extractingvariouscontributionsinTTVsforfuturepositive η (∆tT/∆t)tide detectionofpossibledeviationfromISLrequiretremendous tide/YK ≡ (∆tT/∆t)YK advances of techniques for observations and sophisticated ≈ 15κ5/3µ−∗5/3P−10/3k2,pTRp5MM∗pf3gYK, (32) methodsof data analysis. η (∆tT/∆t)pert pert/YK ≡ (∆tT/∆t)YK ≈ 43MM∗2PP222f2gYK, (33) 4 CONCLUSIONS AND DISCUSSION In the context of potential and considerable increase of the where number of transiting exoplanets and the precision of mea- f2 = e(1 e2)−1/2, (34) sured times of transit minima by ground-based and space- − borneobservatoriesusedforstudyingexoplanettransitsnow 3 1 f3 = e(1 e2)−11/2 1+ e2+ e4 , (35) andin thefuture,we studythepossibility of testing funda- − (cid:20) 2 8 (cid:21) mental laws of nature in these system via TTVs. Focusing = 1+ k2,s R∗ 5 Mp 2. (36) onpresumableviolationsoftheISLofgravitywhicharepa- T k2,p(cid:18)Rp(cid:19) (cid:18)M∗(cid:19) rameterized by the fifth-force-like Yukawa-type correction to the Newtonian gravitational force, we investigate their Here,J∗ isthestellar quadrupolemoment,R istheradius 2 ∗ effectsonsecularTTVsandanalyzetheirobservability.Itis of the host star; M is the mass of the planet, R is the p p foundthat themost optimistic valuesof Yukawa-typesecu- radius of the planet; k2,s and k2,p are the apsidal motion lar TTVs are at the level of 0.1 seconds per year. Those constantsforthestarandplanetrespectively,whichdepend ∼ valuesunfortunatelyappearonlyinrarelyuniquecasesand, on the mass concentration of the tidally deformed bodies most importantly, they are still at least two orders of mag- (Sterne 1939); M2 is the mass of the second planet and P2 nitude below the current capabilities of observations. Such is the Keplerian period of its orbit. In the calculations of deviationfromtheISLofgravityislikelytoosmalltodetect theseratios[equations(28)and(31)–(33)],equation(16)in for theforeseeable future. this work and eqs. (1), (3), (5) and (7) in Jord´an & Bakos Moreover, exoplanetary systems are full of complexity (2008) are used. so that many sources can trigger secular TTVs, such as In order to estimate these ratios, we fix ξ = 2.2 and GR, a stellar quadrupole moment, tidal deformations and α=10−8 because they generate the most optimistic values a perturber. After calculating the ratios between TTVs by ofYukawa-typesecularTTVs,whichareatthelevelof 0.1 ∼ Yukawacorrectionandthosecausedbythesefoureffects,we seconds per year (see figure 1). After evaluating them, we findthesignals ofYukawacorrection aremuchweakerthan findsecularTTVscausedbyGR,thestellarquadrupolemo- others. The uncertainties of perturbers with low masses, ment,tidal deformations and a perturberare usually larger which are usually unknownfor now, will ruin any efforts to than the one due to the Yukawa correction by several or- test ISL of gravity using exoplanetary TTVs and they will ders of magnitude(see figure 2). Figure 2(a) shows η GR/YK likelybeexceptionallydifficulttoremovefromasignalthat with respect to P, where m M /M . It indicates, for an ≡ ∗ ⊙ should be seen. Separating, discriminating and extracting exoplanet with P 10 