ebook img

On the Formation of Ultraluminous X-ray Sources with Neutron Star Accretors: the Case of M82 X-2 PDF

0.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Formation of Ultraluminous X-ray Sources with Neutron Star Accretors: the Case of M82 X-2

DRAFTVERSIONMARCH4,2015 PreprinttypesetusingLATEXstyleemulateapjv.5/2/11 ONTHEFORMATIONOFULTRALUMINOUSX-RAYSOURCESWITHNEUTRONSTARACCRETORS: THECASEOFM82X-2 TASSOSFRAGOS1,TIMLINDEN2,VICKYKALOGERA3,ANDPANOSSKLIAS1 1GenevaObservatory,UniversityofGeneva,ChemindesMaillettes51,1290Sauverny,Switzerland 2TheKavliInstituteforCosmologicalPhysics,UniversityofChicago,Chicago,IL60637,USAand 3CenterforInterdisciplinaryExplorationandResearchinAstrophysics(CIERA)&Dept.ofPhysicsandAstronomy,NorthwesternUniversity,2145Sheridan Rd,Evanston,IL60208,USA; 5 DraftversionMarch4,2015 1 0 ABSTRACT 2 Therecentdiscoveryofaneutronstaraccretorintheultra-luminousX-raysourceM82X-2challengesour r understandingofhigh-massX-raybinaryformationandevolution. Bycombiningbinarypopulationsynthesis a anddetailedmass-transfermodels,however,weshowthatthebinaryparametersofM82X-2arenotsurprising M providednon-conservativemasstransferisallowed.Specifically,thedonor-masslowerlimitandorbitalperiod measuredforM82X-2lienearthemostprobablevaluespredictedbypopulationsynthesismodels,andsystems 3 such as M82 X-2 should exist in approximately13% of the galaxieswith a star-formationhistory similar to M82.WeconcludethatthebinarysystemthatformedM82X-2ismostlikelylessthan50Myroldandcontains ] E adonorstarwhichhadaninitialmassofapproximately8-10M⊙,whiletheNS’sprogenitorstarhadaninitial mass in the 8- 25M range. The donor star still currently resides on the main sequence, and is capable of H ⊙ continued MT on the thermal timescale, while in the ultra-luminous X-ray regime, for as long as 400,000 . h years. p Subjectheadings:stars: binaries—stars: neutron—X-rays:binaries - o tr 1. INTRODUCTION withalow-magneticfield(∼1TG)magnetar,whileEks¸ietal. s (2014)andDall’Ossoetal.(2014)usethephysicalproperties a Ultra-luminousX-ray Sources(ULX) are amongthe most of the system to imply larger magnetic fields ∼10-100 TG. [ extreme phases of binary evolution, characterized by X-ray luminosities exceeding 1039 erg s- 1 (Gladstoneetal. 2009). Kluz´niak&Lasota(2015)notethatthehighMTrateswould 2 spin up the NS to millisecond periods within 105 yr, open- Since these systems exceed the Eddington luminosity for v ing the possibility that observable high-mass X-ray binaries compact objects formed via stellar evolution, models must 9 may be found with a millisecond pulsar accretor. Lyutikov invoke one of two mechanisms in order to account for 7 (2014)suggeststhattheextremelysuper-Eddingtonaccretion their high luminosities. Under the assumption of spherical, 6 ratesrequirea new MT regime, where an opticallythickac- 2 Eddington-limited accretion, one class of models employs cretion curtain shields the interior gas from the outgoingX- 0 intermediate-massblackholes(BHs) with masses exceeding . ∼100M⊙ (Colbert&Mushotzky1999;vanderMarel2004; ray flux. Furthermore, this analysis suggests that the equi- 1 librium,wherethe Alfvénradiusmatchesthe co-rotationra- Madhusudhanetal. 