ebook img

On the Bogomolov-Miyaoka-Yau inequality for Deligne-Mumford surfaces PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Bogomolov-Miyaoka-Yau inequality for Deligne-Mumford surfaces

ON THE BOGOMOLOV-MIYAOKA-YAU INEQUALITY FOR DELIGNE-MUMFORD SURFACES JIUN-CHENGCHENANDHSIAN-HUATSENG 1 1 ABSTRACT. We discuss a generalization of the Bogomolov-Miyaoka-Yau inequality to Deligne- 0 Mumfordsurfacesofgeneraltype. 2 n a J 8 1. INTRODUCTION 1 ] For a smooth complex projective surface S of general type, the Bogomolov-Miyaoka-Yau in- G equalityforS reads A . (1.1) 3c2(TS) c1(TS)2. h ≥ t Together with Noether’s inequality, this puts constraints on the topology of surfaces of general a m types. Generalizations of (1.1) to singular surfaces and surface pairs have been found, see for [ example[7], [4, 5]. In thispaper wediscussa generalizationof(1.1)to Deligne-Mumfordstacks. 1 We work over C. Let be a smooth proper Deligne-Mumford C-stack of dimension 2. Let v X π : X bethenaturalmaptothecoarsemodulispace. WeassumethatX isaprojectivevariety. 1 X → 8 Since is assumed to be smooth, it has a tangent bundle T . A good theory of Chern classes is 4 X X availableforDeligne-Mumfordstacks,seeforexample[10], [3]. Weproposethefollowing 3 . 1 Conjecture1.1. Let beasabove. AssumethatthecanonicalbundleK := 2T isnumerically ∨ 0 effective, then X X ∧ X 1 1 (1.2) 3c (T ) c (T )2. v: 2 X ≥ 1 X i X Certainly (1.2) takes the same shape as (1.1). In what follows we give evidence for (1.2). In r Section 2.1 we discuss (1.2) for stacks which non-trivial stack structures at generic points. In a X Section2.2weprove(1.2)foraclassofstacks withstackstructuresincodimension1. InSection X 2.3 weprove(1.2)forGorensteinstacks withisolatedstack points. X Acknowledgment. J.-C.CisaGolden-JadeFellowofKendaFoundation,Taiwan. Heissupported inpartbyNationalScienceCouncilandNationalCenterforTheoreticalSciences, Taiwan. H.-H.T is supportedin part byNSF grantDMS-1047777. 2. EVIDENCE OF (1.2) 2.1. Codimension 0 stack structure. We examine(1.2) for stacks with non-trivialstack struc- X tures at generic points. In this case, is an e´tale gerbe over a stack with trivial generic stack X structure, see for example [2, Proposition 4.6]. More precisely, there is a finite group G, a stack Date:January19,2011. 1 2 JIUN-CHENGCHENANDHSIAN-HUATSENG with trivial generic stabilizers, and a morphismf : realizing as a G-gerbe over . ′ ′ ′ X X → X X X Since T = f∗T ′, we see that (1.2) for is equivalent to (1.2) for ′. Therefore it suffices to X X X X consideronlythose withstack structuresin codimension 1. X ≥ 2.2. Codimension 1 stack structure. We will verify (1.2) for an example of stack with stack X structuresin codimension1. Let X be a smoothcomplex projectivesurface and D a simplenormal crossing Q-divisorof the form D = (1 1/r )D with r 2 integers. Let be the natural stack cover of the pair i − i i i ≥ X (X,D). ByPconstruction the coarse moduli space of is X. The natural map π : X is an X X → isomorphismoutsideπ 1(SuppD),whichiswhere hasnon-trivialstackstructures. Furthermore − X wehavethefollowingformulaforthecanonical bundle: (2.1) K = π (K +D). ∗ X X Wenowexamine(1.2)forthis . By (2.1), X c (T )2 = c (K )2 = (K +D)2. 