ebook img

On the Analytic Structure of Scalar Glueball Operators PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the Analytic Structure of Scalar Glueball Operators

On the Analytic Structure of Scalar Glueball Operators 3 1 0 2 n a AndreasWindisch ∗ J InstitutfürPhysik,Karl-FranzensUniversitätGraz,Universitätsplatz5,8010Graz,Austria 5 E-mail:[email protected] 1 MarkusQ.Huber ] h InstitutfürKernphysik,TechnischeUniversitätDarmstadt,Schlossgartenstrasse2,64289 p Darmstadt,Germany - p E-mail:[email protected] e h ReinhardAlkofer [ InstitutfürPhysik,Karl-FranzensUniversitätGraz,Universitätsplatz5,8010Graz,Austria 1 E-mail:[email protected] v 5 2 ThecorrelatorofthesquareoftheYang-Millsfield-strengthtensorcorrespondstoascalarglue- 5 ball, i. e., to a bound-state formed by gluonic ingredients only. It has quantum numbers 0++ 3 . and its mass, as predicted by differenttheoreticalapproaches, is expected to lie between 1 and 1 0 2 GeV. Here we restrictourconsiderationsto the Bornlevel, thatis, we considerthe correlator 3 tozerothorderinthecoupling. Gluonicself-interactionistakenintoaccountindirectlybyusing 1 : non-perturbativegluon propagators. The employed closed expressions are motivated by lattice v i and Dyson-Schwingerstudies. The analyticcontinuationof the integralsthemselvesis compli- X catedbyadditionalobstructivestructureslikebranchcutsandpolesthatareinducedbytheinner r a integralinthecomplexplaneoftheouterintegrationvariable. Wedealwiththisproblembyde- formingtheouterintegrationcontouraccordingly.Fordifferentinputgluonpropagatorswefinda positiveglueballspectraldensitywhichisrequiredforphysicalstates. Polesare,however,absent whichismostlikelyanartifactofworkingatBornlevel. XthQuarkConfinementandtheHadronSpectrum, October8-12,2012 TUMCampusGarching,Munich,Germany Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ OntheAnalyticStructureofScalarGlueballOperators AndreasWindisch 1. Introduction Ascolor-carrying statesgluonsdonotappearasasymptotic physicalstates. Theyareconfined to observable color singlet objects by some mechanism, see, e. g., [1] for a short review. In pure Yang-Millstheorytheonlypossibility togeneratecolorneutral –andthusobservable –statesisto combineseveralgluonstoformaboundstate,aglueball. Experimentally,theyareveryhardtofind due to mixing with mesonic states. On the theoretical side, several approaches for gluonic bound statesareavailable, see,forinstance, [2]forarecentreview. Inthefollowingwecalculatethecorrelatorofa0++ glueballcandidateanddetermineitsana- lyticproperties[3]fromwhichwecanextractthespectraldensity. Foraphysicallyobservablestate the spectral density must be positive in order to allow a probabilistic interpretation [4, 5]. Thus, the detection of positivity violations indicates that a certain state is expelled form the asymptotic state space (and in this sense confined), while the converse does not hold necessarily. Glueballs mustthereforepossessapositivespectraldensity,althoughtheirconstituentsmaynot. Indeed,pos- itivity violations of gluons are established in the Landau gauge from lattice [6, 7] and functional calculations [8,9]. AsafirstapproximationwetakeintoaccountonlytheAbelianpartofthefieldstrengthtensor. This simplifies the calculations in several respects. For example, renormalization would become more complicated but the required machinery is available [10]. However, the input