2008; Feng&Soria 2011). The second 0 dius, indicates a magnetic field of 14 TG. An analysis by method employs some combination of thin accretion disks 5 Christodoulouetal. (2014) disagrees, arguing that the lumi- (Shakura&Sunyaev1973;Begelman2002),whoseluminos- 1 nosityofM82X-2canbeexplainedjustwithmildgeometri- itycanexceedtheEddingtonlimitwithoutbeingdisruptedby : calbeaming. v radiationpressure, and/oranisotropicX-Ray emission(King i 2009), inordertoreproducethe luminosityof observedsys- Apartfromthespecificemissionmechanismandthemag- X nitudeandinfluenceoftheNS’smagneticfield,themeasured tems without exceedingthe Eddingtonlimit. The formation r rateofULXshasbeenaccountedforinmodelsexaminingthe orbitalperiodandthelowerlimitsonthedonormassandra- a diusarebothtellingandpuzzlingatfirstglance: (1)thehigh formationrateofthemostmassiveBHsfromsinglestars(e.g. inferredaccretionrateontotheNSrequiresthatthedonorisin Mapellietal.2010)andwiththeincorporationofbinaryevo- Roche-lobeoverflow(RLO),aswind-fedX-raybinarieswith lutioneffects(e.g.Lindenetal.2010). NS accretorsare expectedto have X-ray luminositiesorders Recently, NuSTAR discovered a pulsar spatially coinci- ofmagnitudebelowthe ULXrange(Lindenetal. 2010), (2) dent with the location of the ULX M82 X-2, indicating the donor star must be hydrogen rich, as a helium star with that the compact object in this system is a neutron star (NS; Bachettietal. 2014). Assuming a typical NS mass mass&5M⊙cannotfillitsRochelobeina2.5dayperiodor- MNS ∼1.4M⊙, the measured mass function and orbital pe- bmite,cihnadneipsemndmenutstofhiatvseeveoitlhuetiroanalroynsgtalgifee,t(im3)et,heorevaohluigtihonfaorry- riod(2.52days)indicatethatthedonorstarhasamassM & 2 mationrate, in orderforthisone system to existin thelocal X5.-22Mis⊙oabnsderaveraddtiousbRe2L&(70.R5⊙–.1T0hekeXV-)ra=y6lu.6m×ino1s0i3ty9eorfgMs-812, universe. X Still, the picture of a donor more massive than ≃ 5M indicating that the system has an accretion rate that exceeds ⊙ transferring mass onto a NS is particularly puzzling. While theEddingtonlimitbyatleastafactorof30. RLOX-raybinarieswithNSaccretorsarea commonoutput The identification of M82 X-2 as a NS ULX has already ofpopulationsynthesismodels,theytypicallyinvolvelower- generateda variety of new theoreticalinsights. Tong (2014) massdonors(e.g.Fragosetal.2008,2009a,2013a,b).Thisis finds that the spin-up behavior of the pulsar is consistent due, primarily, to the stability criteria for RLO from a mas- 2 Fragosetal. sive donorstar onto a lower-massaccretor. Early polytropic through any binary interaction prior to the primary’s super- and semi-analytic models, with the assumption of conserva- nova,throughthesupernovaexplosionwhichformedtheNS, tive MT, demonstrated that systems with a donor more than and the post-supernova detached evolution. We halted the ∼3 times as massive as the compact object would quickly code at the moment when the secondary star fills its Roche enter a delayeddynamicalinstability (Hjellming&Webbink lobe,andrecordedthestateofthebinarytouseasaninputto 1987; Ivanova&Taam 2004), producing a stellar merger. ourstellarevolutionandMTcode. However, more recent studies of the stability of binary MT Inourmodeling,weassumeaKroupa(2001)initialmass- phases, using detailed binary evolution codes, showed that function, a flat distribution of initial binary mass-ratios, a some of the approximationsmade in earlier studies, such as logarithmically flat distribution of initial orbital separations, fully adiabatic mass-loss and the strict enforcement of hy- a Maxwelliandistribution of NS supernovakick magnitudes drostaticequilibrium,underestimatethemaximummass-ratio with σ =265kms- 1 (Hobbsetal. 2005), and a common en- of a binary in which dynamically stable MT can occur (e.g. velopeefficiencyofα =0.5. Theseparametervalueshave CE Ivanovaetal. 