ebook img

On the Design of an Arti cial Di usion Model for the Lagrange-Galerkin Method on Unstructured ... PDF

30 Pages·1996·1.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Design of an Arti cial Di usion Model for the Lagrange-Galerkin Method on Unstructured ...

Report no. 96/07 On the Design of an Arti(cid:12)cial Di(cid:11)usion Model for the Lagrange-Galerkin Method on Unstructured Triangular Grids Paul Houston Endre Su(cid:127)li In this paper we propose the addition of an arti(cid:12)cial di(cid:11)usion model to the Lagrange-Galerkin (cid:12)nite element method, which is de- pendent on both the mesh function h and the numerical solution uh. The purpose of this additional term is to produce smooth ap- proximations to sharp features of the solution, such as internal and boundary layers. Moreover, the added di(cid:11)usion will help to stabilise the numerical scheme. Further, we extend the a posteriori error analysis presented in [12] to include this arti(cid:12)cial di(cid:11)usion model. Based on this a posteriori estimate, we design an adaptive algorithm to ensure global control of 2 2 the error in the L (L ) norm with respect to a pre-determined toler- ance. The performance of this numerical algorithm is demonstrated by some numerical experiments. Key words and phrases: Arti(cid:12)cial di(cid:11)usion, Lagrange-Galerkin (cid:12)nite element methods, a posteriori error analysis, adaptive algorithms The (cid:12)rst author would like to acknowledge the (cid:12)nancial support of the EPSRC. The work reported here forms part of the research programme of the Oxford{Reading Institute for Computational Fluid Dynamics. Oxford University Computing Laboratory Numerical Analysis Group Wolfson Building Parks Road Oxford, England OX1 3QD May, 1996 2 Contents 1 Introduction 3 2 Notation and basic de(cid:12)nitions 4 3 Model problem and discretisation 5 3.1 The Lagrange-Galerkin method : : : : : : : : : : : : : : : : : : : 5 3.2 Design of the arti(cid:12)cial di(cid:11)usion model : : : : : : : : : : : : : : : 8 4 A posteriori error analysis 9 4.1 Error representation : : : : : : : : : : : : : : : : : : : : : : : : : 9 4.2 Interpolation/projection estimates for the dual problem : : : : : : 11 4.3 Strong stability of the dual problem : : : : : : : : : : : : : : : : : 15 4.4 Completion of the proof of the a posteriori error estimate : : : : : 16 5 Adaptive algorithm 20 6 Numerical Experiments 22 6.1 Experiment 1: Boundary and internal layer problem : : : : : : : : 22 6.2 Experiment 2: Rotating cylinder problem : : : : : : : : : : : : : : 25 7 Conclusions 28 References 29 3 1 Introduction Over the last decade the Lagrange-Galerkin (cid:12)nite element method has been suc- cessfully used for the numerical solution of unsteady convection-dominated dif- fusion problems, see Bercovier et al. [2,3], Douglas & Russell [6], Lesaint [15], Pironneau [17] and Su(cid:127)li [21,22], for example. This numerical scheme is based on combininga(cid:12)niteelementprocedurewiththemethodofcharacteristicstoexploit the `nearly-hyperbolic' nature of these problems. While the Lagrange-Galerkin method gives a dramatic improvement over the standard Galerkin method in terms of stability, the scheme may still produce oscillatory approximations in the vicinity of sharp transitions in the numerical solution, such as internal or boundary layers. Further, the integrals that arise in the formulation of the Lagrange-Galerkin