ebook img

On the ample cone of a rational surface with an anticanonical cycle PDF

27 Pages·2013·0.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the ample cone of a rational surface with an anticanonical cycle

Algebra & Number Theory Volume 7 2013 No. 6 On the ample cone of a rational surface with an anticanonical cycle Robert Friedman msp ALGEBRAANDNUMBERTHEORY7:6(2013) dx.doi.org/10.2140/ant.2013.7.1481 msp On the ample cone of a rational surface with an anticanonical cycle Robert Friedman LetY beasmoothrationalsurface,andlet DbeacycleofrationalcurvesonY thatisananticanonicaldivisor,i.e.,anelementof|−K |. Looijengastudiedthe Y geometryofsuchsurfacesY incase Dhasatmostfivecomponentsandidentified ageometricallysignificantsubsetRofthedivisorclassesofsquare−2orthogonal tothecomponentsof D. MotivatedbyrecentworkofGross,Hacking,andKeel ontheglobalTorellitheoremforpairs(Y,D),weattempttogeneralizesomeof Looijenga’sresultsincase Dhasmorethanfivecomponents. Inparticular,given anintegralisometry f of H2(Y)thatpreservestheclassesofthecomponents of D,weinvestigatetherelationshipbetweentheconditionthat f preservesthe “generic”ampleconeofY andtheconditionthat f preservestheset R. Introduction TheampleconeofadelPezzosurfaceY (orrathertheassociateddualpolyhedron) was studied classically by, among others, Gosset, Schoute, Kantor, Coble, Todd, Coxeter,andDuVal. Forabriefhistoricaldiscussion,onecanconsulttheremarks in [Coxeter 1973, §11.x]. From this point of view, the lines on Y are the main object ofgeometric interest asthey are thewalls ofthe ample coneor the vertices of the dual polyhedron. The corresponding root system (in case K2 ≤ 6) only Y manifestsitselfgeometricallybyallowingdelPezzosurfaceswithrationaldouble points or, equivalently, smooth surfaces Y with −K nef and big but not ample. Y Thisis explicitly worked outin[DuVal1934]. Onthe otherhand,the rootsystem, or rather its Weyl group, appears for a smooth del Pezzo surface as a group of symmetries of the ample cone, a fact which (in a somewhat different guise) was alreadyknowntoCartan. Perhapstheculminationoftheclassicalsideofthestory is [Du Val 1937], where the blowup of (cid:80)2 at n ≥9 points is also systematically considered. Inmoderntimes,ManinexplainedtheappearanceoftheWeylgroup by noting that the orthogonal complement to K in H2(Y;(cid:90)) is a root lattice (cid:51). Y Moreover, given any root of (cid:51), in other words an element β of square −2, there MSC2010: 14J26. Keywords: rationalsurface,anticanonicalcycle,exceptionalcurve,amplecone. 1481 1482 Robert Friedman existsadeformationofY forwhichβ =±[C],whereC isasmoothrationalcurve ofself-intersection−2. For modernexpositionsof thetheory,seefor examplethe bookofManin[1986]ortheaccountofDemazure[1980a;1980b;1980c;1980d]. Ingeneral,itseemshardtostudyanarbitraryrationalsurfaceY withoutimposing some extra conditions. One very natural condition is that −K is effective, i.e., Y that −K = D for an effective divisor D. In case the intersection matrix of D Y is negative definite, such pairs (Y,D) arise naturally in the study of minimally elliptic singularities: the case where D is a smooth elliptic curve corresponds to the case of simple elliptic singularities, the case where D is a nodal curve or a cycle of smooth rational curves meeting transversally corresponds to the case of cusp singularities, and the case where D is reduced but has one component with a cusp, two components with a tacnode, or three components meeting at a point correspondstotrianglesingularities. Fromthispointofview,thecasewhere D isa cycleofrationalcurvesisthemostplentiful. Thesystematicstudyofsuchsurfaces incasetheintersectionmatrixof D isnegativedefinitedatesbackto[Looijenga 