ebook img

On the Correlation between Spin Parameter and Halo Mass PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Correlation between Spin Parameter and Halo Mass

DRAFTVERSIONFEBRUARY4,2008 PreprinttypesetusingLATEXstyleemulateapjv.04/03/99 ONTHECORRELATIONBETWEENSPINPARAMETERANDHALOMASS ALEXANDERKNEBE1,CHRISPOWER2 DraftversionFebruary4,2008 ABSTRACT WereportonacorrelationbetweenvirialmassMandspinparameterλfordarkmatterhalosformingatredshifts z>10. Wefindthatthespinparameterdecreaseswithincreasinghalomass. Interestingly,ouranalysisindicates 8 th∼athalosformingatlatertimesdonotexhibitsuchastrongcorrelation,inagreementwiththefindingsofprevious 0 studies.Webrieflydiscusstheimplicationsofthiscorrelationforgalaxyformationathighredshiftsandthegalaxy 0 populationweobservetoday. 2 Subjectheadings:galaxies:formation—cosmology:theory—cosmology:earlyUniverse—methods: n numerical a J 1. INTRODUCTION eter(Peebles1969), 9 J E Thephysicalmechanismbywhichgalaxiesacquiretheiran- λ= | |, (1) 2 gularmomentumisanimportantproblemthathasbeenthesub- GM5/2 p ject of investigationfor nearlysixty years(Hoyle 1949). This whereJisthemagnitudeoftheangularmomentumofmaterial ] h reflects the fundamentalrole playedbyangularmomentumof withinthevirialradius,M isthevirialmass,andE isthetotal p galacticmaterialindefiningthesizeandshapesofgalaxies(e.g. energy of the system. It has been shown that halos that have - Fall & Efstathiou1981). Yet despite its physicalsignificance, suffereda recentmajormergerwilltendto havea higherspin o r a precise and accurate understandingof the origin of galactic parameterλthantheaverage(e.g.Hetznecker&Burkert2006; t angular momentum remains one of the missing pieces in the Power,Knebe&Knollmann2008). Thereforeonecouldargue s a galaxyformationpuzzle. that within the framework of hierarchical structure formation [ Afundamentalassumptionincurrentgalaxyformationmod- that higher mass halos should have larger spin parameters on elsisthatgalaxiesformwhengascoolsandcondenseswithin average than less massive systems because they have assem- 1 v the potentialwellsofdarkmatterhalos(White&Rees 1978). bledalargerfractionoftheirmass(bymerging)morerecently. 3 Consequentlyitisprobablethattheangularmomentumofthe However, if we consider only halos in virial equilibrium, 5 galaxywillbelinkedtotheangularmomentumofitsdarkmat- should we expect to see a correlation between halo mass and 4 terhalo(e.g. Fall&Efstathiou1980;Mo,Mao&White1998; spin?Onemightnaïvelyexpectthatmoremassivesystemswill 4 Zavala, Okamoto & Frenk 2007). Within the context of hier- havehadtheirmaximumexpansionmorerecentlyandsothese 1. archical structure formation models, the angular momentum systemswillhavebeentidallytorquedforlongerthansystems 0 growth of a dark matter proto-halo is driven by gravitational that had their maximumexpansion at earlier times. This sug- 8 tidaltorquingduringtheearlystages(i.e. thelinearregime)of geststhatspinshouldincreasewithtimingofmaximumexpan- 0 itsassembly. This“TidalTorqueTheory”hasbeenexploredin sionandthereforehalomass. However,onefindsatbestaweak : detail;itisawell-developedanalytictheory(e.g.Peebles1969, correlationbetweenmassandspinforequilibriumhalosatz=0 v Doroshkevich 1979, White 1984) and its predictions are in (e.g. Cole&Lacey1996;Maccioetal. 2007;Bettetal. 