ebook img

On the Executability of Interactive Computation PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Executability of Interactive Computation

On the Executability of Interactive Computation BasLuttikandFeiYang EindhovenUniversityofTechnology,TheNetherlands 6 1 Abstract. ThemodelofinteractiveTuringmachines(ITMs)hasbeenproposed 0 tocharacterisewhichstreamtranslationsareinteractivelycomputable;themodel 2 ofreactiveTuringmachines(RTMs)hasbeenproposedtocharacterisewhichbe- n havioursarereactivelyexecutable.Inthisarticleweprovideacomparisonofthe a two models. We show, on the one hand, that the behaviour exhibited by ITMs J isreactivelyexecutable,and,ontheotherhand,thatthestreamtranslationsnatu- 1 rallyassociatedwithRTMsareinteractivelycomputable.Weconcludefromthese 1 resultsthatthetheoryofreactiveexecutabilitysubsumesthetheoryofinteractive computability. Inspiredbytheexistingmodel of ITMswithadvice,whichpro- ] O videsamodelofevolvingcomputation,wealsoconsiderRTMswithadviceand weestablishthatafacilityofadviceconsiderablyupgrades thebehaviouralex- L pressiveness of RTMs: every countable transition system can be simulated by . s someRTMwithadviceuptoafinenotionofbehaviouralequivalence. c [ 1 Introduction 2 v 6 AccordingtotheChurch-Turingthesis,theclassicalTuringmachinemodeladequately 4 formalises which functions from natural numbers to natural numbers are effectively 5 computable. There is, however, a considerable semantic gap between computing the 1 resultofafunctionappliedtoanaturalnumberandthewaycomputingsystemsoperate 0 nowadays.Moderncomputingsystemsarereactive,theyareincontinuousinteraction . 1 withtheirenvironment,andtheiroperationisnotsupposedtoterminate.Quiteanumber 0 ofextendedmodelsofcomputationhavebeenproposedinrecentdecadestostudythe 6 combination of computation and interaction (see, e.g., the collection in [7]). In this 1 : paperwecompareinteractiveTuringmachinesandreactiveTuringmachines. v VanLeeuwenandWiedermannhavedevelopedatheoryofinteractivecomputation i X from the stance that an interactive computation can be viewed as a never-endingex- r changeofsymbolsbetweenacomponentanditsunpredictableinteractiveenvironment a [8].Semantically,thisamountstostudyingtherecognition,generationandtranslation of infinitestreamsof symbols.In[9], the notionof interactiveTuringmachine(ITM) is put forward as a tool to formally characterise which stream translations are inter- actively computable. The notion is subsequently extended with an (non-computable) advicemechanisminordertoobtainanon-uniformmachinemodel.VanLeeuwenand WiedermannarguethattheresultingmodelofinteractiveTuringmachineswithadvice isaspowerfulastheirmodelofevolvingfiniteautomata,andtheyconcludefromthis, onintuitivegrounds,thatITMswithadviceareadequatetomodelevolvingsystemsuch astheInternet[15]. ThemodelofinteractiveTuringmachinesfocussesoncapturingthecomputational contentof sequentialinteractivebehaviour. The included mechanismof interaction is therefore limited to achieving this goal, and does not easily generalise to more than one distributed component, nor does it allow for more fine-grained considerations of the behaviourof reactive systems. The behaviouraltheoryof reactivesystems, onthe other hand, has focussed on aspects of