1981]. However, for various technical reasons, most of the results of that paper areprovedundertheassumptionthatthenumberofcomponentsinthecycleisat most5. Someofthemain pointsofLooijenga’sseminalpaperare asfollows. Let R denotethesetofelementsin H2(Y;(cid:90))ofsquare−2thatareorthogonaltothe componentsof D andthatareoftheform±[C],whereC isasmoothrationalcurve disjointfrom D,forsomedeformationofthepair(Y,D). Intermsofdeformations ofsingularities,theset R isrelatedtothepossiblerationaldoublepointsingularities thatcanariseasdeformationsofthedualcusptothecuspsingularitycorresponding to D. Looijenganotedthat,ingeneral,thereexistelementsin H2(Y;(cid:90))ofsquare −2thatareorthogonaltothecomponentsof D butthatdonotliein R. Moreover, reflectionsinelementsoftheset R givesymmetriesofthe“generic”amplecone (whichisthesameastheampleconeincasetherearenosmoothrationalcurveson Y disjointfrom D). Finally,stillundertheassumptionofatmostfivecomponents, any isometry of H2(Y;(cid:90)) that preserves the positive cone, the classes [D ], and i theset R preservesthegenericamplecone. This paper, which is an attempt to see how much of [Looijenga 1981] can be generalizedtothecaseofarbitrarilymanycomponents,ismotivatedbyaquestion raised by the recent work of Gross, Hacking, and Keel [Gross et al. 2013] on, among other matters, the global Torelli theorem for pairs (Y,D) where D is an anticanonicalcycleontherationalsurfaceY. Inordertoformulatethistheoremin afairlygeneralway,onewouldliketocharacterizetheisometries f of H2(Y,(cid:90)), preservingthe positiveconeand fixingthe classes[D ], whichpreservethe ample i cone of Y. It is natural to ask if, at least in the generic case, the condition that f(R) = R is sufficient. In this paper, we give various criteria on R that insure that, if an isometry f of H2(Y;(cid:90)) preserves the positive cone, the classes [D ], i On the ample cone of a rational surface with an anticanonical cycle 1483 and the set R, then f preserves the generic ample cone. Typically, one needs a hypothesis that says that R is large. For example, one such hypothesis is that thereis asubsetof R thatspans anegative definitecodimension-1subspaceof the orthogonalcomplementtothecomponentsof D. Intheory,atleastundervarious extra hypotheses, such a result gives a necessary and sufficient condition for an isometrytopreservethegenericamplecone. Inpractice,however,thedetermination oftheset R ingeneralisadifficultproblem,whichseemscloseinitscomplexityto theproblemofdescribingthegenericampleconeofY. Finally,weshowthatsome assumptionson(Y,D)arenecessarybygivingexampleswhere R=∅,sothatthe condition that an isometry f preserves R is automatic, and of isometries f such that f preservesthepositivecone,theclasses[D ],and(vacuously)theset R but f i doesnotpreservethegenericamplecone. Wedonotyethaveagoodunderstanding oftherelationshipbetweenpreservingtheampleconeandpreservingtheset R. An outline of this paper is as follows. The preliminary Section 1 reviews standardmethodsforconstructingnefclassesonalgebraicsurfacesandappliesthis to thestudy ofwhen thenormal surface obtainedby contractinga negativedefinite anticanonical cycle on a rational surface is projective. In Section 2, we analyze the ample cone and generic ample cone of a pair (Y,D) and show that the set R defined by Looijenga is exactly the set of elements β in H2(Y;(cid:90)) of square −2 thatareorthogonaltothecomponentsof D suchthatreflectionaboutβ preserves the generic ample cone. Much of the material of Section 2 overlaps with results in[Grossetal.2013],provedtherebysomewhatdifferentmethods. Section3is devoted to giving various sufficient conditions for an isometry f of H2(Y;(cid:90)) to