2007, i X goodagreementwith theresultsofcosmologicalN-bodysim- hereafterB07),andthecorrelationisforspintodecreasewith r ulations (e.g. Barnes & Efstathiou 1987; Warren et al. 1992; increasinghalomass,contrarytoournaïveexpectation. a Sugerman, Summers& Kamionkowski2000; Porciani, Dekel Inthispaper,wereportona(weak)correlationbetweenspin & Hoffman 2002). However, once the proto-halo has passed and mass for equilibrium halos at redshift z=10. The trend is through maximum expansion and the collapse has become forhigher-masshalostohavesmallerspins,andisqualitatively non-linear, tidal torquing no longer provides an adequate de- similar to the one reported by B07 for the halo population at scription of the evolution of the angular momentum (White z=0. We presentthe main evidencein supportof this correla- 1984),whichtendstodecreasewithtime. Duringthisphaseit tion in Section 4 and we consider its implications for galaxy is likely thatmergerandaccretioneventsplayan increasingly formationinSection6. importantroleindeterminingboththemagnitudeanddirection oftheangularmomentumofagalaxy(e.g. Bailin&Steinmetz 2. THESIMULATIONS 2005). Indeed, a number of studies have argued that mergers Forthesimulationspresentedinthispaperwehaveadopted and accretion events are the primary determinants of the an- the cosmology as given by Spergel et al. (2003) (Ω = 0.3, 0 gular momenta of galaxies at the present day (Gardner 2001; ΩΛ =0.7, σ8 =0.9, and H0 =70km/sec/Mpc). Each run em- Maller,Dekel&Somerville2002;Vitvitskaetal.2002). ployed N =2563 particles and differed in simulation box-size L ,whichleadstotheparticlemassm differingbetweenruns box p Itiscommonpracticetoquantifytheangularmomentumof – m =ρ Ω (L /N)3, where ρ =3H2/8πG. This allows adarkmatterhalobythedimensionless“classical”spinparam- p crit 0 box crit 0 ustoprobearangeofhalomassesatredshiftz=10.Theprimary parametersofthesesimulationsaresummarizedinTable1. 1AstrophysikalischesInstitutPotsdam,AnderSternwarte16,14482Potsdam,Germany 2CentreforAstrophysics&Supercomputing,SwinburneUniversity,MailH31,POBox218,Hawthorn,VIC3122,Australia 1 2 Halos in all runs have been identified using the MPI paral- (2008)andourinterpretationisconsistentwiththecorrelations lelizedversionoftheAHFhalofinder3(AMIGA’s-Halo-Finder), wefindintheseruns. Thesecondisthatthetypicalcollapsing whichisbasedontheMHFhalofinderofGill,Knebe&Gibson massM∗ atz=10issmall–oforder103h- 1M –andbecause ⊙ (2004). Foreachhalowe computethevirialradiusR, defined weresolvemassscalesthathavecollapsedmoreorlesssimul- astheradiusatwhichthemeaninteriordensityis∆ timesthe taneously,weseeapopulationthathasyettorelax.Atz=1,the vir backgrounddensityoftheUniverseatthatredshift. Thisleads typicalcollapsingmassismuchlarger–oforder1011h- 1M – ⊙ tothefollowingdefinitionforthevirialmassM: andsoweresolveapopulationofhaloswhosemassaccretion histories are more diverse. The most massive systems tend to M= 4π∆ Ωρ R3. (2) be ones that have formed most recently, and are therefore the vir crit 3 leastdynamicallyrelaxed. Note that∆ is a functionof redshiftand amountsto ∆ We have used the following relation between Q and M to vir vir 210 at redshift z=10 , ∆ 230 at z=1, and the “usua≈l” classifydynamicallyrelaxedandunrelaxedsystems: vir ∆ 340atz=0(cf. Gross1≈997).Table1summarisestheto- vir