method involve the product of (cid:12)nite element basis functions with their shifted counterparts. In general, these integrals cannot be evaluated exactly and some form of approximation must be made. It is well known that if quadrature formulae are employed, then the method (which is unconditionally stable when exact integration is performed) becomes only conditionally stable, see Morton et al. [16] and Priestley [18], for example. To reduce these problems, Priestley [19,20] introduced the positive Lagrange- Galerkinmethodbasedonthe(cid:13)uxcorrectedtransportalgorithmofBoris&Book [4]. In this paper we shall consider a di(cid:11)erent approach: we propose the addition of an arti(cid:12)cial di(cid:11)usion model to the basic Lagrange-Galerkin method dependent on both the mesh function h and the numerical solution uh. This will not only damp spurious oscillations generated by the method, but the added di(cid:11)usion will help to stabilise the numerical scheme, cf. Su(cid:127)li [23]. Additionally, in the context of mesh adaptation, we noted in [12] that for a convection-dominated di(cid:11)usion problem, the spatial mesh re(cid:12)nement algorithm is governed by the `hyperbolic part' of the residual of the underlying partial di(cid:11)erential equation. Further, it was shown in [12] that this hyperbolic residual will concentrate the spatial mesh near sharp features of the solution that are not orthogonal to the (cid:13)ow direction. Indeed, internal layers that are aligned with the (cid:13)ow direction were less re(cid:12)ned, despite the error being locally large in these regions. Thus, the addition of the arti(cid:12)cial di(cid:11)usion into the numerical scheme will ensure that the spatial adaptive algorithm is no longer dominated by the hyperbolic part of the residual, and consequently that all sharp features of the solution will be appropriately re(cid:12)ned. The outline of the rest of this paper is as follows: in Section 2 we summarise some of the notational conventions that we shall use. In Section 3 we state the model problem to be considered and formulate the Lagrange-Galerkin method for this problem. Furthermore, in this section we design an appropriate arti(cid:12)cial di(cid:11)usion model and formulate the `discontinuity capturing' Lagrange-Galerkin method. In Section 4 we extend the a posteriori error analysis presented in [12] for the discontinuity capturing Lagrange-Galerkin method using the general approach developed by C. Johnson and his co-workers (see [7,8,9,10,11,14], for 4 example). InSection 5wedesign anadaptive algorithmbased onthisaposteriori 2 2 estimate to ensure global control of the error in the L (L )-norm with respect to a pre-determined tolerance. In Section 6 we present some numerical experiments to illustrate the performance of our adaptive strategy. Finally, in Section 7 we summarise the work presented in this paper. 2 Notation and basic de(cid:12)nitions Let Z denote the set of integers, N the set of positive integers, N0 the set of + non-negative integers, R the set of real numbers and R the set of positive real numbers. d Let ! be a bounded open subset of R , where d 2 N. For 1 (cid:20) p (cid:20) 1, p let L (!) denote the usual Lebesgue space of real-valued functions with norm 2 2 k (cid:1) kLp(!). For p = 2 and for u;v 2 L (!) we denote by ((cid:1);(cid:1))! the L (!) inner product de(cid:12)ned as Z (u;v)! := u(x)v(x)dx: ! For ! = (cid:10), we denote k(cid:1)kL2((cid:10)) by k(cid:1)k, and ((cid:1);(cid:1))! by ((cid:1);(cid:1)). If (cid:11) = ((cid:11)1;:::;(cid:11)d), with each (cid:11)i 2 N; i = 1;:::;d, we write j(cid:11)j := (cid:11)1+:::+ (cid:11)d and (cid:11)! := (cid:11)1!