ebook img

On the global maximum of the solution to a stochastic heat equation with compact-support initial data PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the global maximum of the solution to a stochastic heat equation with compact-support initial data

On the global maximum of the solution to a stochastic heat equation with 9 0 0 compact-support initial data ∗ 2 n Mohammud Foondun Davar Khoshnevisan a J 4 January 19, 2009 2 ] R Abstract P h. Considerastochastic heatequation∂tu=κ∂x2xu+σ(u)w˙ foraspace- timewhitenoisew˙ andaconstantκ>0. Undersomesuitableconditions t a on theinitial function u0 and σ,we show that thequantity m [ limsupt−1lnE sup|ut(x)|2 t→∞ „x∈R « 1 v is bounded away from zero and infinity byexplicit multiples of 1/κ. Our 4 proofworksbydemonstratingquantitativelythatthepeaksofthestochas- 1 tic process x 7→ ut(x) are highly concentrated for infinitely-many large 8 values of t. In the special case of the parabolic Anderson model—where 3 σ(u) = λu for some λ > 0—this “peaking” is a way to make precise the . 1 notion of physicalintermittency. 0 Keywords: Stochastic heat equation, intermittency. 9 0 : AMS 2000 subject classification: Primary: 35R60, 37H10, 60H15; Sec- v ondary: 82B44. i X Running Title: Thestochastic heat equation. r a 1 Introduction We consider the stochastic heat equation, ∂u (x) ∂2u (x) t =κ t +σ(u (x))w˙(t,x) for t>0 and x R, (1.1) ∂t ∂x2 t ∈ where κ > 0 is fixed, σ : R R is Lipschitz continuous with σ(0) = 0, w˙ → denotes space-time white noise, and the initial data u :R R is nonrandom. 0 → ∗ResearchsupportedinpartbyNSFgrantDMS-0704024. 1 Thereareseveralareastowhich(1.1)hasdeepandnaturalconnections;perhaps chief among them are the stochastic Burgers’ equation [9] and the celebrated KPZ equation of statistical mechanics [10,11]; see also [12, Chapter 9]. Itiswellknownthat(1.1)hasanalmost-surelyunique,adaptedandcontin- uoussolution ut(x) t≥0,x∈R [5,Theorem6.4,p.26]. Inaddition,thecondition { } that σ(0)=0 implies that if u L2(R), then u L2(R) a.s. for all t 0; see 0 t ∈ ∈ ≥ Dalang and Mueller [6]. Note that our conditions on σ ensure that σ(u) Lip u for all u R, (1.2) | |≤ σ| | ∈ where σ(x) σ(x′) Lip := sup − . (1.3) σ −∞<x<x′<∞(cid:12) x−x′ (cid:12) (cid:12) (cid:12) Our goal is to establish the following gene(cid:12)ral growth est(cid:12)imate. (cid:12) (cid:12) Theorem 1.1. Suppose there exists L (0, ) such that σ(u) L u for σ σ ∈ ∞ | | ≥ | | all u R. Suppose also that u 0 is Ho¨lder-continuous of order 1/2, 0 ∈ 6≡ ≥ nonnegative, and supported in [ K,K] for some finite K >0. Then, (1.1) has − an almost-surely unique, continuous and adapted solution ut(x) t≥0,x∈R such { } that u L2(R) a.s. for all t 0, and t ∈ ≥ L4 Lip4 σ limsupt−1lnE sup u (x)2 σ. (1.4) t 8κ ≤ t→∞ (cid:18)x∈R| | (cid:19)≤ 8κ Because of Mueller’s comparison principle [13], the nonnegativity of u im- 0 plies that sup E(u (x)) =sup E(u (x)), and this quantity has to be finite t,x | t | t,x t because u is bounded; confer with (1.6). Consequently, 0 sup u (x) supu (x) as t . (1.5) x∈Rk t kL1(P) ≪(cid:13)x∈R t (cid:13)L2(P) →∞ (cid:13) (cid:13) (cid:13) (cid:13) When Lip =L , (1.1) becomes(cid:13)the well-s(cid:13)tudied parabolic Anderson model σ σ [1,3]. And (1.5) makes precise the physical notion that the solution to (1.1) concentrates near “very high peaks” [1,3,10,11]. In order to explain the idea behind our proof, we introduce the following. Definition 1.2. We say that a continuous random field f := f(t,x) t≥0,x∈R { } haseffectively-compact support ifthereexistsanonrandommeasurablefunction p:R R of at-most polynomial growth such that: + + → (a) limsup t−1ln E(f(t,x)2)dx>0; and t→∞ |x|≤p(t) | | (b) limsup t−1lnR E(f(t,x)2)dx<0. t→∞ |x|>p(t) | | We might refer to the fuRnction p as the radius of effective support of f. OneoftheideashereistouseMueller’scomparisonprinciple[13]tocompare sup u (x) with the L2(R)-norm of x u (x), which is easier to analyze. x∈R| t | 7→ t 2 We carry these steps out in Lemma 3.3. We also appeal to the fact that the compact-support property of u implies that u (x) has an effectively-compact 0 t support[Proposition3.7]. Thiscanbeinterpretedasakindofoptimalregularity theorem. However, these matters need to be handled delicately, as “effectively compact” cannot be replaced by “compact”; see Mueller [13]. Our method for establishing aneffectively-compactsupportproperty is mo- tivated strongly by ideas of Mueller and Perkins [14]. In the cases that u (x) t denotes the density of some particles at x at time t, our effectively-compact support property implies that most of the particles accumulate on a very small set. This method might appealto the readerwho is interestedin mathematical descriptions of physical intermittency. Throughout this paper we use the mild formulation of the solution, in ac- cordance with Walsh [15]. That is, u is the a.s.-unique adapted solution to t ∞ u (x)=(p u )(x)+ p (y x)σ(u (y))w(dsdy), (1.6) t t 0 t−s s ∗ − Z0 Z−∞ wherep (z):=(4κτπ)−1/2exp( z2/(4κτ))denotes theheatkernelcorrespond- τ − ing to the operator κ∂2/∂x2, and the stochastic integral is understood in the sense of Walsh [15]. Some times we write X in place of E(X p) 1/p. p k k { | | } 2 A preliminary result Asmentionedintheintroduction,thestrategybehindourproofofTheorem1.1 istorelatetheglobalmaximumofthesolutiontoa“closed-formquantity”that resemblessup u (x) forlargevalues oft. Thatclosed-formquantityturnsout x| t | to be the L2(R)-norm of x u (x). Our next result analyses the growth of t 7→ the mentioned closed-form quantity. We related it to sup u (x) in the next x| t | section. ThemethodsofthissectionfollowcloselytheclassicalideasofChoquet and Deny [4] that were developed in a determinstic setting. Theorem 2.1. Suppose σ : R R is Lipschitz continuous, σ(0) = 0, and → there exists L (0, ) such that L u σ(u) for all u R. If u L2(R) σ σ 0 ∈ ∞ | |≤ | | ∈ ∈ and u 0, then (1.1) has an almost-surely unique, continuous and adapted 0 6≡ solution ut(x) t≥0,x∈R such that ut L2(R) a.s. for all t 0, and { } ∈ ≥ L4 Lip4 σ limsupt−1lnE u 2 σ. (2.1) 8κ ≤ k tkL2(R) ≤ 8κ t→∞ (cid:16) (cid:17) Proof. It suffices to establish (2.1). Note that E u (x)2 t | | (cid:16) (cid:17) t ∞ (2.2) = (p u )(x)2+ ds dy E σ(u (y))2 p (y x)2. t 0 s t−s | ∗ | | | ·| − | Z0 Z−∞ (cid:16) (cid:17) 3 Because σ(u) L u, σ | |≥ | | E u 2 k tkL2(R) (cid:16) (cid:17) t ∞ = p u 2 + ds dy E σ(u (y))2 p 2 k t∗ 0kL2(R) | s | ·k t−skL2(R) (2.3) Z0 Z−∞ (cid:16) (cid:17) t p u 2 +L2 E u 2 p 2 ds. ≥k t∗ 0kL2(R) σ· k skL2(R) ·k t−skL2(R) Z0 (cid:16) (cid:17) We can multiply the preceding by exp( λt) throughout and integrate [dt] to − find that if ∞ U(λ):= e−λtE u 2 dt, (2.4) k tkL2(R) Z0 (cid:16) (cid:17) then ∞ ∞ U(λ) e−λt p u 2 dt+L2 U(λ) e−λt p 2 dt. (2.5) ≥ k t∗ 0kL2(R) σ· · k tkL2(R) Z0 Z0 According to Plancherel’s theorem, the following holds for all finite Borel mea- sures µ on R: 1 ∞ p µ 2 = µˆ(ξ)2e−2κtξ2dξ. (2.6) k t∗ kL2(R) 2π | | Z−∞ Therefore, Tonelli’s theorem ensures that ∞ 1 ∞ µˆ(ξ)2 e−λtkpt∗µk2L2(R)dt= 2π λ|+2κ|ξ2 dξ. (2.7) Z0 Z0 Weapplythisidentitytwicein(2.3): Oncewithµ:=δ ;andoncewithdµ/dx:= 0 u . This leads us to the following. 0 1 ∞ uˆ (ξ)2 1 ∞ 1 U(λ) | 0 | dξ+L2 U(λ) dξ ≥ 2π λ+2κξ2 σ· · 2π λ+2κξ2 Z0 Z0 (2.8) 1 ∞ uˆ (ξ)2 1 = | 0 | dξ+L2 U(λ) . 2π λ+2κξ2 σ· · 2√2κλ Z0 Since u 0, the first [Fourier] integral is strictly positive. Consequently, the 0 6≡ above recursive relation shows that U(λ) = if λ L4/(8κ). This and a ∞ ≤ σ real-variable argument together imply the first inequality in (2.1); see [8] for more details. For the other bound we use a Picard-iteration argument in order to obtain an a priori estimate. Let u(0)(x):=u (x) and iteratively define t 0 t ∞ u(n+1)(x):=(p u )(x)+ p (y x)σ(u(n)(y))w(dsdy). (2.9) t t∗ 0 t−s − s Z0 Z−∞ Since kpt∗u0kL2(R) ≤ku0kL2(R) and |σ(u)|≤Lipσ|u|, 2 (n+1) E u t L2(R) (cid:18)(cid:13) (cid:13) (cid:19) (2.10) (cid:13) (cid:13) t 2 (cid:13) (cid:13)u 2 +Lip2 E u(n) p 2 ds. ≤k 0kL2(R) σ·Z0 (cid:18)(cid:13) s (cid:13)L2(R)(cid:19)·k t−skL2(R) (cid:13) (cid:13) (cid:13) (cid:13) 4 Therefore, if we set 2 M(k)(λ):=sup e−λtE u(k) , (2.11) t≥0(cid:20) (cid:18)(cid:13) t (cid:13)L2(R)(cid:19)(cid:21) (cid:13) (cid:13) then it follows that (cid:13) (cid:13) ∞ M(n+1)(λ) u 2 +Lip2 M(n)(λ) e−λ(t−s) p 2 ds ≤k 0kL2(R) σ· · k t−skL2(R) Z0 (2.12) Lip2 = u 2 + σ M(n)(λ). k 0kL2(R) 2√2κλ Thus, in particular, sup M(n)(λ) < if λ > Lip4/(8κ). We can argue n≥0 ∞ σ similarly to show also that if λ>Lip4/(8κ), then σ 2 1/2 sup e−λtE u(n+1) u(n) < . (2.13) Xn t≥0(cid:20) (cid:18)(cid:13) t − t (cid:13)L2(R)(cid:19)(cid:21) ∞ (cid:13) (cid:13) In particular, uniqueness shows(cid:13)that if λ>Lip(cid:13)4/(8κ), then σ 2 lim sup e−λtE u(n) u =0. (2.14) n→∞t≥0(cid:20) (cid:18)(cid:13) t − t(cid:13)L2(R)(cid:19)(cid:21) (cid:13) (cid:13) Consequently, if λ>Lip4/(8κ), then(cid:13) (cid:13) σ sup e−λtE u 2 = lim M(n)(λ) t≥0 k tkL2(R) n→∞ h (cid:16) (cid:17)i (2.15) supM(k)(λ)< . ≤ ∞ k≥0 The second inequality of (2.1) follows readily from this bound. 