talnu≈mberofhalos(Nhalos)recoveredbyAHF,whilezfinalgives Qallowed ∝ M- 0.015 ,forz=1 (4) theredshiftthatthesimulationhasbeenevolvedto. Qallowed const. ,forz=10 ∝ We addthatweranfiverealisationsofB20toredshiftz=10 We allow the Q valuesof halosin oursample to deviate from inordertohaveastatisticallysignificantsampleofhalosinthat thesescalingrelationsbynotmorethan particularmodel.However,wealsonotethatthefittingparam- eterspresentedinthefollowingSectionarerobustinthesense Q - Q Q Q +Q (5) that they do not depend on whether we stack the halos from allowed lim≤ ≤ allowed lim thosefiverunsorusethemindividually. withQlim=0.15(indicatedbythedashedlinesinFig.1). Fur- thermore, we consider only halos that contain at least N = min 3. THEHALOSAMPLE 600particleswithintheirvirialradiustoensurethatwearenot Weshowinacompanionpaper(Power,Knebe&Knollmann influenced by particle discreteness. Interestingly, when com- 2008)thatasubstantialfractionofthe halopopulationathigh puting spin, the tighest restriction on particle number comes redshiftisnotinvirialequilibrium. Becausewewishtoexam- not from the calculation of angular momentum but from the inethespindistributionofequilibriumhalos,itisimportantto calculationofthepotentialenergy.Bycomparinganalyticsolu- accountforunrelaxedsystemswheninvestigatingcorrelations tionswithMonteCarlorealisationsofNavarro,Frenk&White between spin and halo mass. For example, it has been shown (1997)haloes,wefindthatatleast600particlesarerequiredif that the spin can increase sharply in the aftermath of mergers theenergyistobecomputedtobetterthan10%. with massratiosas modestas5:1(e.g. Hetznecker& Burkert 4. THESPIN-MASSCORRELATION 2006),andthatthedegreetowhichahaloisindynamicalrelax- ation isas importantasrecentmerginghistoryin its influence Calculating the total energy E of a halo is computationally on spin (D’Onghia & Navarro 2007). To ensure that halos in expensive,andsocomputingλusingEq.(1)isalsoexpensive. oursampleareinvirialequilibrium,wecomputethevirialratio This prompted Bullock et al. (2001) to introduce a modified foreachhalo,whichwedefineas spinparameter 2T+S J Q= p+1. (3) λ′= , (6) U √2MVR Here T represents the kinetic energy, U the potential energy, whereV = GM/Rmeasuredthecircularvelocityatthevirial andS thesurfacepressureofagivenhaloofmassM. Byin- p radiusRandJ representstheabsolutevalueoftheangularmo- cluding S , we can accountfor the effect of infalling material p mentum. Wpe follow Bullock et al. and compute spin using on the dynamical state of the halo. Each of these quantities equation(6). are evaluatedusing allgravitationallyboundparticles, andwe InFigure2,weinvestigatethecorrelationbetweenhalospin adopttheformulaofShawetal.(2006)forthesurfacepressure λ′ and mass M. We show only halos that fulfill our selec- termS (cf. equations.(4)-(6)intheirstudy). p tioncriteria(individualdots)andbinthedatainfivemassbins InFigure1weshowthattherelationbetweenhalomassand equallyspacedinlog-spacebetweenM andM ofthecon- Q canvarywithmass. Thisisapparentatredshiftz=1, where min max sidered halos at the respective redshift. The values plotted as wefindatrendformoremassivehalostobelessvirialised. In histogramstherebyrepresenttheweightedmeanofallspinpa- contrast, high redshift halos are less virialised on average (as indicatedbytheincreasedaverage Q - 0.3),butwefindno