preservethegenericamplecone,includingtheonedescribedabove. Section4gives examplesofpairs(Y,D)satisfyingthesufficientconditionsofSection3wherethe numberofcomponentsof D andthemultiplicity−D2 arearbitrarilylargeaswell asexamplesshowingthatsomehypotheseson(Y,D)arenecessary. Notationandconventions. Weworkover(cid:67). If X isasmoothprojectivesurface withh1(OX)=h2(OX)=0andα∈ H2(X;(cid:90)),welet Lα denotethecorresponding holomorphiclinebundle,i.e.,c1(Lα)=α. GivenacurveC ordivisorclassG on X, we let [C] or [G] denote the corresponding element of H2(X;(cid:90)). Intersection pairingoncurvesordivisors,oronelementsinthesecondcohomologyofasmooth surface(viewedasacanonicallyoriented4-manifold),isdenotedbymultiplication. 1. Preliminaries In this paper, Y denotes a smooth rational surface with −K = D =(cid:80)r D a Y i=1 i (reduced)cycleofrationalcurves;i.e.,each D isasmoothrationalcurveand D i i meets Di±1 transversally,wherei istakenmodr exceptforr =1,inwhichcase D = D isanirreduciblenodalcurve. Wenote,however,thatmanyoftheresults 1 1484 Robert Friedman inthispapercanbegeneralizedtothecasewhere D∈|−K |isnotassumedtobe Y acycle. Theintegerr =r(D)iscalledthelengthof D. Anorientationof D isan orientation of the dual graph (with appropriate modifications in caser =1). We shallabbreviatethe dataofthesurface Y andtheorientedcycle D by(Y,D)and refertoitasananticanonicalpair. Iftheintersectionmatrix(D ·D )isnegative i j definite,wesaythat(Y,D)isanegativedefiniteanticanonicalpair. Definition 1.1. An irreducible curve E on Y is an exceptional curve if E ∼=(cid:80)1, E2 =−1, and E (cid:54)= D for any i. An irreducible curve C on Y is a −2-curve if i C ∼=(cid:80)1,C2=−2,andC (cid:54)= D foranyi. Let(cid:49) bethesetofall−2-curvesonY, i Y andletW((cid:49) )bethegroupofintegralisometriesof H2(Y;(cid:82))generatedbythe Y reflectionsintheclassesintheset(cid:49) . Y Definition1.2. Let(cid:51)=(cid:51)(Y,D)⊆H2(Y;(cid:90))betheorthogonalcomplementofthe latticespannedbytheclasses[D ]. FixingtheidentificationPic0 D∼=(cid:71) defined i m bytheorientationofthecycle D,wedefinetheperiodhomomorphismϕ :(cid:51)→(cid:71) Y m asfollows: ifα∈(cid:51)and Lα isthecorrespondinglinebundle,thenϕY(α)∈(cid:71)m is theimageofthelinebundleofmultidegree0on D definedby Lα|D. ClearlyϕY is ahomomorphism. Theperiodmapisthefunctionthatassociatestothepair(Y,D) thehomomorphismϕ :(cid:51)→(cid:71) . Y m By[Looijenga1981;FriedmanandScattone1986;Friedman1984],wehave: Theorem 1.3. The period map is surjective. More precisely, given Y as above andgivenanarbitraryhomomorphismϕ:(cid:51)→(cid:71) ,thereexistsadeformationof m thepair(Y,D)overasmoothconnectedbase,whichwecantaketobe((cid:71) )n for m somen,suchthatthemonodromyofthefamilyistrivialandthereexistsafiberof thedeformation,say(Y(cid:48),D(cid:48)),suchthatϕY(cid:48) =ϕ undertheinducedidentificationof (cid:51)(Y(cid:48),D(cid:48))with(cid:51). (cid:3) Forfuturereference,werecallsomestandardfactsaboutnegativedefinitecurves onasurface. Lemma 1.4. Let X be a smooth projective surface, and let G ,...,G be irre- 1 n duciblecurveson X suchthattheintersectionmatrix(G ·G )isnegativedefinite. i j Let F beaneffectivedivisoron X notnecessarilyreducedorirreducibleandsuch that,foralli,G isnotacomponentof F. i (i) Givenr ∈(cid:82), if (F +(cid:80) r G )·G =0 for all j, thenr ≥0 for all i, and, i i i i j i for every subset I of {1,...,n}, if (cid:83) G is a connected curve such that i∈I i F·G (cid:54)=0forsome j ∈ I,thenr >0fori ∈ I. j i (ii) Givens ,t ∈(cid:82),if[F]+(cid:80) s [G ]=(cid:80) t [G ],then F=0ands =t foralli. i i i i i i i i i i Thefollowinggeneralresultisalsowellknown: On the ample cone of a rational surface with an anticanonical cycle 1485 Proposition 1.5. Let X be a smooth projective surface, and let G ,...,G be 1 n irreducible curves on X such that the intersection matrix (G ·G ) is negative i j (cid:83) definite. (Wedonot,however,assumethat G isconnected.) Thenthereexistsa i i nefandbigdivisor H on X suchthat H·G =0forall j and,ifC isanirreducible j curve such that C (cid:54)= G for any j, then H ·C > 0. In fact, the set of nef and j big (cid:82)-divisors that are orthogonal to {G ,...,G } is a nonempty open subset 1 n of{G ,...,G }⊥⊗(cid:82). 