2013; Pavlovskii&Ivanova 2014). A crucial been shown to producesynthetic populationsof X-ray bina- factor in determining this maximum mass ratio for stabil- riesthatareingoodagreementwithobservationsofX-raylu- ity of non-conservative MT phases is the specific angular minosityfunctionsandX-rayscalingrelationsofextragalac- momentum of the material ejected from the binary. Sev- tic populations. (e.g. Fragosetal. 2008; Lindenetal. 2009; eraldifferentmodelshavebeendevelopedfordifferentphysi- Fragosetal. 2013a; Tzanavarisetal. 2013). We repeatedall callymotivatedmass-lossmodels(e.g.vandenHeuvel1994; calculationsinthispaperutilizingcommonenvelopeefficien- King&Ritter1999;Tauris&vandenHeuvel2006). ciesofα =0.2andα =1.0,findingonlyasmallchange CE CE InthisLetter,weinvestigatetheformationofULXsystems intheresultingdistributionsfortheorbitalperiodsanddonor withNSaccretorsandderiveconstraintsontheevolutionary massesofpossibleM82X-2progenitors. Thequalitativein- historyandcurrentpropertiesofM82X-2.Wefirstutilizethe sensitivityofourmodelsto the commonenvelopeefficiency Binary Stellar Evolution (BSE) code (Hurleyetal. 2002) in isexplainedbythehighmassofthesecondarystar(&5M ) ⊙ ordertostudytheinitialbinarypropertiesthatcanproducea whichguarantiesthattheorbitalenergyofthebinaryisusu- MTeventwithcharacteristicssimilartoM82X-2. Wetermi- ally greater than the binding energy of the NS’s progenitor natesimulationswiththiscodeattheonsetofRLOandper- envelope. form the MT calculations with the detailed stellar evolution codeMESA(Paxtonetal.2011,2013),inordertoaccurately 3.2. DetailedMass-TransferCalculationswithMESA predictthedurationandaccretionrateoftheMTphase. We use version 7184 of the stellar evolution code MESA 2. THEHOSTGALAXY:M82 (Paxtonetal. 2011, 2013) in order to calculate grids of ∼ M82 is one of the nearest dusty starburst galaxies. It 2,700MT sequencesforNSX-raybinariesundergoingMT. has sustained vigorous star formation in the past 50 to We assume an initial NS mass of 1.4M⊙, and cover the 100 Myr (Barkeretal. 2008), probably triggered by its parameter space of possible orbital periods and companion anterior interaction with M81. Based on publicly avail- masses at the onset of RLO. Specifically we consider initial able photometry from IRAS, Spitzer-MIPS, and Herschel- donormasses (M2) between 1.0M⊙ and 50.0M⊙ and initial SPIRE(Rousseletal.2010),weestimatetheIR-derivedstar- binary orbital periods between 1.0 and 300.0day. A higher formation rate (SFR) to be of at least 5.5M⊙yr- 1 during initial NS mass (e.g. 2.0M⊙), as suggested by Taurisetal. this period, in agreement with Kennicuttetal. (2003). We (2011)fortheformationofthebinarymillisecondpulsarPSR should note, however, that preliminary spectral energy dis- J1614-2230,will yield in our case qualitatively identical re- tributionfittingresults,followingthemethodologydescribed sults, andisnotconsideredinthisworkasitwouldincrease in Skliasetal. (2014), favor a declining star-formation ac- significantlythecomputationalcostofoursimulations. tivity in M82 over a constant SFR. Along the same lines, For our MT calculations we employ the implicit MT earlier, spatially resolved, studies infer SFRs as high as scheme and the hydrodynamicsolver of MESA, in order to ∼30M yr- 1, depending on various IMF assumptions (e.g. properly resolve the onset of a dynamically unstable MT ⊙ phase. We terminatetheMTsequenceswhenanyofthefol- FörsterSchreiberetal. 