ebook img

On the fly control of high harmonic generation using a structured pump beam PDF

1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the fly control of high harmonic generation using a structured pump beam

On the fly control of high harmonic generation using a structured pump beam LilyaLobachinsky1,LiranHareli1,YanivEliezer1,LinorMichaeli1, andAlonBahabad1,* 7 1 1DepartmentofPhysicalElectronics,Tel-AvivUniversity,Tel-Aviv 0 69978,Israel 2 *[email protected] n a J 3 Abstract ] s Highharmonicgeneration(HHG)isanextremenonlinearfrequencyup-conversion c processduringwhichextremelyshortdurationopticalpulsesatveryshortwave- i t lengthsareemitted.AmajorconcernofHHGisthesmallconversionefficiencyat p thesingleemitterlevel. Thusensuringthattheemissionatdifferentlocationsare o . emittedinphaseiscrucial.Athighpumpintensitiesitisimpossibletophasematch s theradiationwithoutrevertingtoorderedmodulationsofeitherthemediumorthe c i pump field itself, a technique known as Quasi-Phase-Matching (QPM). To date, s demonstrated QPM techniques of HHG were usually complicated and/or lacked y tunability. Here we demonstrate experimentally a relatively simple, highly and h p easilytunableQPMtechniquebyusingastructuredpumpbeammadeofthein- [ terferenceofdifferentspatialopticalmodes. Withthistechniquewedemonstrate on-the-fly,tunablequasi-phase-matchingofharmonicorders25to39withupto 1 30foldenhancementoftheemission. v 5 9 Introduction 6 0 0 HighHarmonicGeneration(HHG)isanextremenonlinearopticalup-conversionpro- . cess driven with an intense ultra-short laser pulse, usually interacting with noble gas 1 0 atoms [1–3]. The up-converted light can easily reach the extreme UV portion of the 7 spectrumandincertaincasescanextenduptokeVx-rayphotonenergies[4]. Atthe 1 singleatomleveltheprocessofHHGismostsimplydescribedbythethreestepmodel : v [5,6] consisting of electron ionization, laser-driven acceleration and recombination i uponwhichexcesskineticenergyisreleasedintheformofahighenergyphoton. X Macroscopically,duetodispersionandgeometriceffectssuchaswave-guidingand r focusing,theefficientbuildupofeachharmonicorderislimitedtoitscoherencelength a L =π/∆k whichisthedistanceatwhichtheaccumulatedphasedifferencebetween c q thepumpbeamandtheharmonicemissionisequaltoπ. Here,∆k isthemomentum q phasemismatch-thedifferencebetweenthewavesvectorsofthepumpbeamandthe qorderharmonicsignalatthedirectionofpropagation. Perfectphasematchingconditions,∆k =0,canbeachievedatlowintensities(low q ionizationrates)andloosefocusing[7,8].However,whenworkingwithastrongpump 1 beam, plasma dispersion becomes dominant and phase matching is not possible [9]. Thus, a different approach is required for achieving efficient build up of the emitted radiation. Thesolutioncomesintheformofanorderedmodulationofaparameterrel- evanttotheinteraction,whichallowstherestrictivemomentumconservationcondition associatedwithperfectphasematchingtobereplacedwithalessrestrictivecondition [10] known as quasi-phase-matching (QPM) [11,12] . In particular using a periodic spatial modulation allows quasi-phase-matching when ∆k =2π/Λ, where Λ is the q periodofthemodulation. To date, most of the works applying QPM on HHG, did this by modulating the mediumproperties[13–18]whileothersshowedallopticalQPMtheoretically[19,20] andexperimentally[21,22]. Whilesomeoftheseworksdemonstratedtunabilitythey wereassociatedwithmechanicallymovingcomponents. Inaddition, althougharela- tivelysimplemethodforaco-propagatingallopticalQPMwassuggested[23],theall- opticalmethodsthatweredemonstratedexperimentallyinvolvedcounter-propagating geometrieswhichledtorelativelycomplicatedfrontends[2,21,22]. Herewepresentanall-opticalco-propagatingschemeforQPMofHHGinasemi- infinite