days, the TTVs caused by GR are about102 timesgre∼aterthanthosetriggeredbypossiblede- variouscontributionsinTTVsforpositivedetectionrequire tremendousadvancesoftechniquesforobservations andso- viationfromISLofgravity.ThecomparisonofTTVsbythe phisticated methodsof data analysis. stellar quadrupole moment and Yukawa correction is given in figure 2(b) in which j J∗ 107, r R /R and e is ≡ 2 × ≡ ∗ ⊙ fixedas0.3.Itsuggestseffectsfromthequadrupolemoment will suppress the Yukawa correction on a close-in planet. Some curves of η are presented in figure 2(c) where tide/YK ACKNOWLEDGMENTS we assume a Jupiter-like giant planet with k2,p =0.25 by a polytrope of index n 1 (Hubbard 1984) and a host star Weacknowledgeveryusefulandhelpfulcommentsandsug- ≈ with k2,s = 0.01 (Claret & Gimenez 1992). Like the trends gestions from our anonymous referee. The work of YX is in figure 2(b), the TTVs by tidal deformations are much supported by the National Natural Science Foundation of larger than those by Yukawa correction for hot-Jupiters. ChinaGrantNo.11103010, theFundamentalResearchPro- In figure 2(d), these curves show the relative strength of gram of Jiangsu Province of China Grant No. BK2011553 TTVsbyaperturberandthosebyYukawacorrection,where andtheResearch Fundfor theDoctoral Program of Higher m2 M2/M⊕. The influence of a perturber can reach the Education of China Grant No. 20110091120003. The work ≡ level of several orders of magnitude greater than theeffects of XMD is funded by the Natural Science Foundation of ofYukawacorrection.Foraperturberwith M ,itscontri- ChinaunderGrantNo.11103085 andtheFundamentalRe- ⊕ ∼ butioninTTVscanbeabout10timeslargerthanYukawa- search Program of Jiangsu Province of China Grant No. correction’s when P :P2 1:2. However, such perturbers BK20131461. ≈ (cid:13)c 2002RAS,MNRAS000,1–?? 6 Y. Xie & X.-M. Deng (a) e=0.01, ω=270° m=0.6, e=0.1 4 m=0.6, e=0.5 -8 0 ) m=1.0, e=0.1 1 -r K m=1.0, e=0.5 -9 -2 s y R/Y 3 αg 10 -10 -4 ∆/t) (T ηg 10G 2 lo -6 ∆(t lo -11 0 1 1 (a) -8 og -12 l -2 -1 0 1 2 -2 -1.5 -1 -0.5 0 0.5 1 log ξ log10 P (d) 10 (b) e=0.1, ω=270° j=2.0, m=0.6, r=0.6 j=2.0, m=1.0, r=1.0 4 -8 0 j=10, m=0.6, r=0.6 αg 10 -1-90 --42 -1∆/t) (s yr)T ηog 10quad/YK 02 j=10, m=1.0, r=1.0 lo -6 ∆(t l -11 0 (b) 1 -2 -8 og -12 l -2 -1 0 1 2 -2 -1.5 -1 -0.5 0 0.5 1 log P (d) 10 log ξ 10 m=0.6, r=0.6, e=0.1 (c) e=0.3, ω=270° 10 m=0.6, r=0.6, e=0.5 m=1.0, r=1.0, e=0.1 -8 0 K m=1.0, r=1.0, e=0.5 ) Y -1r de/ 6 αg 10 -1-90 --42 ∆/t) (s yT ηlog 10ti 2 lo -11 -6 ∆ (t0 -2 (c) 1 -8 og -2 -1 0 1 2 -12 l log P (d) -2 -1.5 -1 -0.5 0 0.5 1 10 log ξ 10 5 (d) e=0.6, ω=270° -8 0 1) ert/YK 3 -9 -2 -s yr η 10p α log 10 --1110 --64 ∆∆ (t/t) (0T log - 11 (d) mmm2m=22==21=1401002 -8 og1 0.2 0.4 0.6 0.8 -12 l P/P2 -2 -1.5 -1 -0.5 0 0.5 1 log10 ξ Figure 2. The curves of ηGR/YK, ηquad/YK, ηtide/YK and ηpert/YK areshowninthe panels of (a), (b), (c) and(d) respec- tively. We fix ξ = 2.2 and α = 10−8 for all of them. In panel Figure 1. Color-indexed ∆tT/∆t in four cases: (a) e = 0.01; (a),m≡M∗/M⊙;in(b),wetakee=0.3andhavedefinitionsas (b) e=0.1; (c) e= 0.3; and (d) e= 0.6. These sub-cases share j = J2∗×107 