rameters in the respective mass range where the weight is in- h i≈ verselyproportionaltotheerrorestimate apparenttrendwithmass. Why is there a mass dependence at z=1 but not at z=10? σ 0.2 Therearetwofactors.Thefirstisthathighredshifthalos“see” J = (7) aneffectiveslopeoftheinitialpowerspectrumofn - 3,and J λ′√N eff ≈ so the time at which a particular mass scale starts to collapse forthespinparameterofahaloconsistingofN particlesasde- is relatively insensitive to mass. Therefore we do not expect rivedin Bullock et al. (2001)(cf. equation(7) in that study). to find a strong correlation between virial state Q and mass. The error bars indicate the standard deviation of the spin pa- Wehavecheckedthishalopopulationsdrawnfromthesimula- rametervaluesinthebinfromtheweightedmean.4 tionsofscale-freecosmologiesofKnollmann,Power&Knebe Thebestfittingpower-lawstothesehistogramsrevealthat 3AHFisalreadyfreelyavailablefromhttp://www.aip.de/People/aknebe 4Weliketonoteinpassingthatwealsoperformedalloftheanalysisandstabilitychecksusingthemedianandthescatteraboutthemedianineachbin. The resultsremainunaffectedandwethereforedecidetoonlylistthemfortheweightedmeans. 3 – Q =0.5 lim λ′ Mα (8) ∝ Netoetal. (2007)criteria: with • α = - 0.002 0.149 ,forz=1 – Nmin=600 α = - 0.059±0.171 ,forz=10. (9) – x <0.07 ± off This indicates that there is a weak correlation at high red- – f <0.1 sub shiftsforspintodecreasewithincreasingmass,albeitstronger than the one at z=1. We compute Spearman rank correlation Here N is again the minimum number of particles in a min coefficientsatz=10(1)andfindRs=- 0.137(0.06). halo,QlimtheviriallimitasdefinedinEq.(5),xoffmeasuresthe As an alternative approach, we fit a lognormal function to distancebetweenthemostboundparticleandthecentreofmass eachofourhalosamplesatz=10andz=1, inunitsofthevirialradius,ρ isanindicatorofhowwellthe rms densityprofileofthehalocanbefittedbyaNavarro,Frenk& 1 ln2(λ′/λ′) White (1997) profile (cf. Eq. (2) in Maccio et al. 2007), and P(λ′)= exp - 0 . (10) λ′√2πσ0 2σ02 ! fsub is the fraction of mass in subhalos. The resulting power lawslopesα(cf. Eq.(8))forz=1andz=10arepresentedin TheresultingcurvesarepresentedinFig.3whereasthebest-fit Table6.Againwenotethatthereappearstobeamuchstronger parameters, median values for λ′ =median(λ′) and median correlationbetweenλ′ andM athigherredshift. Whilethere- med halomassesMmed aregiveninTable2. Inspectionofthebest- lation is consistent with zero at z=1 (as confirmed by Maccio fitparametersconfirmthatthemedianspindeclinesaswemove et al. 2007) spin and mass are correlated at z=10. How this fromlessmassivetomoremassiveobjectsathighredshift. resultrelatestotheBettetal. (2007)result–whofindaweak correlationatz=0–willbediscussedinthefollowingSection. 5. STABILITYOFRESULTS Becauseoftheweaknatureofthemeasuredcorrelationitis 6. CONCLUSIONSANDDISCUSSION vitallyimportanttocheckitscredibilitybyperformingastatis- We have performed a careful investigation of the relation ticalanalysis.Tothisextentweinvestigatethesensitivityofthe betweenvirialmassanddimensionlessspinparameterfordark logarithmicslopeαwithrespecttoanumberofparametersthat matterhalosformingathighredshiftsz>10inaΛCDMcos- enter into its determination, namely the number of bins Nbins mology. Theresultofourstudy,which∼isbasedona seriesof