2003). In the rest of this paper, we adoptaconstantSFRof5M yr- 1,overthelast100Myr,and lowing criteria are met: (i) the mass of the donorstar drops ⊙ below1M ,(ii)theageofthesystemexceedstheageofthe ametallicityofZ=0.02(FörsterSchreiberetal.2001)forall ⊙ Universe(13.7Gyr),(iii)thewholeenvelopeofthedonorstar oursimulations. is removed, or (iv) the timestep of the hydrodynamicsolver 3. NUMERICALMODELS dropsbelow10- 6s, whiletheMTrateexceeds10- 2M yr- 1, ⊙ 3.1. BinaryPopulationSynthesiswithBSE andnosolutioncanbefoundsuchthattheradiusofthedonor is less or equalto the radiusof its Rochelobe. We consider In orderto determinethe mostprobableinitial parameters thelatterastheonsetofacommonenvelope. for M82 X-2, we calculated the evolution of 107 isolated1 Thesecularevolutionoftheorbitofamass-transferringbi- massive binaries, restricting our modeling to systems with narydependson the accretionefficiency,and onthe specific a primary mass large enough to form a NS. We utilize the angular momentum that is lost from the system. Here, fol- BSEpopulationsynthesiscode(Hurleyetal.2002),modified lowing vandenHeuvel(1994), we define a parameter α de- to include the suite of stellar wind prescriptionsfor massive ˙ notingthefractionofthemasslostfromthedonor(M )that starsdescribedinBelczynskietal.(2010),andthefittingfor- 2 is ejected from the vicinity of the donor star in the form of mulae for the binding energy of the envelopes of stars de- “fast wind”, i.e. with specific angular momentum equal to rivedbyLoveridgeetal.(2011). Wefollowedbinarysystems thatofthedonorstar. Theremainderofthemass((1- α)M˙ ) 2 1Formationchannelsthroughdynamicalinteractionsindensestellarsys- isfunneledthroughthefirstLagrangianpointtotheaccretion temsarenottakenintoaccount disk aroundthe NS. We limit the accretion rate onto the NS OntheFormationofNSULXs: theCaseofM82X-2 3 2.5 2.5 10-1 2.0 d) 2.0 o o ) h ay 1.5 eli )1.5 d k y /O 10-2 Li da Porb,RL 1.0 malized g(P/orb1.0 og( 0.5 or lo0.5 l N 0.0 10-3 log( 0.0 −0.5 10 20 30 40 50 10 20 30 40 50 M (M ) M (M ) 2,RLO 2 ⊙ ⊙ Figure1. Leftpanel: Thetwo-dimensional distribution ofbinaryorbital periods versusdonormassesofbinaries thatcontain aNSandasecondary non- degeneratestarthatjustfilleditsRochelobe,calculatedfrom107isolatedbinariesevolvedwithBSE.Rightpanel:Thegrayshadedareashowstheparameter spaceintheorbitalperiod-donorstarmassplanethatiscoveredbyourgridofdetailedMTsequencescalculatedwithMESA,assumingaMTefficiencyparameter α=0.9. ˙ ˙ to100timestheEddingtonlimit(M 2). We noteherethat ceeds10M . Edd Edd the exact value of this upper limit, within a factor of a few, In Figures 2 and 3 we show the resulting probability dis- does not play a significant role in the evolution of a mass- tributionofhavingaULXwithaNSaccretorintheparame- transfersequence. Thefractionof(1- α)M˙ thatisinexcess ter space of the observedcharacteristics of M82 X-2 (donor 2 of 100M˙ is again ejected from the system in the form of mass and orbital period). We show results for four differ- Edd “fast winds”. However, we assume that this mass is ejected entage rangesfor the ULX, 0 – 25 Myr, 25 – 50 Myr, 50 – fromthe vicinityofthe NSandhasthe specificangularmo- 75Myr,and75–100Myr,andfourdifferentvaluesofnon- mentum of the accretor. Since these X-ray binaries have a conservativeMT:α = 0.99,0.9,0.5and0.0. Thecolorbar donorstar that is moremassive than the NS, mass lost from depicts the relative probability of a NS ULX existing today thevicinityofthedonorstarhasasmallerangularmomentum with the given orbital parameters, and the expected number thanmasslostfromthevicinityoftheaccretor.Hence,avalue ofsystemsinM82islistedas<NNS- ULX>. Thisprobability α>0wouldresultsin