and r ≡ R∗/R⊙; in (c), we assume a Jupiter-like identical logarithmiccolor bars inthe unitof second per year (s giant planet with k2,p = 0.25 and a host star with k2,s = 0.01; yr−1) and are all generated by taking ω =270◦. Their patterns andin(d),wedefinethemassofaperturberasm2≡M2/M⊕. barelychangefordifferentvaluesofωaccordingtoequation(23). (cid:13)c 2002RAS,MNRAS000,1–?? Impossibility of testing ISL by TTVs 7 REFERENCES Iorio, L. 2011b, Ap&SS,331, 485 Iorio, L. 2011c, J. Cosmol. Astropart. Phys., 5, 019 Adams, F. C., & Laughlin, G. 2006a, ApJ,649, 992 Iorio, L. 2012a, Sol. Phys., 281, 815 Adams, F. C., & Laughlin, G. 2006b, ApJ, 649, 1004 Iorio, L. 2012b, Journal of High Energy Physics, 5, 73 Adams,F.C.,&Laughlin,G.2006c,InternationalJournal Iorio, L. 2012c, J. Cosmol. Astropart. Phys., 7, 001 of Modern Physics D, 15, 2133 Iorio, L. 2012d, Celestial Mechanics and Dynamical As- Adelberger, E. G., Heckel, B. R., & Nelson, A. E. 2003, tronomy,112, 117 AnnualReview of Nuclear and Particle Science, 53, 77 Iorio,L.2013,Celestial MechanicsandDynamicalAstron- Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MN- omy,116, 357 RAS,359, 567 Iorio,L.,&Giudice,G.2006,J.Cosmol.Astropart.Phys., Arfken,G.B.,&Weber,H.J.2005,MathematicalMethods 8, 007 for Physicists (6th Ed.) (Amsterdam; Boston: Elsevier) Iorio,L.,Lichtenegger,H.I.M.,Ruggiero,M.L.,&Corda, Bell, J. F., Camilo, F., &Damour, T. 1996, ApJ, 464, 857 C. 2011, Ap&SS,331, 351 Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, Jord´an, A., & Bakos, G. A´.2008, ApJ, 685, 543 327, 977 Kipping, D. M. 2011, The Transits of Extrasolar Plan- Claret, A.,& Gimenez, A. 1992, A&AS,96, 255 etswithMoons,Ph.D.thesis,UniversityCollegeLondon, Damour,T.,&Esposito-Far`ese,G.1996,Phys.Rev.D,53, 2011 5541 Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJ, Danby,J.1962,FundamentalsofCelestialMechanics(New 713, L79 York:Macmillan) Kramer, M., Stairs, I. H., Manchester, R. N., et al. 2006, De Laurentis, M., De Rosa, R., Garufi, F., & Milano, L. Science, 314, 97 2012, MNRAS,424, 2371 Li, L.-S. 2010, Ap&SS,327, 59 Deng, X.-M. 2011, Science in China G: Physics and As- Li, L.-S. 2011, Ap&SS,334, 125 tronomy,54, 2071 Li, L.-S. 2012, Ap&SS,341, 323 Deng, X.-M., & Xie, Y.2013, MNRAS,431, 3236 Deng,X.-M.,Xie,Y.,&Huang,T.-Y.2009, Phys.Rev.D, Lissauer, J. J., Fabrycky, D. C., Ford, E. B., et al. 2011, 79, 044014 Nature,470, 53 Fabrycky, D. C., Ford, E. B., Steffen, J. H., et al. 2012, Lucchesi,D.M.2011,AdvancesinSpaceResearch,47,1232 ApJ,750, 114 Lucchesi, D. M., & Peron, R. 2010, Physical Review Let- Fienga, A., Laskar, J., Kuchynka,P., et al. 2011, Celestial ters, 105, 231103 Mechanics and Dynamical Astronomy,111, 363 Mazeh, T., Nachmani, G., Holczer, T., et al. 2013, ApJS, Fischbach,E.,Gillies,G.T.,Krause,D.E.,Schwan,J.G., 208, 16 & Talmadge, C. 1992, Metrologia, 29, 213 Miralda-Escud´e, J. 2002, ApJ, 564, 1019 Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., & Murphy, M. T., Tzanavaris, P., Webb, J. K., & Lovis, C. Aronson, S.H. 1986, Physical ReviewLetters, 56, 3 2007, MNRAS,378, 221 Fischbach, E., & Talmadge, C. L. 1999, The Search for