modelling, specification and verification (see, e.g.,[1]). To integrate computability theory and the behaviouraltheory of reactive systems, the notion of reactive Turing machine (RTM) has been proposed in [2,3]. It extends Turingmachineswithconcurrency-styleinteraction.Semantically,theoperationalbe- haviourofanRTMisgivenbyatransitionsystem.Fromthistransitionsystemonemay extractasetofcomputations,orstreamtranslations,butamorerefinedanalysisisalso possible.Infact,tostudytheeffectofinteractionofmultiplecomponentsmanyrefined notionsofbehaviouralequivalencehavebeendevelopedintheconcurrencytheoryliter- ature[6].ThenotionofRTMgivesrisetoageneraltheoryofexecutability:atransition systemisexecutable(usuallyuptosomepreferrednotionofbehaviouralequivalence) ifthereexistsanRTM thathasthetransitionsystemasitssemantics.(We referto[3] formoreaelaboratemotivationofthenotionofRTM.) The aim of this paper is to make a connection between the theory of interactive computabililtyandthetheoryofreactivesystems,providingacomparisonofthemod- els of ITMs and RTMs in both their semantic domains. We shall first, in Section 2, recapitulatebothmodels.Then,inSection3wepresentatransition-systemsemantics forITMs; the transitionsystem associated with an ITMis executableupto a fine no- tionofbehaviouralequivalence.InSection4weshallidentifyasubclassofRTMsthat canbeconsideredsuitableforstreamtranslation,andprovethatthestreamtranslation associated with an RTM in this subclass is interactively computable.In Section 5 we consider an extension of RTMs with an advice mechanism adapted from the advice mechanismconsideredforITMs.RTMswithadvicecanexecuteeverycountabletran- sitionsystem,atthecostofintroducingdivergenceinthecomputation.Thepaperends withaconclusioninSection6. 2 Preliminaries 2.1 TheTheoryofInteractiveComputation In[11],vanLeeuwenandWiedermannpresentananalysisofinteractivecomputation onthebasisofacomponentC(thoughttobehaveaccordingtoadeterministicprogram) interactingwith an unpredictableenvironment E. Theydiscuss the consequencesof a fewgeneralpostulatespertainingtothebehaviourandinteractionofC andE forinter- active recognition,interactive generationand interactive translation. In their analysis, the componentC acts asa stream transducer,transformingan infinite inputstream of data symbols from Σ = {0,1} presented by E at its input port into an infinite output streamofsymbolsfromΣ producedatitsoutputport.Henceforth,byanω-translation we mean a mappingφ : Σω → Σω (with Σω denotingthe set of streams, i.e., infinite sequences,overΣ). Interactivecomputationis a step-wise process. It is not requiredthat the environ- mentoffersasymbolineverystep,northatthecomponentproducesasymbolinevery step.Forthepurposeofmodellingcomponents,however,itisconvenienttorecordthat nothingis offered or produced.The symbolλ is used to indicate the situation that no symbolisofferedattheinputportorproducedattheoutputport,andweletΣ =Σ∪{λ}. λ Itisassumedthatwhen E offersanon-λsymbolinsomestep, thenthecomponentC producesanon-λsymbolatits outputportwithinfinitelymanysteps, andviceversa; this assumption is referred to as the interactiveness (or finite delay) condition in the workofvanLeeuwenandWiedermann. Inordertoformallydefinewhichω-translationsareinteractivelycomputablebya