1 1 X X X By Gauss-Bonnet theoremforDelignem-Mumfordstacks[8, Corollaire3.44]wehave c (T ) = χ( ), 2 X X theEulercharacteristicof asdefinedin[8,Definition3.43](notethatthenotationχorb isusedin X [8]). Put := π 1(D ), := ( ( )). Di − i Di◦ Di \ ∪j6=i Di ∩Dj Then wehave χ( π 1(SuppD)) = χ( ) χ( ) χ(p). X \ − X − Di◦ − Xi p Xi j ∈D ∩D Similarly,put D = D ( (D D )), wehave i◦ i \ ∪j6=i i ∩ j χ(X SuppD) = χ(X) χ(D ) χ(p¯). \ − i◦ − Xi p¯ XDi Dj ∈ ∩ Since π 1(SuppD) X SuppD,wehaveχ( π 1(SuppD)) = χ(X SuppD). Equiva- − − X \ ≃ \ X \ \ lently, χ( ) = χ(X) χ(D ) χ(p¯)+ χ( )+ χ(p). X − i◦ − Di◦ Xi p¯ XDi Dj Xi p Xi j ∈ ∩ ∈D ∩D Sincethemap D isofdegree1/r andthemap D D isofdegree1/r r , we Di◦ → i◦ i Di∩Dj → i∩ j i j have 1 1 χ( ) = χ(D ), χ( ) = χ(D D ). i i i j i j D r D ∩D r r ∩ i i j Thisimpliesthat (2.2) χ( ) = χ(X) (1 1/r )χ(D )+ (1/r r 1). X − − i i◦ i j − Xi p¯ XDi Dj ∈ ∩ By [5, Theorem 8.7], for p¯ D D the local orbifold Euler number of the pair (X,D) at p¯is i j ∈ ∩ given by e (p¯;X,D) = 1/r r . Together with (2.2) this implies that χ( ) coincides with the orb i j X orbifold Euler number e (X,D) of the pair (X,D), as defined in [5]. Thus if K is numerically orb X effective,the(1.2)holdbecause itisequivalentto [5, Theorem0.1]appliedtothepair(X,D). ONTHEBOGOMOLOV-MIYAOKA-YAUINEQUALITYFORDELIGNE-MUMFORDSURFACES 3 2.3. Condimension 2 stack structure. Let be a smooth proper Deligne-Mumford C-stack of X dimension 2 with isolated stack structures. Suppose that is Gorenstein. Let π : X be X X → the natural map to the coarse moduli space X, which we assume to be a projective surface with canonical singularities. Let p ,p ,...,p be the stacky points. Since is Gorenstein, each p 1 2 k i ∈ X X has a neighborhood p U of the form U [C2/G ] with G SU(2) a finite subgroup, i i i i i ∈ ⊂ X ≃ ⊂ identifyingp with[0/G ] [C2/G ]. i i i ∈ Supposefurtherthat K isnumericallyeffective. Weprovethat(1.2)holdsforsuch . X X By assumptionwehaveK = π K . Thus ∗ X X c (T )2 = c (K )2 = c (K )2. 1 1 x X X X We now consider the term c (T ). The first step is to consider χ( ) by using Riemann-Roch 2 X OX theorem for stacks [8]. We follow [9, Appendix A] for the presentation of the Riemann-Roch theorem. We have χ( ) = ch( )Td(T ). OX Z OX X I Here I is the inertia stack of . By our assuXmeption onf , we have the following description of X X X I : X k I = (Ip p ). i i X X ∪ \ i[=1 Here theterm Ip p istheinertiastack ofp BG withthemaincomponentremoved,namely i i i i \ ≃ Ip p BC (g). i \ i ≃ Gi [ (g)=(1):conjugacyclassofGi 6 By the definition of the Chern character ch, we have ch( ) = 1 on every component of I . OX X Hence e e k (2.3) χ( ) = Td(T ) = Td(T ) + Td(T ) . OX Z X Z X |X Z X |Ipi\pi IX f X f Xi=1 Ipi\pi f NotethatTd(T ) = Td(T ), and weonlyneed itsdegree2 component. Hence X |X X f 1 (2.4) Td(T ) = (c (T )+c (T )2). 2 1 Z X |X 12 Z X X X f X ThecontributioncomingfromIp p can bealsoevaluated. i i \ Lemma 2.4. Let E betheexceptionaldivisorof theminimalresolutionof C2/G . Then i i 1 1 Td(T ) = (χ(E ) ). ZIpi\pi f X |Ipi\pi 12 i − |Gi| ThisLemmaisprovedintheAppendix. Next, we reinterpret the term χ( ). By definition, χ( ) := ( 1)ldimHl( , ). Sinceπ = (see e.g. [1, TheoOreXm 2.2.1]),wehaveHlO( X, ) =PHl≥0l(X−, ) and X OX X X ∗OX O X OX O (2.5) χ( ) = χ( ). X OX O 4 JIUN-CHENGCHENANDHSIAN-HUATSENG Combining(2.3), (2.4), (2.5), and Lemma2.4, weobtainthefollowingexpressionofc (T ): 2 X k (2.6) c (T ) = 12χ( ) c (T )2 (χ(E ) 1/ G ). 