usedforthehistograms;thevirialisationcriterionparametrized cosmological N-body simulations in which box size was var- via Qlim; and the minimum number of particles Nmin within a iedwhilekeepingparticlenumberfixed,indicatesthatthereis halo’svirialradius. Notethatwevaryoneparameteratatime, a weak correlation between mass and spin at z=10, such that keepingtheothersattheirfixed“standard”values. Theresults the spin decreases with increasing mass. If there is a corre- arepresentedinTable3,Table4,and5. lation at z=1, we argue that it is significantly weaker than the Wefindthatbinnumberhaspracticallynoeffectontheslope. one we find at z=10; this is in qualitative agreement with the SimilarlywefindthatvaryingthevirialisationcriterionQlimhas findings of previous studies that focused on lower redshifts littleeffectontheslopeoftherelationbetweenmassandspin, (Maccio et al. 2007, Shaw et al. 2005, Lemson & Kauffmann regardless of redshift (Table 4). In contrast, we find that the 1999). minimumnumberof particleswithin a halo’svirialradiushas astrongandsystematiceffectontheresultatz=1–asNmin in- Interestingly, B07 find a weak correlation between me- creases, wefindthatthelogarithmicslopebecomesshallower. dian spin and halo mass at z=0 in the Millennium Simulation Thisdoesnotappeartobetrueathighredshift,althoughaswe (Springelet al. 2005), in the same spirit as the one presented go to earlier times we find that the number of massive haloes here for z=10: lower mass halos tend to have higher spins. becomesprogressivelysmallerandourdeterminationofαbe- However, as we show, the correlation between halo mass and comesincreasinglyunreliable. spinisweakeratz=1thanatz=10,whereasthecorrelationre- Thesetestsleadustobelievethatourresultsarebothstable ported in B07 for halos at z=0 is much stronger than the one andreliable,andourmainresultholds:thecorrelationbetween we find at z=1. This is not what one would expect, and so spinparamaterλ′ andhalomassM isoneorderofmagnitude it is important to try and understand the source of the differ- largeratredshiftz=10thanatz=1. encebetweenourresultatz=1andtheB07resultatz=0. B07 fitted a 3rd-order polynomial to the median spins of halos in Asafurthertestofthecredibilityofthecorrelationwemea- themassrange3 1011<M/(h- 1M⊙)<3 1014 atz=0. The sure between halo mass and spin, we use the criteria of three form of this poly×nomial∼is extremely s∼ensi×tive to the precise otherstudiestoselectourhalosample. Theseare: valuesofthebest-fitparameters(Bett,privatecommunication) and it is not straightforward to extrapolate its behaviour out- Maccioetal. (2007)criteria: side of the given mass range and redshift. We derive our es- • timates of the power-lawexponentsfrom the spin distribution – N =250 min withrespecttohalomassatz=1.Ourhaloslieinthemassrange – xoff<0.04 3 109<M/(h- 1M⊙)<5 1012. B07basetheirmedianspins × × – ρ <0.4 upon ∼1.5 million ha∼los with correspondingly small errors, rms ∼ and note that the weak nature of the trend of spin with mass Bettetal. (2007)criteria: makesithardtodetect. Thissuggeststousthatthecorrelation • betweenmassandspinatz=10isremarkablystrongratherthan – N =300 thecorrelationatz=1beingtooweak! min 4 When studying correlations between halo mass and spin, diskwithascalelengthdeterminedbythespecificangularmo- greatcaremustbetakenindefiningthehalosample. Inpartic- mentumofthegas,whichwewouldexpecttoberelatedtothe