we use was obtained from fullYang-Mills theory and therefore contains interactions. Inthefollowing wewill usetwodifferent fitsforthegluonpropagator andcalculate theglueball correlator numerically. In simplecasesthisisalsopossible analytically, see,e.g. [11,12]. Forfutureapplications anumeric procedureiscertainlyadvantageous asitallows,forinstance,tousealsonumericaldataasbecame available onlyrecently[13]. Thecalculation ofthecorrelator boilsdowntoatwodimensional integral. Sinceweconsider complex external momenta, an additional subtlety arises: The inner integral leads to non-analytic structures, likebranchcuts,inthecomplexplaneoftheouterintegrationvariablewhichhavetobe taken into account properly. We do this here by deforming the integration contour, i. e., also the radialintegration variablebecomescomplex. Thismethodisalreadyknown,see,forexample,[8], butinthepresentcasethestructure ofthearisingnon-analyticities isespecially tediousasdetailed below. Thetwogluonpropagatorfitsweemployhereareofthedecoupling[14,15,16,9,17]andscal- ingtype[18]. FortheformerweuseafittolatticedatamotivatedbytherefinedGribov-Zwanziger scenario (RGZ) [19]. Forthe chosen parameter values it possesses two complex conjugate poles. Notethatotherfits,forinstance,in[20],weresuggestedaswell,butmostofthemarespecialcases oftheusedone. Forthescaling typepropagator weuseafittothesolution ofaDyson-Schwinger study[8]. Ithasabranchcutonthenegativerealaxis. 2. SomePrerequisites Weconsiderthecorrelatorofacandidate forascalarglueball withquantum numbers0++, F2(x)F2(0) d = Fmna (x)Fmna (x)Frsb (0)Frsb (0) d, (2.1) h i h i 2 OntheAnalyticStructureofScalarGlueballOperators AndreasWindisch where d isthe space-time dimension and Fmna (x) is, aspart of ourapproximation, just theAbelian partoftheYang-Millsfield-strength tensorgivenby Fmna =¶ m Aan ¶ n Aam . (2.2) − Weareinterested inthemomentumspacerepresentation ofthiscorrelator, ddp F2(x)F2(0) = eipxO (p2). (2.3) h id Z (2p )d · d Thedesiredexpression, O (p2),reads[12] d ddk O (p2)=8(N2 1) G((p k)2)G(k2)(k2(p k)2+(d 2)(k (p k))2) . (2.4) d C− Z (2p )d − − − · − (cid:0) (cid:1) Foratransverse gluonpropagatorwehave pm pn Dmn (p2)= d mn G(p2), (2.5) (cid:18) − p2 (cid:19) where only the scalar part G(p2) enters the expression (2.4). A further complication we have not addressed so far is the fact that in 4 Euclidean space time dimensions, the integral as given in eq. (2.4) diverges like p4. To render the integral finite we employ the BPHZ renormalization, ∼ i.e.,weTaylorsubtract thedivergentterms: ¶ 2 ¶ 4 Or(p2)=O (p2) O (0) p2 O (p2) p4 O (p2) . (2.6) d d − d − ¶ p2 d (cid:12)p=0− ¶ p4 d (cid:12)p=0 (cid:12) (cid:12) (cid:12) (cid:12) Theoddderivativesvanishbecauseoftheanti-symmetry oftheangularintegral. Inordertoobtain theanalyticstructureofthescalarglueballcorrelator,wehavetosolveeq.(2.6)forcomplexvalues of the square of the external momentum. Thespectral density isthen accessible by evaluating the discontinuity of the branch cut along thenegative real axis. Forthe two-point function D (p2)of a givenspinzerooperator F ,thespectral densityreads 1 r (p2)= lim [D ( p2 ie ) D ( p2+ie )] (2.7) 2p ie 0+ − − − − → andthespectral representation ofthetwo-pointfunction is ddp ¥ r (t ) D (p2)= eipx F (x)F (0) = dt , (2.8) Z (2p )d · h i Zt t +z 0 ifnopolesorcutsexceptfortime-likemomentaexist. t isthemulti-particle threshold. 0 Eq.