a reducedrateof angularmomentum is calculated by assigning to each one of our MT sequences lossfromtheorbit,andwouldthereforeincreasethestability a weight proportional to the formation rate of NS binaries oftheMTphase. WeranourgridofMTsequencesfor4dif- reaching RLO at periods and donor masses close to that of the MT sequence, as calculated by ourBSE populationsyn- ferentvaluesoftheparameterα(α=0.0,0.5,0.9,0.99)inor- dertostudytheeffectthatithasontheformationofpotential thesismodels. Inaddition,we weighteachMT sequenceby NS ULXs. The rightpanelof Figure 1 shows the parameter the time that the sequence spends at each period and donor ˙ space in the orbital period-donorstar’s mass that is covered mass,whiletheMTrateexceeds10MEdd. byourgridofdetailedMTsequences,assuminganinitialNS IneachpanelofFigures2and3, weshow whitelinesde- massof1.4M⊙andaMTefficiencyparameterα=0.9 notingtheobservedorbitalperiodandminimumdonormass ofM82X-2. Wenotetwokeyobservations: (1)theobserved 4. RESULTS parametersofM82X-2arewellmatchedtothemostprobable parametersof a ULX with a NSaccretor, (2)the probability In Figure 1 (left) we show the distribution of orbital pe- ofsucha systemin M82existingis relativelyhigh, between riods and donor masses, at the beginning of the MT phase, ∼0.03and∼0.13(i.e. weexpecttohaveaNSULXinevery asproducedbythe BSE code. Intriguingly,we notethatthe one out of approximately8 galaxies, with propertiessimilar peak of this distribution is centered around systems with a toM82). Furthermore,comparingtheobservedpropertiesof donor mass of 5-10 M and an orbital period between 1.6 ⊙ M82 X-2 to the different panels of Figures 2 and 3, we can – 3.2 daysat the onset of RLO. This distributionof binaries putlimitsonboththecurrentageofthesystemandtheaccre- is thus highly compatible with the observation of M82 X-2. The population appears to change in character at ≃13M ; tionefficiencyoftheMTphase. Accretionefficienciesbelow ⊙ 1%(α>0.99)canbeexcluded,astheaccretionratebecomes systems to the left of this boundary experience a CE phase toolowtoproduceaULX(seetheverylowexpectednumber beforeNSformation,whilesystemstotheleftevolvethrough ofULX in the all panelsof the first row of Figure2). Simi- stable MT between the two initial massive stars. Similarly, larly,accretionefficienciesabove50%(α<0.5)predictthat thereisa“valley”aroundorbitalperiodsof3-10days,which ULXs would be formed at significantly shorter periods than separates systems with main-sequence donors from systems observedin M82 X-2. The age of the populationplays also withevolveddonors. However,inordertoestimatetheprob- role,asoldersystemstendtohaveshortedperiodsandlower abilitythatanyofthesesystemsiscurrentlyaULX,weneed mass companions. Based on this comparison, a system like to convolvethisdistributionfunctionofbinariesatthe onset M82X-2,wouldlikelyhaveanage.75Myr,andanaccre- ofRLOwiththedetailedMESAcalculations,sothatwede- tionefficiencybelow10%. terminethedurationofULXactivityineachbinary. Forour We canderivemorerobustconstraintson boththe current analysisusingtheMESAcode,wedefineasULXanyX-ray propertiesofM82X-2andthepropertiesofitsprogenitorbi- binaryinwhichtheNSisaccretingmaterialataratethatex- narybyfollowingananalysissimilartoFragosetal.(2009b) 2ForthecalculationofM˙Eddaradiativeefficiencyof10%isassumed. andFragos&McClintock(2015). ForeachMTsequencein 4 Fragosetal. 