computationaldevice,vanLeeuwenandWiedermannproposedthenotionofinteractive Turingmachine[9,10].ItextendstheclassicalnotionofTuringmachinewithaninput portandanoutputport,throughwhichitexchangesaninfinite,neverendingstreamof datasymbolswithitsenvironment.InteractiveTuringmachinesuseatwo-wayinfinite tape as memory on which they can write symbols from some presupposedset D(cid:3) of tape symbols, not necessarily disjoint from Σ and including the special (cid:3) symbol to denote an empty tape cell. Our formal definition below is adapted from [14] (but we leaveoutthedistinctionbetweeninternalandexternalstates). Definition1. A (deterministic) interactive Turing machine (ITM) with a single work tapeisatripleI=(Q,−→ ,q ),where I in 1. Qisitssetof states; 2. −→I: Q×D(cid:3)×Σλ →Q×D(cid:3)×{L,R}×Σλ isatransitionfunction;and 3. q ∈ Qisitsinitialstate. in ThecontentsofthetapeofanITMmayberepresentedbyanelementof(D(cid:3))∗.We denotebyDˇ(cid:3) = {dˇ| d ∈ D(cid:3)}thesetofmarkedsymbols;atapeinstanceisasequence δ ∈ (D(cid:3)∪Dˇ(cid:3))∗ suchthatδcontainsexactlyoneelementofDˇ(cid:3).Themarkerindicates thepositionofthetapehead. AcomputationofanITMI=(Q,−→ ,q )isaninfinitesequenceoftransitions I in (q ,(cid:3)ˇ)=(q ,δ )−i0/→o0 (q ,δ )−i1→/o1 ···(q ,δ )−ik→/ok ··· . (1) in 0 0 I 1 1 I k k I Theinputstream associatedwiththecomputationin(1)isobtainedfromi ,i ,... by 0 1 omittingalloccurrencesofλ,andtheoutputstreamassociatedwiththecomputationin (1)isobtainedfromo ,o ,... byomittingalloccurrencesofλ.Apair(x,y)∈Σω×Σω 0 1 isaninteractionpairassociatedwithIifthereexistsacomputationofIwithxasinput streamandyasoutputstream.ThesetofallinteractionpairsassociatedwithanITMI iscalleditsinteractivebehaviour.(InSection3weshallpresentamorerefinedviewon itsbehaviourwhenweassociatewitheveryITMatransitionsystem.)Thecomputation in(1)isinteractiveif,forallk ∈ N,ifi , λ,thenthereexistsℓ ≥ k suchthato , λ. k ℓ Thecomputationin(1)isinput-activeifi ,λforallk∈N. k An ITM satisfies the interactiveness condition if all its computations are interac- tive. Clearly, if a deterministic ITM I satisfies the interactiveness condition, then its interactive behaviour is total, in the sense that for every x ∈ Σω there is at least one y ∈ Σω such that (x,y) is an interaction pair of I. By confining our attention to the input-activecomputations—which,intheterminologyof[11],correspondstoadopting thefullenvironmentalactivitypostulate—,wemaythenassociatewitheverysuchITM an ω-translation:we say that ITM I produces y on input x if (x,y) is the interaction pairassociatedwithaninput-activecomputationofI. Definition2. Anω-translationφ:Σω →Σω isinteractivelycomputableifthereexists adeterministicITMthatsatisfyingtheinteractivenessconditionthatproducesφ(x)on inputxforallx∈Σω. Van Leeuwen and Wiedermann present in [11] a characterisation of the interac- tively computable ω-translations by showing that they can be approximated by clas- sically computablepartialfunctionson finite sequencesoverΣ. For finite and infinite sequencesxandy,wewritex≺ yifxisafiniteandstrictprefixofy,andx(cid:22) yifx≺ y or x = y.Weusethefollowingdefinitionofmonotonicfunctionsandlimit-continuous functions. Definition3. 1. Apartialfunction f :Σ∗ ⇀Σ∗ismonotonicifforallx,y∈Σ∗ such thatx≺ yand f(y)isdefined,itholdsthat f(x)isdefinedaswelland f(x)(cid:22) f(y). 