(2.4) holds forarbitrary dimensions. Hereweconsider only d =4. Thetwo-dimensional case, which of course has a trivial glueball spectrum, served as a test-case forthe development of thenumericsandispresented togetherwiththefour-dimensional resultsin[3]. 3 OntheAnalyticStructureofScalarGlueballOperators AndreasWindisch 3. The Method The algorithm we use here is described in detail in [21], where as an example the analytical results from[12]werereproduced. LetusconsiderthecaseoftheRGZpropagatorfitof[19], p2+s G(p2)=C . (3.1) p4+u2p2+t2 Thefit-parametersare s=2.508GeV2,t =0.72GeV2,u=0.768GeVandC=0.784[19]. In[21] thefollowingstepsaregiveninordertoevaluatetheintegral(2.4): STEP1: Express(2.4)inhyper-spherical coordinates • 8C2 ¥ 1 x+y 2√x√yz+s O (x)= dy y dz 1 z2 − 4 p 3 Z0 Z 1 p − (x+y 2√x√yz)2+u2(x+y 2√x√yz)+t2 − − − y (x+y 2√x√yz)y+2(√y√xz y)2 , (3.2) × y2+u2y+t2 − − (cid:2) (cid:3) wherex= p2,y=k2 and p k=√x√yz. · STEP2: Renormalization • Theintegral(3.2)divergesquadratically inx. Therenormalizedexpression isgivenby(2.6). STEP3: Analyticcontinuation • Forthepresent casethisstepcanbeperformed eitheranalytically ornumerically. Forx C ∈ the inner integral of eq. (3.2) can produce an integrable singularity together withthe rest of theintegrand. Whenzrunsthroughitsintegrationinterval [ 1,1],itpicksupawholelineof − these singular points resulting in abranch cut in the complex plane of the radial integration variable y. Thus the contour of the radial integral has to be deformed in order to avoid the cut. Foreq.(3.2)wefindtwobranch cutsaswellasapairofcomplexconjugate poles. The branch cuts, parametrized by z, in the y-plane can be determined analytically by finding the zeroes of the integrand of eq. (3.2) for a given x C. We compared these results with a ∈ numerical integration. Forx= 2+2ibothareshowninFig.1. − ItisclearlyvisibleinFig.1thatthedeformation ofthecontourofthey-integration, required to connect y=0 to y=x 2 where x is a UV cutoff, can be quite tricky. In general the open piece between the branch cuts always points in the direction of Arg(x). Thus, if x is on the positive real axis, the integration is straightforward since y can be kept real as well. Now let us consider a complex x=(r,f ) by keeping r fixed while 0<f <p /2. There are no poles in the first quadrant, and the opening of the branch cuts always point in the direction of Arg(x), thus the contour can be deformed continuously in that case. The same is true for the fourth quadrant. However, the complex conjugate poles of the integrand located in the quadrants II and III require more care. Obviously the contour cannot be deformed as easily for Arg(p )>Arg(x) >Arg(p ), where p and p are the pole locations in the III II II III second andthirdquadrants, respectively. Forsomevaluesofxthebranch cutendpoints are narrowing down the area for a possible contour, see Fig. 2. When an endpoint of a branch 4 OntheAnalyticStructureofScalarGlueballOperators AndreasWindisch 6 4 2 HLmy 0 I -2 -4 -6 -6 -4 -2 0 2 4 6 ReHyL Figure1: Left:Analyticresultsforthebranchcutsandpolesinthecomplexy-planeforx= 2+2i.Right: − Numericalverificationoftheanalyticresult. 