2 X 1 i i Z X O −Z X − − | | X X Xi=1 Usingthis,weseethatin thepresent situation,(1.2)isequivalentto k 4 1 (2.7) 12χ( ) c (K )2 + (χ(E ) ). X 1 X i O ≥ 3 − G Xi=1 | i| On the other hand, it is clear that (2.7) is a special case of [7, Corollary 1.3]. This completes the proof. APPENDIX A. PROOF OF LEMMA 2.4 In this Appendix we prove Lemma 2.4. By our assumption on , for g G , the g-action on i X ∈ the tangent space T has two eigenvalues ξ and ξ 1, where ξ is a certain root of unity. By the piX g g− g definitionofTd(T )wehave X 1 1 f (A.1) Td(T ) = . ZIpi\pi f X |Ipi\pi (g)6=(1):conjXugacyclassofGi |CGi(g)|2−ξg −ξg−1 Wenowevaluate(A.1)usingtheADE classification ofC2/G . i A.1. Type A. If C2/G is of typeA , then G Z and theaction on C2 is givenas follows. If i n 1 i n weidentifyZ withthegroupofn-th−rootsof1, t≃henan elementξ Z acts onC2 viathematrix n n ∈ ξ 0 . (cid:18) 0 ξ−1 (cid:19) It followsthat (A.1)is givenby n 1 1 − 1 (A.2) . n 2 exp(2π√ 1l/n) exp(2π√ 1l/n) 1 Xl=1 − − − − − By [6, Lemma3.3.2.1],(A.2)is equalto n2 1 1 − = (n 1/n). 12n 12 − Since the exceptional divisor of the minimal resolution of C2/Z is a chain of (n 1) copies of n − CP1, itsEulercharacteristicisn. ThisprovestheLemmaintypeA case. A.2. Type D. If C2/G is of typeD (here n 2), then G is isomorphicto thebinary dihedral i n+2 i ≥ groupDic . ThegroupDic is oforder 4nandmay bepresentedas follows: n n Dic = a,x a2n = 1,x2 = an,x 1ax = a 1 . n − − | (cid:10) (cid:11) TheactionofDic on C2 isgivenasfollows: n exp(π√ 1/n) 0 0 1 (A.3) a − , x . 7→ (cid:18) 0 exp( π√ 1/n) (cid:19) 7→ (cid:18) 1 0 (cid:19) − − − ONTHEBOGOMOLOV-MIYAOKA-YAUINEQUALITYFORDELIGNE-MUMFORDSURFACES 5 Anelementcalculationshowsthattheconjugacyclasses ofDic andtheorders oftheircentralizer n subgroupsaregivenas follows: 1 , an (orderofcentralizer group = 4n) { } { } (A.4) al,a l ,1 l n 1, (orderofcentralizer group = 2n) − { } ≤ ≤ − xa,xa3,xa5,...,xa2n 1 , x,xa2,xa4,...,xa2n 2 (orderofcentralizergroup = 4). − − { } { } Using (A.3) and (A.4) it is easy to identify the contribution from each conjugacy class. It follows that (A.1)is givenby n 1 1 − 1 1 1 1 (A.5) + + + . 2n 2 exp(π√ 1k/n) exp(π√ 1k/n) 1 16n 8 8 Xk=1 − − − − − We need to evaluate the sum n 1 1 . Again by [6, Lemma 3.3.2.1], k=−1 2 exp(π√ 1k/n) exp(π√ 1k/n)−1 wehave P − − − − (2n)2 1 2n−1 1 − = 12 2 exp(2π√ 1k/(2n)) exp(2π√ 1k/(2n)) 1 Xk=1 − − − − − n 1 − 1 1 = + 2 exp(π√ 1k/n) exp(π√ 1k/n) 1 4 Xk=1 − − − − − n 1 − 1 + . 2 exp(2π√ 1(n+k)/(2n)) exp(2π√ 1(n+k)/(2n)) 1 Xk=1 − − − − − Notethat 2 exp(2π√ 1(n+k)/(2n)) exp(2π√ 1(n+k)/(2n)) 1 − − − − − =2+exp(π√ 1k/n)+exp(π√ 1k/n) 1 − − − =2+2cos(πk/n) = 4cos2(πk/(2n)) = 4sin2((π(k+n)/(2n)); 2 exp(π√ 1k/n) exp(π√ 1k/n) 1 − − − − − =2 2cos(πk/n) = 4sin2(πk/(2n)). − Sincesin(π(k +n)/(2n)) = sin(π(k n)/(2n)),weseethat − − n 1 − 1 2 exp(π√ 1k/n) exp(π√ 1k/n) 1 Xk=1 − − − − − n 1 − 1 = , 2 exp(2π√ 1(n+k)/(2n)) exp(2π√ 1(n+k)/(2n)) 1 Xk=1 − − − − − from whichitfollowsthat n−1 1 1 (2n)2 1 2 + = − . 