gas cell configuration, allowing for non-mechanical, on-the-fly and complete control of the parameters of a perturbing periodic standing-wave modulation. In par- ticular,theperiodofthemodulation,itsoveralllengthandthedepthofthemodulation areeasilycontrolled. WiththisschemeweexperimentallydemonstratetunableQPM ofharmonicorders25to39,withenhancementofupto30fold. Results Theory HHG in a so called semi-infinite gas cell [24] is driven with a pump beam which is focusedtoapointatthevicinityofasmallexitholeinathinfoilterminatingagascell. Vacuumconditionsareestablishedimmediatelyafterthecell. Thephasemismatchfor thegenerationoftheq-thharmonicisgivenby: [25–27] ∆k = qk −k (cid:39) q ω qω (cid:18) (cid:19) 2π (cid:39) qP (1−η) ∆n −ηN r λ +q∂ φ +∂ φ , (1) q atm e z geometric z q λ whereqistheharmonicorder,k isthepumpwavevector,k istheq-thharmonic ω qω wavevector,Pisthegaspressure,ηistheionizationrateattimeofemissionofthehar- monicradiation,λ isthepumpwavelength,∆n isthedifferenceofrefractiveindices q ofneutralgasatomsbetweenthepumpandtheharmonicradiation,N isthenumber atm densityofatomsatatmosphericpressure,r istheclassicelectronradius,φ is e geometric thegeometricphaseandfinallyφ istheintrinsicphaseoftheatomicdipolewhichis q proportionaltothepumpintensity[27,28]. The two pressure-dependent terms in Eq.1 are due to gas and plasma dispersion respectively. The third term is the geometric wave vector mismatch which is usually approximated to depend only on the geometric variation of the pump phase and is mostlyassociatedwitheitherwaveguidingeffectsorwithfocusinginfreepropagation (contributing a Gouy phase term). In the present case, the use of a structured pump beammadeoftheinterferenceofaGaussianandaBesselbeamwouldmodulateboth thegeometricandtheintrinsicphaseterms. 2 ThespatialspectraldecompositionofaBesselbeam[29]ismadeofacontinuum of plane waves aligned on the surface of a cone with a half angle θ with respect to thepropagationaxis. ThedifferencebetweentheGaussianwavevectork andthe Gauss on-axisprojectionk oftheBesselwavevector,isdenotedwith∆k (seeFig.1.(b)). Bessel 0 Whenthetwobeamsaresuperposedcoaxiallytoproduceastructuredpumpbeam, a periodicintensityandphasemodulation,withanunderlyingperiodof2π/∆k ,emerges 0 onaxis(seeFig.1.(c)). The on-axis intensity and geometric phase of the structured pump beam can be roughlyestimatedby: (cid:90) z (cid:18) βsin(∆k z) (cid:19) πz φ(z) = k(z) dz=φ (z)−atan 0 sinc( ) geometric geometric Gouy 0 1+βcos(∆k0z) LND (cid:18) (cid:19) πz I (z) = I (z) 1+2βcos(∆k z)sinc( ) (2) total Gauss 0 L ND where β is the amplitude modulation depth (amplitude ratio between the Bessel and GaussianfieldsatthefocusoftheBesselbeam),φ (z)=atan(z/z )istheon-axis Gouy R Gouy phase of the Gaussian beam where z is the Gaussian beam Rayleigh range, R I (z)isthetotalintensityofthesuperimposedbeams,I (z)istheintensityofthe total Gauss GaussianbeamandL isthenon-diffractingdistancewhichisdefinedlaterinEq.3. ND The intensity modulation acts on both the amplitude and on the phase components ofthenonlinearpolarizationwhichhasatendencytoopposeeachotherforemission buildupassociatedwithQPM[30,31].Inthecurrentcase,takingallmodulationfactors intoaccount,themodulationdepthoftheamplitudeandofthephaseofthenonlinear polarizationisdifferent,thustheoverallmodulationcanbeused,asweverifyhere,to realizeanefficientall-opticalco-propagatingQPMscheme. InordertoproduceasuperpositionofaGaussianandaBesselbeamsattheinter- action region, we split a Gaussian beam to two and modulate the spatial distribution ofonepartusingaSpatialLightModulator(SLM).Themodulatedbeamobtainsthe shape of a ring which is a Fourier transform of a Bessel beam [29,32]. Focusing the ringina2fconfigurationcreatesaBesselbeamwhichisnon-diffractingalongadis- tanceL aroundthefocusofthelens(seeFig.1.