6 6 4 4 2 2 HLmy 0 HLmy 0 I I -2 -2 -4 -4 -6 -6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 ReHyL ReHyL Figure2:Left: Theregionforpossiblecontoursnarrowsdown,x= 2.Right:x= 1.18+2.7i.Thesame − − situationoccursforx= 1.18 2.7i,withthecutsflippedaroundtherealaxis. − − cutcoincideswithoneofthepoles,thecontourcannotbedeformedcontinuously andanon- analyticity arisesintheintegral. In[3]weconfirmedthatforallpointswherethishappens a branch pointisalsopredicted fromtheCutkoskyrules[22]. There are two further steps which we omit here as they are purely technical. What is relevant here is that the complex conjugate poles together with the two branch cuts severely restrict the possibilities for the contour deformation. It is hard to obtain stable results for complex values of x when the argument of x coincides with the argument of one of the pole locations. As discussed in the next section, we find three branch cuts for the RGZ case, one along the negative real axis, and two along the directions Arg(p ) and Arg(p ). The numerical determination of the branch II III points in this case is very troublesome, because for x-values close to the cuts in the x-plane the contour necessarily always comes very close to the cuts in the y-plane what leads to numerical artifacts. Eventhoughthescalingpropagatorof[8]hasabranchcutandtheintegrandinducestwo more cuts in the y-plane, the absence of poles allows a continuous contour deformation to values very close to thenegative real axis. Theresults forthe scaling propagator arethus not plagued by numerical issues. 5 OntheAnalyticStructureofScalarGlueballOperators AndreasWindisch Figure3: Left: TheimaginarypartofthescalarglueballcorrelatorwithRGZgluonsasinput. Right: The realpartofthecorrelator. 4. Results 4.1 Decoupling IntheprevioussectionwealreadydiscussedseveralaspectsoftheRGZpropagatorasgluonic input. Mostimportantly, weconfirmedthelocationofthebranchpointsknownfromtheCutkosky rules. Fig.3showstheimaginaryandrealpartsofthecorrelator. Thethreebranch cutsareclearly visible. Thetwo’unphysical‘ onesopenveryslowly. Theextracted discontinuity ofthe’physical’ branch cutis depicted infig. 4. Itbecomes negative forsmall values of p2 and rises earlier than − expect from theCutkosky analysis. Frominvestigating thecomplexplane oftheradial integration variable we know that these phenomena are numerical artifacts which we expect to vanish if the contour deformation isbettertuned; see[3]foramoredetailed discussion. Thusweconclude that thespectral densityispositive. 100 60 80 2p)] 40 2p)] 60 O( O( 40 c[ 20 c[ dis dis 20 0 0 -20 -20 0 1 2 3 4 5 0 1 2 3 4 5 2 2 2 2 -p [GeV ] -p [GeV ] Figure4: Thediscontinuityofthephysicalbranchcuts. Left: Decouplinggluons.Right:Scalinggluons. 6 OntheAnalyticStructureofScalarGlueballOperators AndreasWindisch Figure5: Left: Theimaginarypartofthescalarglueballcorrelatorwithscalinggluonsasinput.Right:The realpartofthecorrelator. 4.2 Scaling TheIRpartofthescalinggluonfitisgivenby[8], 1 p2 2k G(p2)=w , (4.1) p2(cid:18)p2+L 2(cid:19) withk =0.595353. Theexponentleadstoabranchcutofthepropagatorforcomplexmomenta. We neglected the UV part of the propagator fit, which involves a logarithm, as weare only interested inIRrelevantpartsofthepropagator. Theotherparameters arew=2.5andL =0.51GeV. Fig. 5 shows the imaginary and the real parts of the correlator. Since there are no non- analyticities besides the branch cut on the negative real axis, a Källén-Lehmann representation is possible. Thecorresponding positive spectral density is depicted infig.4. Wealso observe that in this case the evaluation of the correlator in the complex plane is not plagued by numerical ar- tifacts. Strictly speaking the Cutkosky analysis is in this case not applicable, since the employed propagator does not have the required form. However, a naive application leads to a threshold in precise agreementwithournumericresult. 