2 exp(π√ 1k/n) exp(π√ 1k/n) 1 4 12 Xk=1 − − − − − 6 JIUN-CHENGCHENANDHSIAN-HUATSENG Thisshowsthat n−1 1 n2 1 = − 2 exp(π√ 1k/n) exp(π√ 1k/n) 1 6 Xk=1 − − − − − and (A.1)isgivenby n2 1 1 1 1 1 1 − + + + = (n+3 ). 12n 16n 8 8 12 − 4n Since the exceptional divisor of the minimal resolution of C2/Dic is a tree of CP1 whose dual n graphistheDynkindiagramD ,itsEulercharacteristicisn+3andtheLemmaisprovedinthis n+2 case. A.3. Type E. If C2/G is of type E, then there are three possibilities: E ,E ,E . The group G i 6 7 8 i is isomorphic to the binary tetrahedral group (for E ), the binary octahedral group (for E ), or the 6 7 binary icosahedral group (for E ). In each case the group and its action on C2 can be explicitly 8 described, and theLemmacan beproved by computing(A.1) using this information. We work out thedetailsforE and leavetheothertwocases tothereader. 6 In the E case, the group G is isomorphic to the binary tetrahedral group 2T. This group is of 6 i order24 and itselementscan beidentifiedwiththefollowingquaternionnumbers: 1 ( 1 i j k), i, j, k, , 1. 2 ± ± ± ± ± ± ± ± Thegroup2T has7 conjugacyclasses: ConjugacyClass (1) ( 1) (i) (1(1+i+j +k)) − 2 Size 1 1 6 4 ConjugacyClass (1(1+i+j k)) (1( 1+i+j +k)) (1( 1+i+j k)) 2 − 2 − 2 − − Size 4 4 4 Theactionof2T onC2 can bedescribedusingthefollowingidentification x+yi z +wi x+yi+zj +wk . 7→ (cid:18) z +wi x yi (cid:19) − − Nowit isstraightforwardtosee that(A.1)isgivenby 1 1 1 1 1 1 1 1 1 1 1 1 167 1 1 + + + + + = = (7 ). 242 ( 2) 42 0 62 1 62 1 62 ( 1) 62 ( 1) 288 12 − 24 − − − − − − − − − Since 7 is the Euler characteristic of the exceptional divisor of the minimal resolution of C2/2T, theresultfollows. REFERENCES [1] DAbramovich,A.Vistoli,Compactifyingthespaceofstablemaps,J.Amer.Math.Soc.15(2002),no.1,27–75 [2] K.Behrend,B.Noohi,UniformizationofDeligne-Mumfordcurves,J.ReineAngew.Math.599(2006),111–153. [3] A.Kresch,CyclegroupsforArtinstacks,Invent.Math.138(1999),no.3,495–536. [4] A. Langer, The Bogomolov-Miyaoka-Yau inequality for log canonical surfaces, J. London Math. Soc. (2) 64 (2001),no.2,327–343. [5] A. Langer Logarithmic orbifold Euler numbers of surfaces with applications, Proc. London Math. Soc. (3) 86 (2003),no.2,358–396. [6] M.Lieblich,Modulioftwistedorbifoldsheaves,arXiv:0803.3332. ONTHEBOGOMOLOV-MIYAOKA-YAUINEQUALITYFORDELIGNE-MUMFORDSURFACES 7 [7] Y. Miyaoka, The maximal number of quotientsingularities on surfaces with given numerical invariants, Math. Ann.268(1984),no.2,159–171. [8] B.Toen,K-theoryandcohomologyofalgebraicstacks:Riemann-Rochtheorems,D-modulesandGAGAtheorems, arXiv:math/9908097. [9] H.-H. Tseng, Orbifold Quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), 1–81, arXiv:math.AG/0506111. [10] A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent.Math. 97 (1989), no. 3, 613–670. DEPARTMENTOFMATHEMATICS,THIRDGENERALBUILDING,NATIONALTSINGHUAUNIVERSITY,NO. 101 SEC. 2 KUANG FU ROAD, HSINCHU, TAIWAN 30043,TAIWAN E-mailaddress:[email protected], [email protected] DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, 100 MATH TOWER, 231 WEST 18TH AVE., COLUMBUS, OH 43210,USA E-mailaddress:[email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.