ular, wefindthatmassresolution(i.e. the numberofparticles angularmomentumofthehalo(e.g. Zavala,Okamoto&Frenk with which a halo is resolved) and the degree of virialisation 2007). of a halo can have a significant effect on the strength of the If more massive halos at high redshifts show a tendency to correlation(atleastatz=1, cf. Table5). This–atleast–isin havesmallerspinparameters,thegasdiskswillhavelowerspe- goodagreementwiththefindingsofB07. cificangularmomentaandthereforewillbemorecentrallycon- centrated.Ifstarformationratecorrelateswithsurfacedensity, We note that Power & Knebe (2006) demonstrated that the thenwemightexpectthestarformationratetobeenhancedin sizeofsimulationboxcanleadtoasuppressionofangularmo- moremassivehalos.Becausemassivehalostendtoformprefer- mentum in smaller boxes, due to the absence of longer wave- entiallyinhighdensity,highlyclusteredenvironmentsinwhich length perturbations in the initial conditions. This will lead themergerratealsotendstobeenhanced,thenwemightexpect to a bias in our estimate of λ (approximatelya 10%effect) star formation to proceed more rapidly and at earlier times in ∼ butwehaveverifiedthatthespindistributionsweobtainfrom thesehalos. Mightthisexplaintheeffectof“downsizing”(e.g. a B20 run truncated on scales larger than the longest wave- Cowie et al. 1996), the successive shifting of star formation length perturbation modelled in the B1 run produces results fromhigh-tolow-massgalaxieswithdecreasingredshift? We that are consistent. Indeed, we would expect the correlation shallpursuethisinamorequantitativemannerinfuturework. to be strengthenedif the B1 spinswere correctedfor boxsize effects. AK would like to thank Swinburne University for its hos- pitality where this work was initiated. AK further acknowl- Itisinterestingtospeculateontheconsequencesofthiscor- edges funding through the Emmy Noether programme of the relation for galaxy formation at high redshifts and the galaxy DFG(KN755/1). CPacknowledgesfundingthroughtheARC populationweobservetoday. Inthestandardpictureofgalaxy Discovery Projected funded “Commonwealth Cosmology Ini- formation,gascoolsontodarkmatterhalosandisshockheated tiative”, grantDP 0665574. The simulationspresented in this tothevirialtemperatureofthehalo.Theangularmomentumof paperwerecarriedoutontheBeowulfclusterattheCentrefor thegasandthedarkmattershould(initially)besimilarbecause Astrophysics&Supercomputing,SwinburneUniversityaswell theyaresubjecttothesametidalfield. Astheinnermostdens- astheSanssouciclusterattheAstrophysikalischesInstitutPots- estpartsofthegaseoushalocool,theywillsettleintoagaseous dam. REFERENCES Barnes,J.;Efstathiou,G.;1987,ApJ319,575 Maccio,A.V.;Dutton,A.A.;vandenBosch,F.C.;Moore,B.;Potter,D.;Stadel, Bett, P.; Eke, V.; Frenk, C.S.; Jenkins, A.; Helly, A.; Navarro, J.; 2007, J.;2007,MNRAS378,55 astro-ph/0608607 Maller,A.H.;Dekel,A.;Somerville,R.;2002,MNRAS329,423 Bullock,J.S.;Dekel,A.;Kolatt,T.S.;Kravtsov,A.V.;Klypin,A.A.;Porciani, Mo,H.J.;Mao,S.;White,S.D.M.;1998,MNRAS295,319 C.;Primack,J.R.;2001,ApJ555,240 NavarroJ.F.,FrenkC.S.,WhiteS.D.M.,1997,ApJ490,493 Cole,S.;Lacey,C.;1996,MNRAS281,726 NetoA.F.,etal.,astro-ph/0706.2919 CowieL.L.,SongailaA.,HuE.M.,ChoenJ.G.,1996,AJ112,839 PeeblesJ.;1969 Doroshkevich,1979 Power,C.B.;Knebe,A.;Knollmann,S.;2008,MNRASsubmitted FallS.M.