(a)). Usingsimplegeometricaloptics ND itcanbeshownthatL isdependentontheringthicknessW, radiusRandthelens ND focallength f: 2λf2 L = (3) ND WR When the structured beam is used as a pump for HHG, quasi phase matching for theq-thharmonicordercanbeachievedwhen∆k =∆k . Foragivenfocallength f, 0 q theradiusoftheimagedring,R,determinestheangleθ oftheBesselwavevectorsand consequentlydeterminesthevalueof∆k : 0 2π λ/2 Λ = = (4) ∆k 1−cos(θ) 0 ThenumberofperiodswithinthemodulationisgivenwithL /ΛwhereL in ND ND turnisdependentonthethicknessoftheimagedring(seeEq.3). ThusL determines ND the effective phase-matching bandwidth δk which roughly behaves as δk=π/L . ND 3 Figure1: Creatingaperiodicintensityandphasemodulationusinganinterfer- enceofaGaussianandaBesselbeam.(a)SchematicrepresentationofaBesselbeam whichisnondiffractingalongL ,generatedbyfocusingaringamplitudefielddistri- ND butionina2fgeometry. (b)ThewavevectorsoftheinterferingGaussianbeamk Gauss andtheBesselbeamk . Theon-axisdifferencebetweenthewavevectorsis∆k . Bessel 0 (c)AvolumetricrepresentationoftheintensityofthesuperposedGaussianandBessel beams Thisfollowsfromapproximatingtheintensitybuildupoftheharmonicemissionfora given modulation depth as proportional to L2 sinc2((∆k−∆k )L /2) [33] with ∆k ND 0 ND beinganygivenvalueofthephasemismatch. However,itisimportanttonote,thatfor anefficientuseoftheavailablenumberofperiods(aswellasforthelastapproximation to be of any value) it is essential that the effective interaction length, determined by the Gaussian Rayleigh range, is at least as long as L . This is easily accomplished ND by using a shallower focusing for the Gaussian beam than for the Bessel beam. The depthofthemodulationisdeterminedbytheratiooftheintensitiesofthetwobeams. UsingthinnerringsincreasesL butdecreasestheintensityoftheBesselbeamand ND soreducesthemodulationdepth. Anotherfactorthatmodifiesthemodulationdepthis theringradius-duetotheGaussianprofileofthebeamreflectingoftheSLM,larger ring radius would decrease the intensity of the Bessel beam. Finally, the modulation depthcanalsobetunedbyadjustingtheoveralltransmissionofanygivenring,which isalsocontrollablewiththeSLM.Inourexperimenttheringstransmissionwassetto itsmaximumvalue. As the radius and width of the rings are controlled by the software operating the SLMitisveryeasytoexerton-the-flycontrolonthegeometricparametersofthequasi- phase-matching modulation - effectively changing the center of the phase-matching 4 curve∆k ,itsbandwidthδkanditsmodulationdepth. 0 Experiment In the experiment an intense Gaussian beam and a perturbing Bessel beam are com- binedandfocusedtogetherinaSemi-InfiniteGasCell(SIGC).Theexactparameters of the Bessel beam are easily determined using a computer-controlled beam shaper basedonaphase-onlySpatialLightModulator(SLM)setinamplitudeconfiguration (seeMethods). Intheinteractionregionthebeamsinterfereandformaperiodicstand- ingwavepattern(seeFig.1.(c)). TheRayleighrangeoftheGaussianbeamthatwasusedis5mm.Thenon-diffracting Bessel region L varies between 1.4mm and 8.3mm while the periodicity of the in- ND ducedperiodicmodulationvariesfrom200µmto430µm. Thustherangeofthenum- berofperiodsinthemodulationcanvarybetween3to41.Theserangesaredetermined bytheSLMareaandbytheimagingopticsbeingusedinthesetup. Figure2: Schematicrepresentationoftheexperimentalsetup,whereLB1-3arelenses along the Bessel beam path, LG is the Gauss beam lens, BS - Beam-splitter, P1-2 - Polarizers, SLM - Spatial Light Modulator, HM - Holed mirror and SIGC - Semi- infinitegascell. Thedelaystageallowstocompensateforthedifferencebetweenthe optical paths