(cid:11)2!:::(cid:11)d!. (cid:11) (cid:11)1 (cid:11)d Let D := D1 :::Dd and Dj = @=@xj for 1 (cid:20) j (cid:20) d. For m 2 N0, we m denote by C (!) the set of all continuous real-valued functions de(cid:12)ned on ! (cid:11) m such that D u is continuous on ! for all j(cid:11)j (cid:20) m. C (!(cid:22)) will denote the set of m (cid:11) all u in C (!) such that D u can be extended from ! to a continuous function on !(cid:22) for all j(cid:11)j (cid:20) m. In particular, when m = 0 we simply write C(!(cid:22)) instead of 0 m m C (!(cid:22)). C0 (!(cid:22)) will denote the set of functions in C (!(cid:22)) with compact support m;1 m in !(cid:22). Also, C (!(cid:22)) will denote the set of functions in C (!(cid:22)) for which, for (cid:11) 0 (cid:20) j(cid:11)j (cid:20) m, D u is Lipschitz-continuous in !(cid:22). m;p Further, for m 2 N0, let W (!) denote the classical Sobolev space endowed with the norm k (cid:1) kWm;p(!) and the semi-norm j (cid:1) jWm;p(!) (cf. Adams [1]). For m m;2 m p = 2 we write H (!) for W (!). H0 (!) will denote the closure of the space m of in(cid:12)nitely smooth functions with compact support in ! in the norm of H (!). m (cid:0)m The dual space of H0 (!) will be denoted by H (!). 2 Let X be any of the spaces just de(cid:12)ned. Then X will denote the topological product X (cid:2)X. 5 3 Model problem and discretisation Given a (cid:12)nal time T > 0, we shall consider the following unsteady convec- 2 (cid:0)1 2 tion-di(cid:11)usion problem: given that f 2 L (0;T;H ((cid:10))) and u0 2 L ((cid:10)), (cid:12)nd 1 2 u(t) 2 H0((cid:10))\H ((cid:10)) such that: ut +a(cid:1)ru(cid:0)(cid:15)(cid:1)u = f; x 2 (cid:10); t 2 I; (3.1a) u((cid:1);t) = 0; x 2 @(cid:10); t 2 I(cid:22); (3.1b) u(x;0) = u0(x); x 2 (cid:10); (3.1c) 2 where (cid:10) is a bounded convex polygonal domain in R with boundary @(cid:10) and I = (0;T]. Further, we assume that the di(cid:11)usion coe(cid:14)cient (cid:15) > 0, the velocity (cid:12)eld a 2 C(0;T;C01((cid:10)(cid:22))2) and that a is incompressible, i.e. r(cid:1)a = 0 8x 2 (cid:10); t 2 I: (3.2) 3.1 The Lagrange-Galerkin method In this section we shall formulate the standard Lagrange-Galerkin method for (3.1) without the additional arti(cid:12)cial di(cid:11)usion term. However, we (cid:12)rst need to introduce the following notation. 0 1 M M+1 Let 0 = t < t < ::: < t < t = T be a subdivision (not necessarily n n(cid:0)1 n uniform) of I, with corresponding time intervals I = (t ;t ] and timesteps n n(cid:0)1 n kn = t (cid:0)t . For each n, let T = fKg be a partition of (cid:10) into closed triangles K, with corresponding mesh function hn 2 C0;1((cid:10)(cid:22)) satisfying n jrhn(x)j (cid:20) (cid:22) 8x 2 K 8K 2 T ; (3.3a) 2 n c1hK (cid:20) meas(K) 8K 2 T ; (3.3b) n c2hK (cid:20) hn(x) (cid:20) hK 8x 2 K 8K 2 T ; (3.3c) where hK is the diameter of K (= longest side of K) and c1, c2 and (cid:22) are positive constants. Further, h is de(cid:12)ned to be the global mesh function de(cid:12)ned n by h(x;t) = hn(x), for (x;t) 2 (cid:10)(cid:2)I and we de(cid:12)ne the corresponding time step n function k = k(t) by k(t) = kn; t 2 I . n n Let S = (cid:10)(cid:2)I ; for p;q 2 N0 we de(cid:12)ne hn 1 n S = fv 