2. Apartialfunctionφ : Σω → Σω iscalled limit-continuousifthereexistsaclassi- callycomputablemonotonicpartialfunction f :Σ∗ →Σ∗suchthatφ(lim x )= k→∞ k lim f(x ) for all strictly increasing chains x ≺ x ≺ ··· ≺ x ≺ ··· with k→∞ k 1 2 k x ∈Σ∗. k In [11] a criterion of the interactively computable ω-translations is presented by usinglimit-continuousfunctions. Theorem1. Atotalω-translationisinteractivelycomputableiffitislimit-continuous. 2.2 TheTheoryofExecutability Thetheoryofexecutabilitycombinescomputationandconcurrency-styleinteractionin suchawaythatbotharetreatedonequalfooting;thus,anintegrationofcomputability andconcurrencytheoryisrealised. Thetransition system is the centralnotionin the mathematicaltheoryof discrete- event behaviour. It is parameterised by a set A of action symbols, denoting the ob- servableeventsofa system. We extendAwith a specialsymbolτ, whichintuitively denotesunobservableinternalactivity.WeshallabbreviateA∪{τ}byA . τ Definition4. AnA -labelledtransitionsystemT isatriple(S,−→,↑),where, τ 1. Sisasetof states, 2. −→⊆S×A ×SisanA -labelledtransitionrelation, τ τ 3. ↑∈Sistheinitialstate. Transition systems can be used to give semantics to programminglanguages and processcalculi.Thestandardmethodistofirstassociatewitheveryprogramorprocess expressionatransitionsystem(itsoperationalsemantics),andthenconsiderprograms andprocessexpressionsmodulooneofthemanybehaviouralequivalencesontransition systems thathave been studiedin the literature. In this paper,we shall use the notion of(divergence-preserving)branchingbisimilarity[4,5],whichisthefinestbehavioural equivalenceinvanGlabbeek’slineartime-branchingtimespectrum[6]thatabstracts frominternalcomputationsteps(representedinthetransitionsystembytransitionsla- belledwithτ).. Inthedefinitionof(divergence-preserving)branchingbisimilarityweneedthefol- lowingnotation:let−→beanA -labelledtransitionrelationonasetS,andleta∈A ; τ τ (a) a we write s −→ t for “s −→ t” or “a = τ and s = t”. Furthermore, we denote the transitiveclosureof−→τ by−→+ andthereflexive-transitiveclosureof−→τ by−→∗. Definition5 (Branching Bisimilarity). Let T = (S ,−→ ,↑ ) and T = (S ,−→ 1 1 1 1 2 2 2 ,↑ )betransitionsystems.AbranchingbisimulationfromT toT isabinaryrelation 2 1 2 R⊆S ×S suchthatforallstatess ands , s Rs implies 1 2 1 2 1 2 1. ifs −→a s′,thenthereexists′,s′′ ∈S ,s.t.s −→∗ s′′ −(→a) s′,s Rs′′ands′Rs′; 1 1 1 2 2 2 2 2 2 2 1 2 1 2 2. ifs −→a s′,thenthereexists′,s′′ ∈S ,s.t.s −→∗ s′′ −(→a) s′,s′′Rs ands′Rs′. 2 2 2 1 1 1 1 1 1 1 1 2 1 2 ThetransitionsystemsT andT arebranchingbisimilar(notation:T ↔ T )ifthere 1 2 1 b 2 existsabranchingbisimulationRfromT toT s.t.↑ R↑ . 1 2 1 2 AbranchingbisimulationRfromT toT isdivergence-preservingif,forallstates 1 2 s ands , s Rs implies 1 2 1 2 τ 3. ifthereexistsaninfinitesequence(s1,i)i∈N s.t. s1 = s1,0, s1,i −→ s1,i+1 and s1,iRs2 foralli∈N,thenthereexistsastate s′ s.t. s −→+ s′ ands Rs′ forsomei∈N; 2 2 2 1,i 2 and τ 4. ifthereexistsaninfinitesequence(s2,i)i∈N s.t. s2 = s2,0, s2,i −→ s2,i+1 and s1Rs2,i foralli∈N,thenthereexistsastate s′ s.t. s −→+ s′ ands′Rs forsomei∈N. 1 1 1 1 2,i ThetransitionsystemsT andT aredivergence-preservingbranchingbisimilar(nota- 1 2 tion:T ↔∆ T )ifthereexistsadivergence-preservingbranchingbisimulationRfrom 1 b 2 T toT s.t.