2.5 1.0 α=0.99 α=0.99 α=0.99 α=0.99 2.0 Age<25Myr 25Myr<Age<50Myr 50Myr<Age<75Myr 75Myr<Age<100Myr 0.9 ay) 1.5 <NNS−ULX>=0.019 <NNS−ULX>=0.007 <NNS−ULX>=0.004 <NNS−ULX>=0.002 d 0.8 / Porb 1.0 0.7 d log( 00..05 0.6 elihoo k Li 2.5 0.5 d e α=0.9 α=0.9 α=0.9 α=0.9 z 2.0 Age<25Myr 25Myr<Age<50Myr 50Myr<Age<75Myr 75Myr<Age<100Myr 0.4 ali day) 1.5 <NNS−ULX>=0.044 <NNS−ULX>=0.040 <NNS−ULX>=0.026 <NNS−ULX>=0.023 0.3 Norm / Porb 1.0 0.2 ( g 0.5 o l 0.1 0.0 0.0 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 M (M ) M (M ) M (M ) M (M ) 2 2 2 2 ⊙ ⊙ ⊙ ⊙ Figure2. RelativelikelihoodofaNSULXexistingtodayatagivenorbitalperiodanddonormass. Eachcolumnofthefigurecorrespondstoadifferentage rangeoftheULXs,whileeachrowcorrespondstoadifferentchoiceoftheaccretionparameterα(top:α=0.99,bottom:α=0.9). 2.5 1.0 α=0.5 α=0.5 α=0.5 α=0.5 2.0 Age<25Myr 25Myr<Age<50Myr 50Myr<Age<75Myr 75Myr<Age<100Myr 0.9 ay) 1.5 <NNS−ULX>=0.003 <NNS−ULX>=0.003 <NNS−ULX>=0.011 <NNS−ULX>=0.022 d 0.8 / Porb 1.0 0.7 d log( 00..05 0.6 elihoo k Li 2.5 0.5 d e α=0.0 α=0.0 α=0.0 α=0.0 z 2.0 Age<25Myr 25Myr<Age<50Myr 50Myr<Age<75Myr 75Myr<Age<100Myr 0.4 ali day) 1.5 <NNS−ULX>=0.005 <NNS−ULX>=0.004 <NNS−ULX>=0.012 <NNS−ULX>=0.024 0.3 Norm / Porb 1.0 0.2 ( g 0.5 o l 0.1 0.0 0.0 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 M (M ) M (M ) M (M ) M (M ) 2 2 2 2 ⊙ ⊙ ⊙ ⊙ Figure3. SameasFigure2,butforα=0.5(top)andα=0.0(bottom). our grid, we examine all systems that simultaneously fit the 5. DISCUSSION observationalconstraintsonM82X-2,specificallyanorbital BycombiningaparameterspaceexplorationusingtheBSE periodof2.52day,adonormassabove5.2M andanaccre- ⊙ populationsynthesiscodewithadetailedtreatmentofMTus- ˙ tionrateontotheNShigherthan10MEdd. Inthispartofthe ing the MESA code, we have shown that the properties of analysisweonlyconsideroneofourMTgrids,withα=0.9, M82X-2arewellexplainedbycurrentmodelsofbinarypop- whichpredictsthehighestexpectednumberofNSULXsand ulationsynthesis. Specifically,ourmodelsrevealthefollow- theclosest-matchingpropertiesforM82X-2. InFigure4we ingdetailsabouttheformationofM82X-2: show the probability density functions of current binary pa- rameters (donor mass and age, and ULX duration) for sys- temswiththeM82X-2measuredcharacteristics.Wealsouse • Thedonorstarishydrogenrich,asaheliumstarofmass the results from our parameter-space exploration in BSE in &5.2M⊙ cannotfilltheRochelobeofa∼2.5dayor- ordertoderiveself-consistentconstraintsontheinitialbinary bit,evenatthelatestagesofthecarbon/oxygenburning parametersofM82X-2’sprogenitor(componentmassesand phase. Furthermore,thedonorstarisinRLO,aswind- orbitalperiod). fedNSbinariesareexpectedtohaveX-rayluminosities belowtheEddingtonlimit(e.g.Lindenetal.2010). OntheFormationofNSULXs: theCaseofM82X-2 5 0.25 y t i s 0.20 n e D 0.15 y t ili 0.10 b a b 0.05 o r P 0.00 0 10 20 30 40 0 102030405060700 10 20 30 40 0 10 20 30 40 M (M ) Age (Myr) M (M ) M (M ) 2,current 1,initial 2,initial ⊙ ⊙ ⊙ y t 1.4 i ns 1.2 e D 1.0 y 0.8 t ili 0.6 b a 0.4 b o 0.2 r P 0.0 0 1 2 3 4 5 6 1 2 3 4 5 0 1 2 3 4 −5 −4 −3 −2 −1 0 log(P /day) P (day) ULXduration (105 yr) log(M˙ /(M /yr)) orb,initial orb,RLO 2 ⊙ Figure4. ProbabilitydensityfunctionsofthecurrentmassandageofthecompanionstarinM82X-2,theinitialcomponentmassesandorbitalperiodofM82 X-2’sprogenitorbinary,theorbitalperiodofthebinaryattheonsetofRLO,aswellasthedurationoftheULXphaseandthecurrentmass-lossrateofthe companionstar.Wetakeintoaccountobservationalselectioneffectsbyweightingallprobabilitydensityfunctionswiththetotaltimethateachmodeledsystem ˙ ˙ haspropertiessimilartoM82X-2,i.e.M2>5.2M⊙,Maccreted>10MEdd,and2<Porb<3day. Finally,inthebottomrightpanelweshowforcomparisonthe