of the two beams, assuring time coincidence of the two pulses at the interactionregion. TheHHGspectrumforharmonicorders25to39whenonlytheGaussianbeamis presentandfocusedto1.5mmbeforetheexitholeoftheSIGC,isshowninFig.3(in blue). AttheabsenceofthemodulationduetotheinterferencewiththeBesselbeam, the harmonic orders are not phase matched and therefore do not build-up efficiently. The addition of a Bessel beam with a specific cone angle for generating a modula- tionwiththeappropriateperiodicityneededtophasematchtheharmonicordersunder scrutiny, ledtoasubstantialenhancementoftheseharmonics. Someoftheharmonic ordersthatwerenearlyundetectedbeforetheadditionoftheBessel,duetopoorphase matchingcondition,becamesignificant. The conditions at which the harmonic radiation is most efficient is a complicated functionofthetime-dependentintensity: higherintensityyieldsastrongerdipolemo- ment,howeveritalsoincreasestheionizationratewhichchangesthephasemismatch. Weassumethattheappliedperiodicmodulationwhichprovidesthehighestenhance- mentoftheharmonicradiationmatchestheactualphasemismatch. Forexample,ap- 5 plying a modulation of ∆k =10mm−1 the strongest enhancement was observed for 0 the33harmonicthereforweconcludethat∆k =10mm−1. Interestingly, thiscorre- 33 spondstoionizationrateof0.3whenusingEq.1, whilethemaximumionizationrate is0.81(seeMethods). Thissuggeststhatthebestconditionsforthegenerationofthis harmonicorderareattheleadingedgeofthepulseandnotatitsmaximum. Increasing the frequency of the modulation ∆k , by modifying the radius of the 0 ringontheSLM(forafixedringwidth,inwhichcasethephasematchingbandwidth is δk=0.83±0.16mm−1) we clearly observe a displacement of the band of phase- matched harmonics to higher orders. This is easily seen for the integrated intensity enhancementshownintheinsetinFig.3(a). Theenhancementwascalculatedbydi- vidingtheintegratedintensityofeachharmonicorderbytheintegratedintensityofthe sameharmonicorderproducedbytheunperturbedGaussianbeam. Theobserveddis- placementisinaccordancewiththeexpectedlineardependenceofthephasemismatch ontheharmonicorder(seeEq.1). Thisverifiesthattheobservedenhancementisdue to quasi-phase-matching (furthermore, we remind that the intensity of the perturbing Bessel beam is about two orders of magnitude lower than that of the Gaussian beam andsotheaddedintensityalonecannotaccountforanyobservedenhancement). Over- all the most enhanced harmonic order is scanned from the 27th to the 37rd harmonic andenhancementofupto23timescanbeobservedforthisparticularcaseofrelative positions of the focus of both beams and the exit hole of the SIGC. Next we modify thephase-matchingbandwidthδkbymodifyingtheringthicknessontheSLM,while keepingaconstantvalueof∆k =12mm−1. TheresultsareshowninFig.3(b)withthe 0 integratedenhancementpresentedintheinset. Theoretically,accordingtothesimplest QPMmodels[33],thephasematchingbandwidthshouldgrowlinearlywithδk. Ana- lyzingtheresultswefindthatthelinearfitofthephasematchingbandwidthtoδk in ourcasehasanR2 fittingparameterof0.81. Inadditionweseearedshiftofthephase matchedbandwidthwhichisnotaccountedforbysimplemodels. Theabovesetofmeasurementswasrepeatedforseveraldifferentlocationsofthe focusoftheGaussianbeamwithrespecttotheoutputoftheSIGC,whilekeepingthe position of the Bessel focus constant. By doing so, the QPM process takes place at different positions with respect to the Gaussian focus. The measured harmonics en- hancementforthedifferentcasesisshowninFig.4(a). Thehighestobservedenhance- mentinthissetofmeasurementsis30fold. Butmoreimportantly-assumingthatthe frequencyofthemodulationuponphasematchingisclosetothephasemismatchwith- outthemodulation,itisobviousthatinallcasesthephasemismatchdependslinearly