2 H0((cid:10)) : vjK 2 Pp(K) 8K 2 T g; q X hn j hn V = fv : v(x;t)jSn = t vj; vj 2 S g; j=0 h hn V = fv : v(x;t)jSn 2 V ; n = 1;:::;M +1g; where Pp(K) denotes the set of polynomials of degree at most p over K. In the following, we shall assume that p = 1 and q = 0. We note that if hn v 2 V for n = 1;:::;M + 1, then v is continuous in space at any time, but 6 n may be discontinuous in time at the discrete time levels t . To account for this, we introduce the notation n n v(cid:6) := sl!im0+v(t (cid:6)s); and n n n [v ] := v+ (cid:0)v(cid:0): n n For some n 2 N0, we associate with T the set E = f(cid:28)g consisting of those 2 n line segments in R which appear as an edge of some K 2 T . We also denote n n by Ei , those (cid:28) in E which are interior to (cid:10) (i.e. not part of @(cid:10)). n For each (cid:28) 2 Ei , let n(cid:28) denote the unit normal to (cid:28) in the outward direction hn to K, and de(cid:12)ne for w 2 S (for some n 2 N0), " # @w = lim (rw(x+sn(cid:28))(cid:0)rw(x(cid:0)sn(cid:28)))(cid:1)n(cid:28); x 2 (cid:28); @n(cid:28) s!0+ that is, [@w=@n(cid:28)] is the jump across (cid:28) in the normal component of rw. Finally, we introduce the discrete second derivatives (cid:12)" #(cid:12) 2 X (cid:12)(cid:12) @w (cid:12)(cid:12) 1 n DhwjK = (cid:28)2@K\Ein(cid:12)(cid:12) @n(cid:28) (cid:12)(cid:12) hK; K 2 T ; (3.4) (cid:12)" #(cid:12) (cid:14)2 X (cid:12)(cid:12) @w (cid:12)(cid:12) 1 n DhwjK = (cid:28)2@K\En(cid:12)(cid:12) @n(cid:28) (cid:12)(cid:12) hK; K 2 T ; (3.5) where, in (3.5) we de(cid:12)ne rw(x+sn(cid:28)) = 0 if (cid:28) 2 @(cid:10). To construct the Lagrange-Galerkin method, we (cid:12)rst de(cid:12)ne the particle tra- jectories (or characteristics) associated with problem (3.1): the path of a particle located at position x 2 (cid:10) at time s 2 I is de(cid:12)ned as the solution of the initial value problem d X(x;s;t) = a(X(x;s;t);t); (3.6a) dt X(x;s;s) = x: (3.6b) 1 (cid:22) 2 We note that for a 2 C(0;T;C0((cid:10)) ) there exists a unique solution to (3.6). The Lagrange-Galerkin method makes use of the material derivative, Dtu, which is de(cid:12)ned, for u smooth enough, as follows: d Dtu(x;t) := u(X(x;s;t);t) js=t dt @ = u(x;t)+a(x;t)(cid:1)ru(x;t) 8x 2 (cid:10); t 2 I: (3.7) @t 7 Hence, using the material derivative, equation (3.1) may be rewritten in the following (weak) form: (cid:12)nd u(t) 2 V, such that (Dtu((cid:1);t);v)+((cid:15)ru((cid:1);t);rv) = (f((cid:1);t);v) 8v 2 V; (3.8a) (u((cid:1);0);v) = (u0;v) 8v 2 V; (3.8b) 1 where V = H0((cid:10)). The Lagrange-Galerkin time-discretisation involves approx- imating the material derivative by a divided di(cid:11)erence operator along the par- ticle trajectories. The simplest appropriate discretisation is the backward Euler method, giving for n = 0;:::;M: ! n+1 n+1 n n u((cid:1);t )(cid:0)u(X((cid:1);t ;t );t ) ;v kn+1 n+1 n+1 +((cid:15)ru((cid:1);t );rv) (cid:25) (f((cid:1);t );v) 8v 2 V; (3.9a) (u((cid:1);0);v) = (u0((cid:1));v) 8v 2 V: (3.9b) n n If we now de(cid:12)ne uh to be the Galerkin (cid:12)nite element approximation to u((cid:1);t ) n at time t ; then applying the (cid:12)nite element method to (3.9) yields the Lagrange- n+1 hn+1 Galerkin discretisation of (3.1) as follows: (cid:12)nd uh 2 S for 0 (cid:20) n (cid:20) M such that ! n+1 n n+1 n uh (cid:0)uh(X((cid:1);t ;t )) ;v kn+1 n+1 (cid:22) hn+1 +((cid:15)ruh ;rv) = (f;v) 8v 2 S ; (3.10a) 0 h0 (uh;v) = (u0;v) 8v 2 S ; (3.10b) where