5. Summary InthisworkwestudiedtheanalyticpropertiesofascalarglueballcorrelatoratBorn-level. The self-interaction of gluons entered via using non-perturbative gluon propagator fits. These exhibit positivity violations and describe thus confined gluons. The resulting glueball correlators have a branch cut for time-like momenta and no poles. The extracted spectral densities are positive as required for aphysical state. Forthe fitof the decoupling propagator wealso findtwo unphysical cuts which are due to the analytic structure of the fit. Possible continuations include the addition of higher order terms and the use of numerical results for the propagator in the complex plane. Theemployed techniques fortheevaluation oftheintegrals maybeusefulforotherstudies, where complexmomentaareinvolved, aswell. 7 OntheAnalyticStructureofScalarGlueballOperators AndreasWindisch Acknowledgments MQHacknowledges support bytheAlexandervonHumboldtfoundation. AWwassupported bytheDoctoralprogram”Hadrons inVacuum,NucleiandStars“,fundedbytheAustrianScience FundFWF,contract W1203-N16. References [1] R.AlkoferandJ.Greensite,J.Phys.G34(2007)S3,hep-ph/0610365. [2] V.Mathieu,N.KochelevandV.Vento,Int.J.Mod.Phys.E18(2009)1,arXiv:0810.4453[hep-ph]. [3] A.Windisch,M.Q.HuberandR.Alkofer,arXiv:1212.2175[hep-ph]. [4] G.Kallen,Helv.Phys.Acta25(1952)417. [5] H.Lehmann,NuovoCim.11(1954)342. [6] K.Langfeld,H.ReinhardtandJ.Gattnar,Nucl.Phys.B621(2002)131,hep-ph/0107141. [7] P.O.Bowman,U.M.Heller,D.B.Leinweber,M.B.Parappilly,A.Sternbeck,L.vonSmekal, A.G.WilliamsandJ.-b.Zhang,Phys.Rev.D76(2007)094505,hep-lat/0703022. [8] R.Alkofer,W.Detmold,C.S.FischerandP.Maris,Phys.Rev.D70(2004)014014,hep-ph/0309077. [9] C.S.Fischer,A.MaasandJ.M.Pawlowski,AnnalsPhys.324(2009)2408,arXiv:0810.1987 [hep-ph]. [10] D.Dudal,S.P.Sorella,N.VandersickelandH.Verschelde,Eur.Phys.J.C64(2009)147, arXiv:0812.2401[hep-th]. [11] D.Zwanziger,Nucl.Phys.B323(1989)513. [12] L.Baulieu,D.Dudal,M.S.Guimaraes,M.Q.Huber,S.P.Sorella,N.Vandersickeland D.Zwanziger,Phys.Rev.D82(2010)025021,arXiv:0912.5153[hep-th]. [13] S.Strauss,C.S.FischerandC.Kellermann,arXiv:1208.6239[hep-ph]. [14] D.Dudal,S.P.Sorella,N.VandersickelandH.Verschelde,Phys.Rev.D77(2008)071501, arXiv:0711.4496[hep-th]. [15] P.Boucaud,J-P.Leroy,A.L.Yaouanc,J.Micheli,O.PeneandJ.Rodriguez-Quintero,JHEP0806 (2008)012,arXiv:0801.2721[hep-ph]. [16] A.C.Aguilar,D.BinosiandJ.Papavassiliou,Phys.Rev.D78(2008)025010,arXiv:0802.1870 [hep-ph]. [17] R.Alkofer,M.Q.HuberandK.Schwenzer,Phys.Rev.D81(2010)105010,arXiv:0801.2762 [hep-th]. [18] L.vonSmekal,R.AlkoferandA.Hauck,Phys.Rev.Lett.79(1997)3591,hep-ph/9705242; L.vonSmekal,A.HauckandR.Alkofer,AnnalsPhys.267(1998)1,hep-ph/9707327. [19] A.Cucchieri,D.Dudal,T.MendesandN.Vandersickel,Phys.Rev.D85(2012)094513, arXiv:1111.2327[hep-lat]. [20] A.C.AguilarandJ.Papavassiliou,Eur.Phys.J.A35,189(2008),arXiv:0708.4320[hep-ph]. [21] A.Windisch,R.Alkofer,G.HaaseandM.Liebmann,Comput.Phys.Commun.184(2013)109, arXiv:1205.0752[hep-ph]. [22] D.DudalandM.S.Guimaraes,Phys.Rev.D83(2011)045013,arXiv:1012.1440[hep-th]. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.