3 Proof of Theorem 1.1 Our proof of Theorem 1.1 hinges on a number of steps, which we develop sepa- rately. First we recall the following. Proposition 3.1 (Theorem 2.1 and Example 2.9 of [8]). If u is bounded and 0 measurable, then u (x) Lp(P) for all p [1, ). Moreover, γ(p)< for all t p [1, ) and γ(2) L∈ip4/(8κ), where ∈ ∞ ∞ ∈ ∞ ≤ σ γ(p):=limsupt−1suplnE(u (x)p). (3.1) t t→∞ x∈R | | Next, we record a simple though crucial property of the function γ. Remark3.2. SupposeX isanonnegativerandomvariablewithfinitemoments ofallorder. ByHo¨lder’sinequality,p lnE(Xp)isconvexon[1, ). Itfollows 7→ ∞ that γ is convex—in particular continuous—on [1, ). ∞ 5 Now we begin our analysis, in earnest, by deriving an upper bound on the Lk(P)-norm of the solution u (x) that includes simultaneously a sharp decay t rate in x and a sharp explosion rate in t. Lemma 3.3. Suppose that u 0, and u is supported in [ K,K] for some 0 0 6≡ − finite constant K >0. Then, for all real numbers k [1, ) and p (1, ), ∈ ∞ ∈ ∞ x2 k+1 (1/p) γ(kp) limsupt−1sup + − lnE u (x)k . (3.2) t→∞ x∈R(cid:18)4t2 k | t | (cid:19)≤ p (cid:0) (cid:1) Proof. According to Mueller’s comparison principle ([13]; more specifically, see [5, Theorem 5.1, p. 130]), the solution to (1.1) has the following nonnegativity property: Because u 0 then outside a single null set, u 0 for all t 0. 0 t ≥ ≥ ≥ And therefore, 1 K u (x) =(p u )(x)= e−(x−y)2/(4κt)u (y)dy. (3.3) k t k1 t∗ 0 √4κπt 0 Z−K Because (x y)2 (x2/2) K2, − ≥ − u (x) const e−x2/(4t) for all x R and t 1. (3.4) t 1 k k ≤ · ∈ ≥ The constantappearing in the above display depends on K. Next we note that for every θ (0, ), ∈ ∞ E u (x)k θk+E u (x)k;u (x) θ t t t | | ≤ | | ≥ (3.5) (cid:0) (cid:1) θk+ E(cid:0) u (x)kp 1/p (P(cid:1)u (x)>θ )1−(1/p). t t ≤ | | · { } Proposition 3.1 implies tha(cid:0)t (cid:0) (cid:1)(cid:1) sup E u (x)kp 1/p exp t γ(kp)+o(1) , (3.6) t x∈R | | ≤ (cid:18) p (cid:19) (cid:0) (cid:0) (cid:1)(cid:1) whereo(1) 0ast . Also,wecanapply(3.4)togetherwiththeChebyshev → →∞ inequality to find that x2 1 (P u (x)>θ )1−(1/p) const θ−1+(1/p)exp 1 . (3.7) t { } ≤ · −4t · − p (cid:18) (cid:20) (cid:21)(cid:19) Taking into consideration (3.6) and (3.7), inequality (3.5) reduces to E ut(x)k inf θk+αθ−1+(1/p) , (3.8) | | ≤θ>0 (cid:0) (cid:1) (cid:16) (cid:17) where x2 1 γ(kp)+o(1) α:=exp 1 +t . (3.9) −4t · − p p (cid:18) (cid:20) (cid:21) (cid:19) 6 Somecalculus showsthat the functiong(θ):=(θk+αθ−1+1/p)1 attains its (θ>0) minimum at θ :=((p 1)/kp)p/(kp+p−1). This yields − kp/(kp+p−1) p 1 1 p kp E u (x)k αkp/(kp+p−1) − − − . t | | ≤ kp · 1 p (cid:18) (cid:19) (cid:18) − (cid:19) (cid:0) (cid:1) We now divide both sides of the above display by αkp/(kp+p−1) and take the appropriate limit to obtain the result. Our next lemma is a basic estimate of continuity in the variable x. It is not entirely standard as it holds uniformly for all times t 0. We emphasize that ≥ the constant p is assumed to be an integer. We will deal with this shortcoming subsequently. Lemma 3.4. Suppose that the initial function u is Ho¨lder continuous of order 0 1/2. Then, for all integers p 1 and β > γ(2p) there exists a constant ≥ ≥ A (0, ) such that the following holds: Simultaneously for all t 0, p,β ∈ ∞ ≥ u (x) u (x′) sup sup t − t A eβt/(2p). (3.10) j∈Zj≤x<x′≤j+1(cid:13) |x−x′|1/2 (cid:13)2p ≤ p,β (cid:13) (cid:13) (cid:13) (cid:13) Proof. Burkholder’s