MTratecorrespondingtotheKelvin-Helmholtzthermaltimescaleofan8M⊙starthatisjustfillingitsRochelobeina2.5dayorbitarounda8M⊙NS. • The orbital period of any ULX with a NS accretor is PZ00P2_148123).TLissupportedbytheNationalAeronau- most likely to be observed with an orbital period be- tics andSpace AdministrationthroughEinstein Postdoctoral tween 1–3 days, and a donor mass between 3–8 M . Fellowship Award Number PF3-140110. VK acknowledges ⊙ This places the observed properties of M82 X-2 near supportthrough NASA ADP grant NNX12AL39G. VK and the peak of the likelihooddistributionfor this class of TL acknowledge useful discussions with Maxim Lyutikov. systems. ThecomputationsofthisworkwereperformedatUniversity ofGenevaontheBaobabcluster. • The MT is highly non-conservative and happens on the thermal timescale. Conservative MT leads to REFERENCES dynamical instability (possibly delayed) as discussed in the literature (e.g. Hjellming&Webbink 1987; Ivanova&Taam 2004). The accretion efficiencymust Bachetti,M.,Harrison,F.A.,Walton,D.J.,etal.2014,Nature,514,202 Barker,S.,deGrijs,R.,&Cerviño,M.2008,A&A,484,711 be . 0.1, consistent with local ULX analogues (e.g. Begelman,M.C.2002,ApJ,568,L97 Neilsen&Lee 2009; Pontietal. 2012), and mass lost Belczynski,K.,Bulik,T.,Fryer,C.L.,Ruiter,A.,Valsecchi,F.,Vink,J.S., should be ejected from the system in the form of &Hurley,J.R.2010,TheAstrophysicalJournal,714,1217 “fast winds” from the vicinity of the donor, i.e. it Chen,H.-L.,Woods,T.E.,Yungelson,L.R.,Gilfanov,M.,&Han,Z.2014, should carry relatively little angular momentumin or- MNRAS,445,1912 Christodoulou,D.M.,Laycock,S.G.T.,&Kazanas,D.2014, der to provide stability. A good example of this is arXiv:1411.5434 the short-period high-mass X-ray binary Cygnus X-3 Colbert,E.J.M.,&Mushotzky,R.F.1999,ApJ,519,89 (vandenHeuvel1994). Dall’Osso,S.,Perna,R.,&Stella,L.2014,arXiv:1412.1823 Eks¸i,K.Y.,Andaç,˙I.C.,Çıkıntog˘lu,S.,Gençali,A.A.,Güngör,C.,& • Assuming an accretion efficiency of 10%, we esti- Öztekin,F.2014,ArXive-prints mate that the number of NS ULXs per unit of SFR is Feng,H.,&Soria,R.2011,NAR,55,166 NNS- ULX/SFR=0.027M-⊙1yr. Thisnumberisanorder Fö2rs0t0e1r,STchhreeAibsetrr,oNph.yMsi.c,aGleJnozuerln,aRl,.,5L52u,tz5,4D4.,Kunze,D.,&Sternberg,A. ofmagnitudelowercomparedtopredictionsinthelit- FörsterSchreiber,N.M.,Genzel,R.,Lutz,D.,&Sternberg,A.2003,The eraturefortheformationrateofULXswithBHaccre- AstrophysicalJournal,599,193 tors, whichsuggestaNBH- ULX/SFR∼0.2- 1.0M-⊙1yr FraBgroass,siTn.g,tKoanl,oNge.rJa.,,AV.n,gBeelilnczi,yLns.,kDi,aKvi.e,sF,aRbb.iLa.n,oG,aGll.a,gKhiemr,,JD.S.-.W,K.,ing, atsolarmetallicity(Rappaportetal.2005;Lindenetal. A.R.,Pellegrini,S.,Trinchieri,G.,Zepf,S.E.,Kundu,A.,&Zezas,A. 2010). We stress herethatforaNSULXtobeidenti- 2008,TheAstrophysicalJournal,683,346 fied as such, the requirement of a highly magnetised Fragos,T.,Kalogera,V.,Willems,B.,Belczynski,K.,Fabbiano,G., NS,thatallowstheproductionofX-raypulses,should Brassington,N.J.,Kim,D.-W.,Angelini,L.,Davies,R.L.,Gallagher, betakenintoaccount.ThemodellingoftheNS’smag- J.S.,King,A.R.,Pellegrini,S.,Trinchieri,G.,Zepf,S.E.,&Zezas,A. 2009a,ApJ,702,L143 neticfieldisoutsidethescopeofthiswork. Fragos,T.,Lehmer,B.,Tremmel,M.,Tzanavaris,P.,Basu-Zych,A., Belczynski,K.,Hornschemeier,A.,JENKINS,L.,Kalogera,V.,Ptak,A., &Zezas,A.2013a,TheAstrophysicalJournal,764,41 Fragos,T.,Lehmer,B.D.,Naoz,S.,Zezas,A.,&Basu-Zych,A.2013b, TF acknowledges support from the Ambizione Fellow- ApJ,776,L31 ship of the Swiss National Science Foundation (grant Fragos,T.,&McClintock,J.E.2015,ApJ,800,17 