&EfstathiouG.1980,MNRAS,193,189 Porciani;Dekel;Hoffman;2002 Gao,L.;White,S.D.M.;2007,MNRAS377,L5 Shaw,L.D.;Weller,J.;Ostriker,J.P.;Bode,P.;2006,ApJ646,815 Gardner,J.P.;2001,ApJ557,616 Spergel,D.;etal.;2003 Gill,S.P.D.;Knebe,A.;Gibson,B.K.;2004,MNRAS351,399 Springel,V.;etal.;2005,Nature435,629 GottloeberS.,YepesG.,2007,ApJ664,117 Sugerman;Summers;Kamionkowski;2000 Gross,M.A.K.,1997,PhDthesisUniv.California,SantaCruz Vitvitska, M.; Klypin, A.A.; Kravtsov, A.V.; Wechsler, R.H.; Primack, J.R.; Hetznecker,H.;Burkert,A.;2006,MNRAS370,1905 Bullock,J.S.;2002,ApJ581,799 KnollmannS.,PowerC.,KnebeA.,2008,MNRASaccepted White,S.D.M.&Rees,M.1978,MNRAS,183,341 Lemson,G.;Kauffmann,G.;1999,MNRAS302,111 White,S.D.M.;1984 ZavalaJ.,OkamotoT.&Frenk.C.S.astro-ph/0710.2901 5 TABLE 1 SUMMARY OF THECOSMOLOGICAL SIMULATIONS AND NUMBEROF HALOS. run L [h- 1Mpc] m [h- 1M ] z Nz=1 Nz=10 Nz=1 Nz=10 box p ⊙ final halos halos relaxedhalos relaxedhalos B01 1 4.9 103 10 — 8780 — 286 B02 2.5 7.8×104 10 — 7991 — 201 B05 5 6.2×105 1 16917 6532 832 109 B10 10 4.9×106 1 18589 4360 949 37 B20 20 4.0×107 1 20514 10947 995 27 B100 100 4.9×109 1 24696 — 978 — × TABLE 2 FITTING PARAMETERS FORP(λ). run λ′0 σ λ′med Mmed[h- 1M⊙] run λ′0 σ λ′med Mmed[h- 1M⊙] z=1 z=10 — B01 0.042 0.538 0.041 5.95e+06 — B02 0.040 0.539 0.037 8.19e+07 B05 0.033 0.521 0.031 7.92e+08 B05 0.036 0.516 0.035 5.63e+08 B10 0.037 0.527 0.034 6.15e+09 B10 0.033 0.540 0.029 4.14e+09 B20 0.038 0.543 0.036 5.40e+10 B20 0.030 0.251 0.027 3.33e+10 B100 0.037 0.535 0.035 5.25e+12 — TABLE 3 VARIATION OFαWITHNbins (Qlim=0.15,Nmin=600). Nbins αz=1 σα αz=10 σα ± ± 4 -0.001 0.169 -0.061 0.191 ± ± 5 -0.002 0.149 -0.059 0.171 ± ± 6 -0.005 0.137 -0.053 0.155 ± ± 7 -0.006 0.128 -0.056 0.144 ± ± 8 -0.003 0.120 -0.069 0.132 ± ± TABLE 4 VARIATION OFαWITHQlim (Nbins=5,Nmin=600). Qlim αz=1±σα αz=10±σα Nrze=la1xedhalos Nrze=la1x0edhalos 0.05 -0.007 0.148 -0.058 0.153 2123 264 ± ± 0.10 -0.004 0.148 -0.062 0.168 3365 497 ± ± 0.15 -0.002 0.149 -0.059 0.171 3811 660 ± ± 0.20 -0.005 0.151 -0.052 0.173 3994 739 ± ± 0.25 -0.002 0.153 -0.052 0.173 4165 774 ± ± 6 TABLE 5 VARIATION OFαWITHNmin (Qlim=0.15,Nbins=5). Nmin αz=1±σα αz=10±σα Nrze=la1xedhalos Nrze=la1x0edhalos 100 0.003 0.129 -0.037 0.158 19707 5478 ± ± 200 0.002 0.137 -0.038 0.167 10809 2534 ± ± 300 0.002 0.142 -0.035 0.174 7336 1526 ± ± 600 -0.002 0.149 -0.059 0.171 3811 660 ± ± 1000 -0.004 0.155 -0.058 0.196 2303 343 ± ± 2000 -0.011 0.164 -0.048 0.186 1154 120 ± ± TABLE 6 APPLYING DIFFERENTVIRIALISATION CRITERION (Nbins=5). criterion α α Nz=1 Nz=10 z=1 z=10 relaxedhalos relaxedhalos Netoetal. (2007) 0.000 0.149 -0.041 0.178 3486 429 ± ± Maccioetal. (2007) 0.001 0.146 -0.040 0.184 4275 512 ± ± Bettetal. (2007) 0.003 0.146 -0.040 0.175 8582 1955 ± ± 7 FIG.1.—RelationbetweenvirialparameterQ(cf.equation3)andhalomass.ThesolidlinesrepresenttheadoptedvirialisationcriteriaasgivenbyEq.(4).Note thatwealreadyappliedthemasscutof600particlesperhaloforthisplotandhencethenumberofhalosappearingdoesnotagreewiththenumbergiveninTable1. FIG.2.—CorrelationofspinparameterλwithmassM.Thebinneddata(histograms)hasbeenfittedtoapowerlaws(dashedline,cf.Eq.(9)). FIG.3.—Lognormaldistributionsofthespinparameterλ′.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.