Murphy, M. T., Webb, J. K., & Flambaum, V. V. 2003, Non-Newtonian Gravity (New York:Springer-Verlag) MNRAS,345, 609 Folkner,W.M.2010,inIAUSymposium,IAUSymposium, Murphy, M. T., Webb, J. K., & Flambaum, V. V. 2008, vol. 261, edited by S. A. Klioner, P. K. Seidelmann, & MNRAS,384, 1053 M. H. Soffel, 155–158 Murphy,M.T.,Webb,J.K.,Flambaum,V.V.,Churchill, Ford, E. B., Fabrycky, D. C., Steffen, J. H., et al. 2012, C. W., & Prochaska, J. X.2001a, MNRAS,327, 1223 ApJ,750, 113 Murphy,M.T.,Webb,J.K.,Flambaum,V.V.,Prochaska, Fujii, Y., & Maeda, K.-I. 2007, The Scalar-Tensor The- J. X., & Wolfe, A.M. 2001b, MNRAS,327, 1237 ory of Gravitation (Cambridge, UK: Cambridge Univer- Murphy, M. T., Webb, J. K., Flambaum, V. V., et al. sity Press) 2001c, MNRAS,327, 1244 Haranas, I., & Ragos, O. 2011, Ap&SS,331, 115 Murphy, M. T., Webb, J. K., Flambaum, V. V., et al. Haranas, I.,Ragos, O.,&Mioc, V.2011, Ap&SS,332,107 2001d, MNRAS,327, 1208 Heyl, J. S., & Gladman, B. J. 2007, MNRAS,377, 1511 Nesvorny´, D., Kipping, D., Terrell, D., et al. 2013, Holman,M.J.,Fabrycky,D.C.,Ragozzine,D.,etal.2010, 1304.4283 Science, 330, 51 Nesvorny´,D.,Kipping,D.M.,Buchhave,L.A.,etal.2012, Holman, M. J., & Murray, N.W. 2005, Science, 307, 1288 Science, 336, 1133 Hubbard,W.B.1984,PlanetaryInteriors(NewYork:Van Nobili, A.M., & Will, C. M. 1986, Nature, 320, 39 Nostrand Reinhold Co.) Pa´l, A., & Kocsis, B. 2008, MNRAS,389, 191 Iorio, L. 2005a, A&A,431, 385 Pitjev, N. P., & Pitjeva, E. V. 2013, Astronomy Letters, Iorio, L. 2005b, A&A,433, 385 39, 141 Iorio, L. 2005c, J. Cosmol. Astropart. Phys., 7, 008 Pitjeva, E. 2012, in IAU Joint Discussion, IAU Joint Dis- Iorio, L. 2005d, J. Cosmol. Astropart. Phys.,9, 006 cussion, vol. 7 Iorio, L. 2006, NewAstron., 11, 490 Pitjeva, E. V.2005, Solar System Research, 39, 176 Iorio, L. 2007a, Journal of High Energy Physics, 10, 041 Pitjeva, E. V. 2010, in IAU Symposium, IAU Symposium, Iorio, L. 2007b, Ap&SS,312, 331 vol. 261, edited by S. A. Klioner, P. K. Seidelmann, & Iorio, L. 2010, J. Cosmol. Astropart. Phys., 6, 004 M. H.Soffel, 170–178 Iorio, L. 2011a, MNRAS,411, 167 Pitjeva, E. V., & Pitjev, N.P. 2013, MNRAS,432, 3431 (cid:13)c 2002RAS,MNRAS000,1–?? 8 Y. Xie & X.-M. Deng Ragos, O.,Haranas,I.,&Gkigkitzis,I.2013,Ap&SS,345, 67 Ruggiero, M. L., & Iorio, L. 2007, J. Cosmol. Astropart. Phys., 1, 010 Steffen, J. H., Fabrycky, D. C., Ford, E. B., et al. 2012, MNRAS,421, 2342 Sterne, T. E. 1939, MNRAS,99, 451 Turyshev,S.G. 2008, AnnualReview of Nuclear and Par- ticle Science, 58, 207 Webb,J.K.,Flambaum,V.V.,Churchill,C.W.,Drinkwa- ter,M.J.,&Barrow,J.D.1999,PhysicalReviewLetters, 82, 884 Webb,J.K.,King,J.A.,Murphy,M.T.,etal.2011,Phys- ical ReviewLetters, 107, 191101 Webb,J.K.,Murphy,M.T.,Flambaum,V.V.,etal.2001, Physical Review Letters, 87, 091301 Will,C.M.1993,TheoryandExperimentinGravitational Physics (Cambridge, UK: Cambridge University Press) Will, C. M. 2006, Living Reviews in Relativity,9, 3 Xie,Y.2013, ResearchinAstron.Astrophys.(RAA),13,1 Xie, Y., & Deng,X.-M. 2013, MNRAS,433, 3584 Zhao, S.-S., & Xie, Y. 2013, Research in Astron. Astro- phys.(RAA),13, 1231 (cid:13)c 2002RAS,MNRAS000,1–??