↑ R↑ . 1 2 1 2 ThenotionofreactiveTuringmachine(RTM)wasputforwardin[3]tomathemat- icallycharacterisewhichbehaviourisexecutablebyaconventionalcomputingsystem. WerecallthedefinitionofRTMsandtheensuednotionofexecutabletransitionsystem. Definition6. AreactiveTuringmachine(RTM)Misatriple(S,−→,↑),where 1. Sisafinitesetof states, 2. −→⊆S×D(cid:3)×Aτ×D(cid:3)×{L,R}×Sisa(D(cid:3)×Aτ×D(cid:3)×{L,R})-labelledtransition a[d/e]M relation(wewrite s −→ tfor(s,d,a,e,M,t)∈−→), 3. ↑∈Sisadistinguishedinitialstate. a[d/e]M Intuitively,the meaningofatransition s −→ t isthatwheneverM isin state s, andd isthesymbolcurrentlyreadbythe tapehead,thenitmayexecutethe actiona, writesymboleonthetape(replacingd),movetheread/writeheadonepositiontothe leftortherightonthetape,andthenendupinstatet. ToformalisetheintuitiveunderstandingoftheoperationalbehaviourofRTMs,we associate with every RTM M an A -labelled transition system T(M). The states of τ T(M)aretheconfigurationsofM,pairsconsistingofastateandatapeinstance. Definition7. LetM= (S,−→,↑)beanRTM.ThetransitionsystemT(M)associated withMisdefinedasfollows: 1. itssetofstatesSconsistsofthesetofallconfigurationsofM; 2. itstransitionrelation−→istheleastrelationsatisfying,foralla ∈ Aτ, d,e ∈ D(cid:3) andδ ,δ ∈D∗: L R (cid:3) – (s,δ dˇδ )−→a (t,δ<eδ )iffsa[−d→/e]Lt,and L R L R – (s,δ dˇδ )−→a (t,δ e>δ )iffsa[−d→/e]Rt L R L R (δ< isobtainedfromδ byplacingthetapeheadmarkerontheright-mostsymbol L L inδ ,and>δ isobtainedanalogouslyfromδ ); L R R 3. itsinitialstateistheconfiguration(↑,(cid:3)ˇ). Turingintroducedhismachinestodefinethenotionofeffectivelycomputablefunc- tionin[13].Byanalogy,wehaveanotionofeffectivelyexecutablebehaviour[3]. Definition8. Atransitionsystem isexecutableifitisthetransitionsystemassociated withsomeRTM. 3 Executability ofInteractive Turing Machines InthissectionweassociateatransitionsystemwitheveryITM,andthenprovethat it is executablemodulo divergence-preservingbranchingbisimilarity. It is convenient toconsiderinputandoutputasseparateactionsinthetransitionsystemassociatedwith anITM.Wedenoteby?itheactionofinputtingthesymboli∈ Σ,andby!otheaction ofoutputtingthesymbolo∈Σ. Definition9. LetI=(Q,−→ ,q )beanITM.ThetransitionsystemT(I)associated I in withIisdefinedasfollows: 1. itssetofstatesistheset{(s,δ)| s∈ Q∪{s |o∈Σ ,s∈ Q}, δisatapeinstance}; o λ 2. itstransitionrelation−→istheleastrelationsatisfying,foralli,o∈Σλ,d,e∈D(cid:3), andδ ,δ ∈D∗: L R (cid:3) – (s,δ dˇδ )−?→i (t ,δ<eδ )iff(s,d,i)−→ (t,e,L,o)andi∈Σ, L R o L R I – (s,δ dˇδ )−?→i (t ,δ e>δ )iff(s,d,i)−→ (t,e,R,o)andi∈Σ, L R o L R I – (s,δ dˇδ )−→τ (t ,δ<eδ )iff(s,d,i)−→ (t,e,L,o)andi=λ, L R o L R I – (s,δ dˇδ )−→τ (t ,δ e>δ )iff(s,d,i)−→ (t,e,R,o)andi=λ, L R o L R I !o τ – (s ,δ)−→(s,δ)iffo∈Σ,and(s ,δ)−→(s,δ)iffo=λ. o o 3. itsinitialstateistheconfiguration(q ,(cid:3)ˇ). in ThefollowingtheoremshowsthateverytransitionsystemsassociatedwithanITM can be simulated by an RTM. In the proof it is convenient to allow RTMs to have a[d/e]S transitionsoftheforms −→ t,whereS isastaytransitionwithnomovementofthe tape head. We refer to such machinesas RTMs with stay transitions. The operational semantics of RTMs can be extended to an operationalsemantics