inequality(cid:13) [2] and Minko(cid:13)wski’s inequality together imply that u (x) u (x′) k t − t k2p (p u )(x) (p u )(x′) t 0 t 0 ≤| ∗ − ∗ | t ∞ 1/2 +z ds dy σ(u (y))2 p (y x) p (y x′)2 2p s t−s t−s | | ·| − − − | (3.11) (cid:13)Z0 Z−∞ (cid:13)p (cid:13) (cid:13) (p (cid:13)u )(x) (p u )(x′) (cid:13) ≤| t∗(cid:13)0 − t∗ 0 | (cid:13) t ∞ 1/2 +z′ ds dy u (y)2 p (y x) p (y x′)2 , 2p | s | ·| t−s − − t−s − | (cid:13)Z0 Z−∞ (cid:13)p (cid:13) (cid:13) (cid:13) (cid:13) where zp i(cid:13)s a positive and finite constant that depend only on(cid:13)p, and zp′ := z Lip . p σ On one hand, we have the following consequence of Young’s inequality: sup sup (p u )(x) (p u )(x′) sup u (a) u (b) t 0 t 0 0 0 t≥0|x−x′|≤δ| ∗ − ∗ |≤|a−b|≤δ| − | (3.12) const δ1/2. ≤ · On the other hand, the generalized Ho¨lder inequality suggests that if p 1 ≥ is an integer, then for all s ,...,s 0 and y ,...,y R, 1 p 1 p ≥ ∈ p p p 2 E u (y ) u (y ) . (3.13)  sj j ≤ sj j 2p j=1 j=1 Y(cid:12) (cid:12) Y(cid:13) (cid:13)  (cid:12) (cid:12)  (cid:13) (cid:13) 7 Therefore, t ∞ ds dy u (y)2 p (y x) p (y x′)2 s t−s t−s | | ·| − − − | (cid:13)Z0 Z−∞ (cid:13)p (3.14) (cid:13) (cid:13) (cid:13) t ∞ (cid:13) (cid:13) ds dy u (y) 2 p (y x) (cid:13)p (y x′)2. ≤ k s k2p·| t−s − − t−s − | Z0 Z−∞ [Write the p-th power of the left-hand side as the expectation of a product and apply (3.13).] A proof by contradictionshows that Proposition3.1 gives the following [see [8] for more details]: c :=supsup e−βsE u (y)2p < for all β >γ(2p). (3.15) β s s≥0y∈R | | ∞ (cid:2) (cid:0) (cid:1)(cid:3) Consequently, t ∞ ds dy u (y)2 p (y x) p (y x′)2 s t−s t−s | | ·| − − − | (cid:13)Z0 Z−∞ (cid:13)p (cid:13) (cid:13) (cid:13) t ∞ (cid:13) (cid:13) c1/p ds dy eβs/p p (y x) p(cid:13) (y x′)2 (3.16) ≤ β · ·| t−s − − t−s − | Z0 Z−∞ ∞ ∞ c1/peβt/p ds e−βs/p dy p (y x) p (y x′)2. ≤ β · | s − − s − | Z0 Z−∞ Sincepˆ (ξ)=exp( κsξ2),Plancherel’stheoremtellsusthattheright-handside s − of the preceding inequality is equal to c1/peβt/p ∞ ∞ β ds e−βs/p dξ e−2κsξ2[1 cos(ξ(x x′))] π · − − Z0 Z−∞ (3.17) 2c1/peβt/p ∞ [1 cos(ξ(x x′))] β = − − dξ. π · (β/p)+2κξ2 Z0 Because 1 cosθ min(1,θ2), a direct estimation of the integral leads to the − ≤ following bound: t ∞ ds dy u (y)2 p (y x) p (y x′)2 s t−s t−s (cid:13)Z0 Z−∞ | | ·| − − − | (cid:13)p (3.18) (cid:13) (cid:13) (cid:13) const eβ(cid:13)t/p x x′ , (cid:13) ≤ · (cid:13) ·| − | wheretheimpliedconstantdependsonlyonp,κ,andβ. This,(3.12),and(3.11) together imply the lemma. The preceding lemma holds for all integers p 1. In the following, we ≥ improve it [at a slight cost] to the case that p (1,2) is a real number. ∈ 8 Lemma 3.5. Suppose the conditions of Lemma 3.4 are met. Then for all p (1,2) and δ (0,1) there exists a constant B (0, ) such that the p,δ ∈ ∈ ∈ ∞ following holds: Simultaneously for all t 0 and x,x′ R with x x′ 1, ≥ ∈ | − |≤ E u (x) u (x′)2p B x x′ p e(1+δ)λpt, (3.19) t t p,δ | − | ≤ ·| − | · where (cid:0) (cid:1) λ :=(2 p)γ(2)+(p 1)γ(4). (3.20) p − − Proof. We start by writing E u (x) u (x′)2p =E u (x) u (x′)2(2−p) u (x) u (x′)4(p−1) . t t t t t t | − | | − | | − | (cid:0) (cid:1) (cid:16) (cid:17) We can apply Ho¨lder’s inequality to conclude that for all p (1,2), t 0, ∈ ≥ and x,x′ R, ∈ E u (x) u (x′)2p t t | − | (3.21) (cid:0) E (cid:1)ut(x) ut(x′)2 2−p E ut(x) ut(x′)4 p−1. ≤ | − | | − | We now use Lemm(cid:2)a 3(cid:0).4 to obtain the f(cid:1)o(cid:3)llowi(cid:2)ng(cid:0): (cid:1)(cid:3) E u (x) u (x′)2 2−p x x′ (2−p)A2(2−p)eβ1(2−p)t | t − t | ≤| − | 1,β1 (cid:2) (cid:0) (cid:1)(cid:3) and E u (x) u (x′)4 p−1 x x′ 2(p−1)A4(p−1)eβ2(p−1)t, | t − t | ≤| − | 2,β2 where A1,β(cid:2)1,(cid:0)A2,β2 ∈ (0,∞) an(cid:1)d(cid:3) β1 > γ¯(2) and β2 > γ¯(4) are fixed and finite constants. The proof now follows by combining the above and choosing β and 1 β such that (1+δ)γ¯(2)>β >γ¯(2) and (1+δ)γ¯(4)>β >γ¯(4). 2 1 2 The preceding lemma allows for a uniform modulus of continuity estimate, which we record next. Lemma 3.6. Suppose the conditions of Lemma 3.4 are met. Then for all p (1,2) and ǫ,δ (0,1) there exists C (0, ) such that simultaneously p,ǫ,δ ∈ ∈ ∈ ∞ for all t 0, ≥ u (x) u (x′)2 sup sup | t − t | C e(1+δ)λpt, (3.22) j∈Z(cid:13)j≤x<x′≤j+1 |x−x′|1−ǫ (cid:13)p ≤ p,ǫ,δ· (cid:13) (cid:13) (cid:13) (cid:13) where λ was de(cid:13)fined in (3.20). (cid:13) p Proof. The proof consists of an application of the Kolmogorovcontinuity theo- rem. Recall that the spatial dimension is 1. Since p>1 in Lemma 3.5, we can use a suitable versionof Kolmogorovcontinuity theorem, for example Theorem 4.3 of reference [5, p. 10], to obtain the result. The stated dependence of the constant, C is consequence of the explicit form of inequality (3.19) and the p,ǫ,δ proof of Theorem 4.3 in [5]. 9 Before we begin our proofof Theorem1.1,we provethat under some condi- tion the L2(P)-norm of the solution has an effectively-compact support. Proposition 3.7. If the conditions of Theorem 1.1 are met, then there exists a finiteandpositive constantm suchthat u (x) has an effectively-compact support t with radius of effective support p(t)=mt. Proof. We begin by noting that for all m,t>0, u (x)2dx u (x)dx+ u (x)2dx. (3.23) t t t | | ≤ |x|>mt | | Z|x|>mt Z|x|>mt Zut(x)≥1 Therefore, E u (x)2dx t Z|x|>mt| | ! (3.24) (p u )(x)dx+ E u (x)2; u (x) 1 dx. t 0 t t ≤ ∗ | | ≥ Z|x|>mt Z|x|>mt (cid:0) (cid:1) Since u has compact support, (3.4) implies that 0 (p u )(x)dx=O e−m2t/2 as t . (3.25) t 0 ∗ →∞ Z|x|>mt (cid:16) (cid:17) Next we estimate the final integral in (3.24). Thanks to (3.4) and Chebyshev’s inequality, P u (x) 1 const e−x2/(4t), (3.26) t { ≥ }≤ · uniformly for all x R and t 1. Also, from Proposition 3.1, there exists a ∈ ≥ constant b (0, ) such that ∈ ∞ supE u (x)4 bebt/4 for all t 1. (3.27) t x∈R | | ≤ ≥ (cid:0) (cid:1) Using the preceding two inequalities, the right-hand side of inequality (3.24) reduces to E u (x)2dx t Z|x|>mt| | ! O e−m2t/2 +const E(u (x)4)e−x2/(8t)dx (3.28) t ≤ · | | (cid:16) (cid:17) Z|x|>mtp O e−m2t/2 +const b1/2ebt/8 e−x2/(8t)dx. ≤ · · (cid:16) (cid:17) Z|x|>mt We now choose and fix m>√b to obtain from the preceding that limsupt−1lnE u (x)2dx <0. (3.29) t t→∞ Z|x|>mt| | ! 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.