ontheharmonicorder: ∆k =Aq+BwithbothAandBdependentonthepositionof 0 the focus of the Gaussian beam. The dependency of the A and B coefficients on the locationupontheGaussianbeamprofilecaneasilybeexplainedusingEq.1.Thephase mismatchtermsthatareinfluencedbythechangingofthelocationupontheGaussian beam profile are the third and fourth terms (assuming that the pressure drops signifi- cantlyonlyaftertheexitholeoftheSIGC).Thethirdtermchangestheproportionality factorinqandsowecanobserveanincreaseinAasthelocationgetsnearerthefocus of the Gaussian beam. At the same time, the fourth term increases together with the gradientoftheintensityprofile-increasingBasaconsequence. Simulations A basic, even simplistic, simulation (see Methods) can capture the salient features of theobservedresults. Wehavefixedthegeometricparametersofthesimulations(focal location of the beams) according to the experiment. We explored a vast range of pa- 6 a) no Bessel 1 ∆k0=7.3 [1/mm] 25 (a.u.)00..68 ∆∆∆kkk000===911.256 [[[111///mmmmmm]]] ∆k [1/mm]01110248 5112050 y sit0.4 2527293133353739 n Harmonic order e nt0.2 I 0 25 27 29 31 33 35 37 39 b) no Bessel 1 δδkk==00..59 [[11//mmmm]] 2 25 y(a.u.)00..68 δδkk==11..26 [[11//mmmm]] δk [1/mm]01..551 5112050 t si0.4 25 30 35 40 n Harmonic order e nt0.2 I 0 25 27 29 31 33 35 37 39 Harmonic order Figure3: Harmonicenhancement: (a)HarmonicspectraproducedbyaGaussbeam only (blue) and with a modulation caused by an addition of a co-propagating Bessel beamwithdifferent∆k (othercolors)forafixedphasematchingbandwidthofδk= 0 0.83±0.16mm−1. Inset:Theintegratedintensityenhancementofeachharmonicorder fordifferent∆k .(b)HarmonicspectraproducedbyaGaussbeamonly(blue)andwith 0 amodulationcausedbyanadditionofaco-propagatingBesselbeamwithdifferentδk (othercolors). Inset: Theintegratedintensityenhancementofeachharmonicorderfor differentδk. InthiscasetheradiusoftheBesselringcorrespondedto∆k =12mm−1. 0 rameterspacerelatingtothemodulationdepthoftheperturbation,theionizationlevel, theintensity-proportionalityfactoroftheintrinsicatomicphase,theambientpressure, andthepressuregradientaroundtheSIGCexit. Inallcaseswheretheperturbationis small enough the same general behavior is observed as in the experiment. However wedidhadtochooseamuchsmallerperturbationthanestimatedintheexperimentor neglect the effect of the QPM modulation on the geometric phase (see Fig.4 (b)-(c)) togetsimilarresultstotheexperiment. Otherwisethenumericalresultaremuchnois- ier. The form of the perturbation of both the modulated intrinsic phase (proportional to the intensity) and of the modulated geometric phase are similar in form (behave as a sine function) while the main difference between the two - is that the intrinsic phasesine-likemodulationsitsuponaGaussianbackgroundandthegeometricphase upon an arctangent background (The Gouy phase), Our simulations indicate that, for the 1D simplistic model, the combination of the sine-like modulation and the Gouy backgroundtogetheristhemainsourceforthedeviationfromtheexperimentalresults. A plausible explanation for the difference between the parameters of the experiment andthesimulation(toyieldsimilarresult)isthatexperimentallywegatherharmonic radiationintegratedoversomeeffectivetransverseareaofaninteractionwhichismiss- inginthe1Dmodel. Inaddition, thetemporaldynamics(thatis-thedependencyof the dipole moment and of the phase mismatch on time) are missing in the simplistic numericalmodelweusedandtheireffectonthephasematchingdynamicscanbequite involved[34–36]. Still,inboththeexperimentandsimulationsthelinearbehaviorof 7 a) k [1/mm]011117890235.......3469372 12345 123000 511220505 2468111024 2527293133353739 2527293133353739 2527293133353739 2527293133353739 b) 