for RTMs with stay transitionsby addingthe clause:(s,δ dˇδ ) −→a (t,δ eˇδ ) iff s a[−d→/e]S t. Thetransition L R L R systemofanRTMwithstaytransitionscanbesimulatedbyanRTMuptodivergence- preservingbranchingbisimilarity. Lemma1. ThetransitionsystemassociatedwithanRTMwithstaytransitionsisexe- cutableuptodivergence-preservingbranchingbisimilarity. Proof. WesupposethatM = (S,−→,↑)isanRTMwithstaytransitions,anditstran- sition system is T(M). We define a normal RTM M′ = (S ,−→ ,↑ ) that simulates 1 1 1 T(M)asfollows: 1. S =S∪{s | s,t∈S}; 1 t a[d/e]L a[d/e]L 2. s −→ tiff s −→ t; 1 a[d/e]R a[d/e]R 3. s −→ tiffs −→ t; 1 a[d/e]L τ[d/d]R a[d/e]S 4. s −→ s ands −→ tiff s −→ t;and 1 t t 1 5. ↑ =↑. 1 ThenitisstraightforwardtoT(M′) ↔∆ T(M). b Theorem2. ForeveryITMIthereexistsanRTMM,suchthatT(I) ↔∆ T(M). b We let I = (Q,−→ ,q ) be an ITM. By Lemma 1, it is enough to show that there I in existsanRTMwithstaytransitionsMsatisfyingT(M) ↔∆ T(I).WeconstructM= b (S,−→,↑)asfollows: 1. S=I∪O,whereI =QandO={s |o∈Σ ,s∈Q}; o λ in(i)[d/e]M 2. the transition relation −→ is defined by: s −→ t if (s,d,i) −→ (t,e,M,o), o I out(o)[e/e]S ands −→ sforalls∈S,o∈Σ ;and o λ 3. ↑=q . in ThenaccordingtoDefinitions7and9,wegetatransitionsystemT(M)=T(I),where ‘=’isthepointwiseequality,whichalsoimpliesT(M) ↔∆ T(I). Asaconsequence b wehavethefollowingcorollary. Corollary1. ThetransitionsystemassociatedwithanITMisexecutablemodulodivergence- preservingbranchingbisimilarity. 4 Executable ω-Translations Recallthatanω-translationisdefinedtobeinteractivelycomputableif,andonlyif,it canberealisedbyanITM.RTMsaredesignedforexhibitingtheexpressivepowerof executabletransitionsystems,ratherthanω-translations,andnoteveryRTMnaturally hasanω-translationassociatedwithit.Imposingsomerestrictionsontheformalismof RTMs,however,weshalldefineasubclassofRTMswithwhichanω-translationisnat- urallyassociated.Theω-translationrealisedbysuchanRTMisthencalledexecutable, andweshallestablishthatanω-translationisinteractivelycomputableif,andonlyif, itisexecutable. By analogy to the systems described in the theory of interactive computation,we let the RTMsfor ω-translationsexecutein steps, in such a way thatwith everystep a pairof inputandoutputactionscanbe associated.With everyinfinite computationof theRTMwecanthenassociateainteractionpair,andtheRTMwillthusgiverisetoan ω-translation. Definition10. Let A = {?i,!o | i,o ∈ {0,1}}∪{τ}, and let M = (S,−→,↑) be an τ RTMwithA asitssetoflabels.ThenMisanRTMforω-translationifitsatisfiesthe τ followingproperties: 1. thesetofstatesSispartitionedintodisjointsets∈ofinputstatesandEofexecution states,i.e.,S=I∪EandI∩E=∅; 2. theinitialstate↑isaninputstate,i.e.,↑∈I; a[d/e]M 3. for a transition s −→ t, if s ∈ I, then a ∈ {?0,?1} and t ∈ E; if s ∈ E, then a∈{!0,!1,τ}andt∈I;and a[d/e]M 4. forall(s,d)∈E×D(cid:3),thereisatmostonetransitionoftheform s −→ t;and a[d/e]M 5. forall(s,d) ∈ I×D(cid:3),thereareexactlytwotransitionsoftheform s −→ t,one witha=?0andonewitha=?1. Inthefollowinglemmaweestablishsomepropertiesofthetransitionsystemasso- ciatedwithanRTMforω-translation. Lemma2. LetMbeanRTMforω-translation.ThenT(M)=(S ,−→ ,↑ )satis- M M M fiesthefollowingproperties: 1. (Alternation)ThesetofstatesS ispartitionedintoasetofinputstatesI anda M M setofoutputstatesE ,i.e.,S =I ∪E andI ∩E =∅.Foreverytransition M M M M M M s−→a s′,ifs∈I ,thena∈{?0,?1}ands′ ∈E ;ifs∈E ,thena∈{!0,!1,τ}and M M M s′ ∈I . M 2. (Unambiguity)Forevery s ∈ E ,thereisexactlyoneoutgoingtransition s−→a s′ M witha∈{!0,!1,τ}. 