f(cid:22)jSn+1 := f((cid:1);tn+1). This is the same approach as that used by Bercovier et al. [2,3], Douglas & Russell [6], Lesaint [15], Pironneau [17] and Su(cid:127)li [21,22]. n+1 Alternatively, if we integrate (3.10a) with respect to t over I , we obtain the following equivalent formulation: (cid:12)nd uh such that, for n = 0;1;:::;M, uhjSn+1 2 Vhn+1 and satis(cid:12)es h (cid:22) hn+1 (Dtuh;v)n+1 +((cid:15)ruh;rv)n+1 = (f;v)n+1 8v 2 V ; (3.11a) 0 h0 (uh(cid:0);v) = (u0;v) 8v 2 V ; (3.11b) where h DtuhjSn+1 n+1 n+1 n+1 n+1 n n := (uh(cid:0)(X(x;t ;t );t )(cid:0)uh(cid:0)(X(x;t ;t );t ))=kn+1:(3.12) 2 n+1 2 Further, for v;w 2 L (I ;L ((cid:10))), we have used Z tn+1 (v;w)n+1 := (v;w)dt: tn 8 3.2 Design of the arti(cid:12)cial di(cid:11)usion model In this section we discuss the design of an appropriate arti(cid:12)cial di(cid:11)usion model for the Lagrange-Galerkin method. One approach is to modify the test functions v in (3.10), (3.11); for example, if we consider the steady convection di(cid:11)usion problem a(cid:1)ru(cid:0)(cid:15)(cid:1)u = f; x 2 (cid:10); (3.13) then the streamline di(cid:11)usion method applied to (3.13) is a generalisation of the standard Galerkin (cid:12)nite element method with the test functions v replaced by v +(cid:14)a(cid:1)rv; where 1 2 (cid:14) = min((cid:13)1h =(cid:15);(cid:13)2h=jaj); (3.14) 2 and (cid:13)1, (cid:13)2 are positive constants, cf. Hansbo & Johnson [11]. This modi(cid:12)cation of the test functions corresponds to adding arti(cid:12)cial di(cid:11)usion in the streamwise direction; Hughes et al. [13] proposed additional modi(cid:12)cations of the test func- tions to introduce arti(cid:12)cial di(cid:11)usion in other directions. A second alternative is to explicitly add a term of the form ((cid:15)^ruh;rv) to the numerical scheme, where (cid:15)^ = F(uh;h); e.g. for the streamline di(cid:11)usion method applied to the time-dependent problem (3.1), Hansbo & Johnson [11] proposed the following de(cid:12)nition for F: 2 3=2 F(uh;h) = max((cid:13)3h R(uh)(cid:0)(cid:15);(cid:13)4h (cid:0)(cid:15);0); (3.15) where n+1 n R(uh)jSn+1 := ja(cid:1)ruh (cid:0)fj+j[uh]=kn+1j and (cid:13)3, (cid:13)4 are positive constants. Here, we adopt a similar approach, however, we shall propose a di(cid:11)erent de(cid:12)nition for F. Our main criticism of (3.15) is two-fold. Firstly, the arti(cid:12)cial di(cid:11)usion model (3.15) will add more dissipation in elements where sharp features of the solution are not orthogonal to the (cid:13)ow direction a, i.e. where a(cid:1)ruh is large. However, less dissipation will be added where a(cid:1)ruh (cid:24) 0, i.e. in layers that are orthogonal to the (cid:13)ow direction, cf. [12]. Secondly, the dependence of n+1 (3.15) on the numerical solution uh leads to a nonlinear system of equations even when the underlying partial di(cid:11)erential equation is linear. 9 n+1 Instead, we propose to de(cid:12)ne FjK for K 2 T , as follows (cid:14) (cid:14) (cid:15)^ 3 2 n (cid:15)^ 3 2 n F(uh;h)jK = max(C1h Dhu(cid:22)h (cid:0)(cid:15);C2h Dhuh (cid:0)(cid:15);0); (3.16) n n+1 n n (cid:15)^ (cid:15)^ where u(cid:22)h = uh(X(x;t ;t );t ) and C1, C2 are positive constants. The advan- tages of this arti(cid:12)cial di(cid:11)usion model are as follows. Firstly, F is independent of a (cf. [12]), so that sharp features of the solution will be treated equally, irrespective of their orientation with respect to the (cid:13)ow