6 Fragosetal. Fragos,T.,Willems,B.,Kalogera,V.,Ivanova,N.,Rockefeller,G.,Fryer, Paxton,B.,Cantiello,M.,Arras,P.,Bildsten,L.,Brown,E.F.,Dotter,A., C.L.,&Young,P.A.2009b,TheAstrophysicalJournal,697,1057 Mankovich,C.,Montgomery,M.H.,Stello,D.,Timmes,F.X.,& Gladstone,J.C.,Roberts,T.P.,&Done,C.2009,MNRAS,397,1836 Townsend,R.2013,arXiv,319 Hjellming,M.S.,&Webbink,R.F.1987,ApJ,318,794 Ponti,G.,Fender,R.P.,Begelman,M.C.,Dunn,R.J.H.,Neilsen,J.,& Hobbs,G.,Lorimer,D.R.,Lyne,A.G.,&Kramer,M.2005,MNRAS,360, Coriat,M.2012,MNRAS,422,L11 974 Rappaport,S.A.,Podsiadlowski,P.,&Pfahl,E.2005,MNRAS,356,401 Hurley,J.R.,Tout,C.A.,&Pols,O.R.2002,MNRAS,329,897 Roussel,H.,Wilson,C.D.,Vigroux,L.,Isaak,K.G.,Sauvage,M.,Madden, Ivanova,N.,Justham,S.,Chen,X.,DeMarco,O.,Fryer,C.L.,Gaburov,E., S.C.,Auld,R.,Baes,M.,Barlow,M.J.,Bendo,G.J.,Bock,J.J.,Boselli, Ge,H.,Glebbeek,E.,Han,Z.,Li,X.D.,Lu,G.,Marsh,T.,Podsiadlowski, A.,Bradford,M.,Buat,V.,Castro-Rodriguez,N.,Chanial,P.,Charlot,S., P.,Potter,A.,Soker,N.,Taam,R.,Tauris,T.M.,vandenHeuvel,E.P.J., Ciesla,L.,Clements,D.L.,Cooray,A.,Cormier,D.,Cortese,L.,Davies, &Webbink,R.F.2013,TheAstronomyandAstrophysicsReview,21,59 J.I.,Dwek,E.,Eales,S.A.,Elbaz,D.,Galametz,M.,Galliano,F.,Gear, Ivanova,N.,&Taam,R.E.2004,ApJ,601,1058 W.K.,Glenn,J.,Gomez,H.L.,Griffin,M.,Hony,S.,Levenson,L.R., Kennicutt,Jr.,R.C.,Armus,L.,Bendo,G.,Calzetti,D.,Dale,D.A.,Draine, Lu,N.,O’Halloran,B.,Okumura,K.,Oliver,S.,Page,M.J.,Panuzzo,P., B.T.,Engelbracht,C.W.,Gordon,K.D.,Grauer,A.D.,Helou,G., Papageorgiou,A.,Parkin,T.J.,Perez-Fournon,I.,Pohlen,M.,Rangwala, Hollenbach,D.J.,Jarrett,T.H.,Kewley,L.J.,Leitherer,C.,Li,A., N.,Rigby,E.E.,Rykala,A.,Sacchi,N.,Schulz,B.,Schirm,M.R.P., Malhotra,S.,Regan,M.W.,Rieke,G.H.,Rieke,M.J.,Roussel,H., Smith,M.W.L.,Spinoglio,L.,Stevens,J.A.,Srinivasan,S.,Symeonidis, Smith,J.-D.T.,Thornley,M.D.,&Walter,F.2003,PASP,115,928 M.,Trichas,M.,Vaccari,M.,Wozniak,H.,Wright,G.S.,&Zeilinger, King,A.R.,&Ritter,H.1999,MNRAS,309,253 W.W.2010,A&A,518,L66 King,A.R.2009,MNRAS,393,L41 Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Kluz´niak,W.,&Lasota,J.-P.2015,MNRAS,448,L43 Sklias,P.,Zamojski,M.,Schaerer,D.,Dessauges-Zavadsky,M.,Egami,E., Kroupa,P.2001,MNRAS,322,231 Rex,M.,Rawle,T.,Richard,J.,Boone,F.,Simpson,J.M.,Smail,I., Linden,T.,Kalogera,V.,Sepinsky,J.F.,Prestwich,A.,Zezas,A.,& vanderWerf,P.,Altieri,B.,&Kneib,J.P.2014,A&A,561,A149 Gallagher,J.S.2010,ApJ,725,1984 Tauris,T.M.,Langer,N.,&Kramer,M.2011,MNRAS,416,2130 Linden,T.,Sepinsky,J.F.,Kalogera,V.,&Belczynski,K.2009,The Tauris,T.M.,&vandenHeuvel,E.P.J.2006,In:CompactstellarX-ray AstrophysicalJournal,699,1573 sources.EditedbyWalterLewin&MichielvanderKlis.Cambridge Loveridge,A.J.,vanderSluys,M.V.,&Kalogera,V.2011,The AstrophysicsSeries,623 AstrophysicalJournal,743,49 Tong,H.2014,arXiv:1411.3168 Lyutikov,M.2014,arXiv:1410.8745 Tzanavaris,P.,Fragos,T.,Tremmel,M.,JENKINS,L.,Zezas,A.,Lehmer, Madhusudhan,N.,Rappaport,S.,Podsiadlowski,P.,&Nelson,L.2008, B.D.,Hornschemeier,A.,Kalogera,V.,Ptak,A.,&Basu-Zych,A.R. ApJ,688,1235 2013,TheAstrophysicalJournal,774,136 Mapelli,M.,Ripamonti,E.,Zampieri,L.,Colpi,M.,&Bressan,A.2010, vandenHeuvel,E.P.J.1994,22.Saas-FeeAdvancedCourseoftheSwiss MNRAS,408,234 SocietyforAstrophysicsandAstronomy:Interactingbinaries,-1,263 Neilsen,J.,&Lee,J.C.2009,Nature,458,481 vanderMarel,R.P.2004,CoevolutionofBlackHolesandGalaxies,37 Pavlovskii,K.,&Ivanova,N.2014,eprintarXiv:1410.5109 Paxton,B.,Bildsten,L.,Dotter,A.,Herwig,F.,Lesaffre,P.,&Timmes,F. 2011,ApJS,192,3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.