3. (Totality) For every s ∈ I , there are exactly two outgoing transitions, labelled M with?0and?1,respectively. Proof. AstateinS isaconfiguration(s,δ)ofM,andwecanmakeapartitionofthe M set of all configurationsaccording to the control states. If s ∈ I, then (s,δ) ∈ I ; if M s∈E,then(s,δ)∈E ,whereI andEaredefinedinDefinition10. M 1. (Alternation)By condition1in Definition10,we haveS = I ∪E andI ∩E = ∅, which infersS = I ∪E and I ∩E = ∅;moreover,by condition2, for a M M M M M a[d/e]M transitions −→ t,ifs∈I,thena∈{?0,?1}andt∈E;ifs∈E,thena∈{!0,!1,τ} andt∈I,whichinfersthatforeverytransitions−→a s′,ifs∈I ,thena∈{?0,?1} M ands′ ∈E ;ifs∈E ,thena∈{!0,!1,τ}ands′ ∈I . M M M 2. (Unambiguity) By condition 3 in Definition 10, for all (s,d) where s ∈ E and o[d/e]M d ∈ D(cid:3), there is at most one transition s −→ t, which infers that for every s∈E ,thereisexactlyoneoutgoingtransitions−→a s′ witha∈{!0,!1,τ}. M 3. (Totality) By condition4 in Definition 10, forall (s,d) where s ∈ I and d ∈ D(cid:3), i[d/e]M thereareexactlytwotransitionsoftheforms −→ t,with?0and?1astherelabels, respectively,whichinfersthatforevery s ∈ I ,therearetwooutgoingtransitions M labelledby?0and?1,respectively. We call a transition that satisfies the conditionsof Lemma 2 an i/o transition sys- tem. Moreover, by analogy to the interactiveness condition for ITMs, we impose an interactivenessconditiononRTMsforω-translation. ?i Definition11. An i/o transitionsystem is interactive, iffor every s ∈ S and s −→ s 0 withi∈{0,1},andforeverysequences −→ s −→···,thereexistsanaturalnumber 0 1 !o i,suchthats −→ s witho∈{0,1}. i i+1 AnRTMforω-translationisinteractiveiftheassociatedi/otransitionsystemis. We define the ω-translation realized by an RTM by defining the ω-translation re- alized by the i/o transition system associated with it. Let T = (S,−→,↑) be an i/o σ transitionsystem,let s∈S,andletσ∈Aω,sayσ=a ,a ,...;wewrites−→ifthere 0 1 exists ,s′,s ,s′,...∈Ssuchthats= s ,ands −→∗ s′ −a→i s foralli≥0.(By−→∗ 0 0 1 1 0 i i i+1 wedenotethereflexive-transitiveclosureoftherelation−→τ .)Ifσ∈Aωands−σ→,then σ is a weak infinite trace from s. We denoteby Tr∞(s) the set of weak infinite traces w froms. Definition12. Let T be an i/o transition system, and s be the initial state. For σ ∈ 0 Tr∞(s ), the input stream realised by σ is the stream x ∈ Σω such that x = x x ..., w 0 1 2 where x = i if ?i is the j-th input action in σ, and similarly for the output stream j realizedbyσ.WesaythatT realizesω-translationφ:Σω →Σω iff,forevery x∈Σω, thereexistsatraceσ∈Tr∞(s )with xasitsinputstream,andforeverysuchtrace,its w 0 outputstreamisy=φ(x). Wecannowdefinewhenanω-translationisexecutable. Definition13. Anω-translationisexecutableifitcanberealizedbyanexecutablei/o transitionsystem. Thefollowinglemmaestablishesthatanω-translationcanbeassociatedwithevery interactivei/otransitionsystem. Lemma3. Ifani/otransitionsystemisinteractive,thenitrealisesanω-translation. Proof. Let T be an i/o interactive transition system, and let s be the initial state of 