direction. Secondly, F n n+1 depends on uh, not uh , hence we only need to solve a linear system of equa- tions when the problem under consideration is linear. Finally, the calculation of n F is relatively cheap since u(cid:22)h has already been calculated in the time-stepping procedure of the Lagrange-Galerkin method. We may now formulate the Lagrange-Galerkin method with the arti(cid:12)cial dif- fusion model (3.16) as follows: (cid:12)nd uh such that, for n = 0;1;:::;M, uhjSn+1 2 hn+1 V and satis(cid:12)es h (cid:22) hn+1 (Dtuh;v)n+1+(((cid:15)+^(cid:15))ruh;rv)n+1 = (f;v)n+1 8v 2 V ; (3.17a) 0 h0 (uh(cid:0);v) = (u0;v) 8v 2 V ; (3.17b) n+1 where(cid:15)^= F(uh;h)andFjK forK 2 T isde(cid:12)nedby(3.16). Inthefollowingwe shall refer to (3.17) as the `discontinuity capturing' Lagrange-Galerkin method. 4 A posteriori error analysis In this section we shall extend the a posteriori error estimate presented in [12] to the discontinuity capturing Lagrange-Galerkin method (3.17). However, before 2 2 we proceed, let us introduce the following notation: for v;w 2 L (0;T;L ((cid:10))) we de(cid:12)ne XM Z tn+1 (v;w)Q := (v;w)dt; tn n=0 1=2 kvkQ := ((v;v)Q) ; where Q := (cid:10)(cid:2)I. 4.1 Error representation The (backward) dual problem takes the form: (cid:12)nd (cid:30) such that (cid:0)(cid:30)t (cid:0)r(cid:1)(a(cid:30))(cid:0)(cid:15)(cid:1)(cid:30) = e (cid:17) u(cid:0)uh; x 2 (cid:10); t 2 I; (4.1a) (cid:30)((cid:1);t) = 0; x 2 @(cid:10); t 2 I(cid:22); (4.1b) (cid:30)(x;T) = 0; x 2 (cid:10): (4.1c) 10 In the following theorem, we give an existence and uniqueness result for problem (4.1), which guarantees su(cid:14)cient regularity of the solution (cid:30) to enable us to perform the proceeding a posteriori error analysis (see [12]). 2 2 Theorem 4.1 Suppose that e 2 L (0;T;L ((cid:10))), where (cid:10) is assumed to be con- 1 2 2 1 vex; then (4.1) has a unique (weak) solution (cid:30) 2 H (0;T;L ((cid:10)))\L (0;T;H0((cid:10)) 2 \H ((cid:10))). Multiplying (4.1a) by e and integrating by parts in both space and time, we get the following error representation formula: XM Z tn+1 2 kekQ = (e;(cid:0)(cid:30)t (cid:0)r(cid:1)(a(cid:30))(cid:0)(cid:15)(cid:1)(cid:30))dt tn n=0 XM Z tn+1 XM Z tn+1 = (et +a(cid:1)re;(cid:30))dt+ ((cid:15)re;r(cid:30))dt tn tn n=0 n=0 XM n n 0 (cid:0) ([uh];(cid:30)(t ))+(u0 (cid:0)uh(cid:0);(cid:30)(0)) n=0 XM Z tn+1 XM Z tn+1 = (f (cid:0)a(cid:1)ruh;(cid:30))dt(cid:0) ((cid:15)ruh;r(cid:30))dt tn tn n=0 n=0 XM n n 0 (cid:0) ([uh];(cid:30)(t ))+(u0 (cid:0)uh(cid:0);(cid:30)(0)); n=0 h where we have used (3.8a). If we now let (cid:8) 2 V , then using (3.17) we have XM Z tn+1 2 n kekQ = ([uh]=kn+1 +a(cid:1)ruh (cid:0)f;(cid:8)(cid:0)(cid:30))dt tn n=0 XM Z tn+1 + ((cid:15)ruh;r((cid:8)(cid:0)(cid:30)))dt tn n=0 XM Z tn+1 h n + (Dtuh(cid:0)([uh]=kn+1 +a(cid:1)ruh);(cid:8))dt tn n=0 XM Z tn+1 XM Z tn+1 n n (cid:22) + ([uh]=kn+1;(cid:30)(cid:0)(cid:30)(t ))dt+ (f (cid:0)f;(cid:8))dt tn tn n=0 n=0 XM Z tn+1 0 +(u0 (cid:0)uh(cid:0);(cid:30)(0))+ ((cid:15)^ruh;r(cid:8))dt tn n=0 h = I+II+III+IV+V+VI+VII 8(cid:8) 2 V : (4.2)

Description:
estimate, we design an adaptive algorithm to ensure global control of the error in Institute for Computational Fluid Dynamics. Oxford University Computing Laboratory. Numerical Analysis Group. Wolfson Building. Parks Road. Oxford, England exactly and some form of approximation must be made.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.