15.2 m] 13.7 0.8 0.8 0.8 0.8 k [1/m011902...693 00..46 00..46 00..46 00..46 8.4 0.2 0.2 0.2 0.2 7.3 2527293133353739 2527293133353739 2527293133353739 2527293133353739 c) 15.2 m] 13.7 0.8 0.8 0.8 0.8 k [1/m011902...693 00..46 00..46 00..46 00..46 8.4 0.2 0.2 0.2 0.2 7.3 2527293133353739 2527293133353739 2527293133353739 2527293133353739 Harmonic order Harmonic order Harmonic order Harmonic order Figure4:HHGenhancementatdifferentlocationsrelativetothefocusoftheGaussian beam.ColumnItoIVareforthefocusoftheGaussianbeambeingat3.5mmto0.5mm before the SIGC exit at 1mm steps. At each focal location the modulation frequency ∆k isvariedandtheintegratedharmonicenhancementiscalculated. Inallcasesthe 0 focus of the Bessel beam is fixed at 1mm before the SIGC exit. (a) Experimental results.(b)Numericalresults(normalized).Modulationdepth0.1oftheexperiment(c) Numericalresults(normalized). Modulationdepth0.3oftheexperiment. Neglecting geometricphasemodulation. ∆k as a function of q is apparent, while the behavior of the offset parameter B as a q functionoftheGaussianfocusbetweenthetwoisverysimilar. Conclusions WehavedemonstratedexperimentallydrivingofHHGusingastructuredpumpbeam made of the superposition of a Gaussian and a tunable perturbing Bessel beam. The structuredbeamisabletoperformon-the-fly,tunablequasi-phase-matchingofthehar- monicspectra-withcontrolledbandandbandwidth. WehavedemonstratedQPMof harmonics generated at different locations upon the main Gaussian beam. The flexi- bilityofthismethodanditsrelativelyeasyimplementationwouldallowtouseamore complicatedstructuredbeamsinordertocontrolfurtherparametersoftheemittedra- diation. For example - use of aperiodic modulations could allow for phase matching several different bandwidths. It would also be very interesting to extend the use of structuredpumpbeamstocontrolotherdegreesoffreedomoftheharmonicemission, suchaspolarizationstates[37]andorbitalangularmomentum[38,39]. Additionally, perturbedly structured beams might be helpful to analyze in-situ conditions (such as ionization level, coherence length etc.) at different locations during the process of HHG.Finally,theall-opticaltechniquepresentedheremightalsobeapplicabletoper- turbativenonlinearopticalfrequencyconversioninnonlinearcrystals[40]. 8 Methods Experimental ToattainarelativelylongRayleighrangefortheGaussianbeam,andsignificantcone half angles θ for the Bessel beam, different focusing conditions are required for the twobeams. Assuch,theoutputbeamofa1KHz,35fsTi:sapphireamplifier(Coherent Legend USX) is split into two paths (see Fig.2). The first beam having 0.4mJ per pulse, retains its spatial Gaussian profile, and is used as the main pump beam. This intense beam also drills a through hole at the aluminum foil terminating the gas cell (in a Semi-Infinite Gas Cell (SIGC) configuration). The second beam with a typical peak intensity which is only about 1.5% of the first beam (when material dispersion andachromaticpulsefronttiltduetofocusingaretakenintoaccount[41]),undergoes an amplitude modulation using two perpendicularly oriented polarizers and a phase- onlySpatial-Light-Modulator(SLM,HoloeyePluto)in-between. Thisbeamacquires aspatialdistributionofaringwhichisthenimagedandfocusedtoformaBesselbeam (seeFig.1.(a)).Bothbeamsarecombinedusingaholedmirrorandarefocusedcloseto theoutputoftheSIGC.TheuseofaholedmirrorispossiblebecausetheBesselbeam retain its ring shape before the focus. In the interaction region the beams interfere and form a periodic standing wave pattern (see Fig.1.