0 T.ByDefinition12,weneedtoshowthatthereexistsanω-translationφsuchthatfor every x ∈ Σω,thereexistsatraceσ ∈ Tr∞(s )withinputstream x,andforeverytrace w 0 withinputstreamx,itsoutputstreamis y=φ(x). BythealternationconditioninLemma2,everyσ∈Tr∞(s )isoftheformi o i o ... w 0 0 0 1 1 wherei ∈{?0,?1}ando ∈{!0,!1,τ}.Letxbeanarbitraryinputstream,bythetotality j j conditioninLemma2,wecanfindatraceσ∈Tr∞(s )withinputstream x. w 0 Moreover, given an trace σ with an infinite input stream x, by interactiveness, it wouldalwaysproduceaninfiniteoutputstream y. Finally,byunambiguity,theredonotexisttwotracessharingthesameinputstream. Itfollowsthatforeverytracewithinputstreamx,itsoutputstreamisy.Hence,werelate witheveryinputstreamauniqueoutputstream,inaway,wegetaω-translationfrom T. Itisnothardtoshowthefollowinglemmas, Lemma4. Let T and T be two i/o transition systems, and T ↔ T . Then they 1 2 1 b 2 realizethesameω-translation. Proof. We let s and s betheinitialstatesofT andT ,respectively.AsT ↔ T , 1 2 1 2 1 b 2 we havethatfor everyσ ∈ Tr∞(s ), there existsa trace σ′ ∈ Tr∞(s ), andthey share w 1 w 2 thesameinputandoutputstream,andviceversa.ItfollowsthatT andT realizethe 1 2 sameω-translation. Lemma5. LetT beaninteractivei/otransitionsystem,andlet s beitsinitialstate, 0 thenthefollowingfunctioniscomputable:g:Σ∗ →Σ∗,satisfyingthatifg(x)=y,then foreveryσ∈Tr∞(s )withinputandoutputstreamxandy,ifx≺ x,theny≺ y. w 0 Proof. We considerafinitetracefrom s ,wecanassociatewithsucha traceitsinput 0 andoutputsequencesinasimilarwayasdefinedinDefinition12.ByLemma2,there is only one finite trace with x as its input sequence, and its output sequence is y. By totality,itholdsforeveryx∈Σ∗.Asthetransitionrelationofi/otransitionsystemsare computable,gisalsocomputable. Moreover,wehavethefollowingtheorem. Theorem3. Anω-translationisanexecutableiffitisalimit-continuoustotalfunction. Proof. Weletφbeanω-translation. 1. Forthe“onlyif”part,weneedtoshowthatthereexistsacomputabletotalfunction g : Σ∗ → Σ∗, suchthatg is monotonicand forallstrictly increasingchainsu ≺ 1 u ≺...≺u ≺...withu ∈Σ∗ (t≥1),onehasφ(lim u)=lim g(u). 2 t t t→∞ t t→∞ t We assume thatφisrealizedbyaninteractivei/otransitionsystemT, andwe let s be the initial state of T. By Lemma 5 the following function is computable: 0 g :Σ∗ →Σ∗,satisfyingthatifg(x)= y,thenforeveryσ ∈ Tr∞(s )withinputand w 0 output stream x and y, if x ≺ x, then y ≺ y. By unambiguityand totality, g is a monotonicandtotalcomputablefunction. Moreover,forastrictlyincreasingchainu ≺ u ≺ ... ≺ u ≺ ...withu ∈ Σ∗ for 1 2 t t t ≥ 1, the computationoflim g(u) is the executionof a trace σ receivingthe t→∞ t inputstreamlim u.Hencewehaveφ(lim u)=lim g(u). t→∞ t t→∞ t t→∞ t Thus, g is the computabletotal functionwe need, and it followsthat φ is a com- putablelimit-continuoustotalfunction. 2. Forthe“if”part,weassumethatφisatotallimit-continuousfunction,anddesign anRTMMtorealizethistranslation.ByTheorem1,φisinteractivelycomputable bysomeITMM′.AccordingtoDefinition9andLemma2, thetransitionsystem associatedwithM′isani/otransitionsystem,moreover,accordingtoCorollary1, it is an executable i/o transition system. Therefore, we have shown that φ is an executableω-translationbyLemma4.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.