(c)). Modifying the position of bothfocusinglenses(LGandLB3inFig.2)allowsforacarefulselectionofboththe location of the interaction region with respect to the aluminum foil and the relative focus of both beams. The backing pressure of the SIGC was 15 Torr. The power of theGaussianbeamattheinteractionregionwas420mWcorrespondingtoamaximum ionizationrateof0.81andtotheHHGcutofftocorrespondtothe187harmonicorder. Theharmonicordersobservedintheexperimentarefarbelowthecut-off. Numerical WehavecalculatedusingstandardFresnelpropagationtheon-axisspatialcomponent of the structured beam. Then we approximated the behavior of the HHG field by in- tegratingforeachharmonicordertheequationdE /dz∝N(I (z))pexp(i(cid:82)∆k dz)− q total q α(λ)E whereN isthedensitynumberofemittersandisproportionaltothepressure 2 q P, α(λ) is the pressure-dependent power absorption coefficient of the q-th harmonic with∆k calculatedusingEq.1wherethegeometricphaseistakenfromthepumpfield q propagationcalculation. Thegaspressuregradientintheinteractionregionwascalcu- latedaccordingto[42].Wechosethepowerfactorp=5/2[43].Weassumedthatonly shorttrajectoriesarecontributingtotheemissionbychoosingtheproportionalityfac- toroftheintrinsicatomicphasetothefieldintensitytobeα =2×10−14rad·cm2/W q (itsactualvaluevariesamongvariousmodels[26,44,45]). Acknowledgments This work was supported by the Israeli Science Foundation, Grant No. 1233/13, and bytheWolfsonfoundation’sHighfieldPhysicsandattosecondsciencegrant. 9 References [1] Thomas Brabec and Ferenc Krausz. Intense few-cycle laser fields: Frontiers of nonlinearoptics. ReviewsofModernPhysics,72(2):545,2000. [2] HenryKapteyn,OrenCohen,IvanChristov,andMargaretMurnane. Harnessing attosecondscienceinthequestforcoherentx-rays. Science,317(5839):775–778, 2007. [3] PBCorkumandFerencKrausz. Attosecondscience. NaturePhysics,3(6):381– 387,2007. [4] Tenio Popmintchev, Ming-Chang Chen, Dimitar Popmintchev, Paul Arpin, Su- sannah Brown, Skirmantas Alisˇauskas, Giedrius Andriukaitis, Tadas Balcˇiunas, Oliver D Mu¨cke, Audrius Pugzlys, et al. Bright coherent ultrahigh harmon- ics in the kev x-ray regime from mid-infrared femtosecond lasers. science, 336(6086):1287–1291,2012. [5] PaulBCorkum.Plasmaperspectiveonstrongfieldmultiphotonionization.Phys- icalReviewLetters,71(13):1994,1993. [6] M Lewenstein, Ph Balcou, M Yu Ivanov, Anne L’huillier, and Paul B Corkum. Theoryofhigh-harmonicgenerationbylow-frequencylaserfields. PhysicalRe- viewA,49(3):2117,1994. [7] CharlesGDurfeeIII,AndyRRundquist,SterlingBackus,CatherineHerne,Mar- garetMMurnane,andHenryCKapteyn. Phasematchingofhigh-orderharmon- icsinhollowwaveguides. PhysicalReviewLetters,83(11):2187,1999. [8] TenioPopmintchev,Ming-ChangChen,OrenCohen,MichaelEGrisham,JorgeJ Rocca,MargaretMMurnane,andHenryCKapteyn.Extendedphasematchingof high harmonics driven by mid-infrared light. Optics letters, 33(18):2128–2130, 2008. [9] Tenio Popmintchev, Ming-Chang Chen, Alon Bahabad, Michael Gerrity, Pavel Sidorenko, Oren Cohen, Ivan P Christov, Margaret M Murnane, and Henry C Kapteyn. Phase matching of high harmonic generation in the soft and hard x- ray regions of the spectrum. Proceedings of the National Academy of Sciences, 106(26):10516–10521,2009. [10] RonLifshitz,AdyArie,andAlonBahabad. Photonicquasicrystalsfornonlinear opticalfrequencyconversion. Physicalreviewletters,95(13):133901,2005. [11] JAArmstrong,NBloembergen,JDucuing,andPSPershan.Interactionsbetween lightwavesinanonlineardielectric. PhysicalReview,127(6):1918,1962. [12] Alon Bahabad, Margaret M Murnane, and Henry C Kapteyn. Quasi-phase- matchingofmomentumandenergyinnonlinearopticalprocesses. NaturePho- tonics,4(8):570–575,2010. [13] B Dromey, M Zepf, M Landreman, and SM Hooker. Quasi-phasematching of harmonic generation via multimode beating in waveguides. Optics express, 15(13):7894–7900,2007. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.