1 n Proof. Fix an ample divisor H on X. Since (G · G ) is negative definite, 0 i j there exist r ∈ (cid:81) such that (cid:0)(cid:80) r G (cid:1)·G = −(H ·G ) for every j. Hence, i i i i j 0 j (H +(cid:80) r G )·G =0. ByLemma1.4,r >0foreveryi. Thereexistsan N >0 0 i i i j i such that Nr ∈ (cid:90) for all i. Then H = N(H +(cid:80) r G ) is an effective divisor i 0 i i i satisfying H ·G =0forall j. IfC isanirreduciblecurvesuchthatC (cid:54)=G for j j any j,thenH ·C>0andG ·C≥0foralli. Hence, H·C>0. Inparticular, H isnef. 0 i Finally, H isbigsince H2=NH·(H +(cid:80) r G )=N(H·H )>0as H isample. 0 i i i 0 0 Toseethefinalstatement,weapplytheaboveargumenttoanample(cid:82)-divisor x (i.e.,anelementintheinterioroftheamplecone)toseethatx+(cid:80) r G isanefand i i i big(cid:82)-divisororthogonalto{G ,...,G }. Asx+(cid:80) r G issimplytheorthogonal 1 n i i i projection pofxonto{G ,...,G }⊥⊗(cid:82)and p:H2(X;(cid:82))→{G ,...,G }⊥⊗(cid:82) 1 n 1 n isanopenmap,theimageoftheinterioroftheampleconeof X isthenanonempty opensubsetof{G ,...,G }⊥⊗(cid:82)consistingofnefandbig(cid:82)-divisorsorthogonal 1 n to{G ,...,G }. (cid:3) 1 n Applying the above construction to X =Y and D ,...,D , we can find a nef 1 r andbigdivisor H suchthat H·D =0forall j andsuchthat,ifC isanirreducible j curvesuchthatC (cid:54)= D forany j,then H ·C >0. j Proposition 1.6. Let (Y,D) be a negative definite anticanonical pair, and let H be a nef and big divisor such that H · D =0 for all j and such that, if C is an j irreduciblecurvesuchthatC (cid:54)= D forany j,then H ·C >0. Supposeinaddition j thatO (H)|D=O ,i.e.,thatϕ ([H])=1. Thenthe D arenotfixedcomponents Y D Y i of|H|. Hence,ifY denotesthenormalcomplexsurfaceobtainedbycontracting the D ,then H inducesanampledivisor H onY and|3H|definesanembedding i ofY in(cid:80)N forsome N. Proof. Considertheexactsequence 0→O (H −D)→O (H)→O →0. Y Y D Lookingatthelongexactcohomologysequence,as H1(Y;O (H −D))= H1(Y;O (H)⊗K ) Y Y Y isSerredualto H1(Y;O (−H))=0,byRamanujam’svanishingtheorem,there Y existsasectionofO (H)thatisnowherevanishingon D,provingthefirststatement. Y 1486 Robert Friedman ThesecondfollowsfromtheNakai–Moishezoncriterionandthethirdfromgeneral resultsonlinearseriesonanticanonicalpairs[Friedman1983]. (cid:3) Remark1.7. Bythesurjectivityoftheperiodmap(Theorem1.3),forany(Y,D) anegativedefiniteanticanonicalpairand H anefandbigdivisoron Y suchthat H·D =0forall j and H·C >0forallcurvesC (cid:54)=D ,thereexistsadeformation j i of the pair (Y,D) such that the divisor corresponding to H has trivial restriction to D. Moregenerally,onecanconsiderdeformationssuchthatϕ ([H])isatorsion Y point of (cid:71) . In this case, if Y is the normal surface obtained by contracting D, m thenY isprojective. Notethatthisimpliesthatthesetofpairs(Y,D)suchthatY is projective is Zariski dense in the moduli space. However, as the set of torsion pointsisnotdensein(cid:71) intheclassicaltopology,thesetofprojectivesurfacesY m willnotbedenseintheclassicaltopology. 2. Rootsandnodalclasses Definition2.1. LetC=C(Y)bethepositiveconeofY,i.e., C={x ∈ H2(Y;(cid:82)):x2>0}. ThenChastwocomponents,andexactlyoneofthem,sayC+=C+(Y),contains theclassesofampledivisors. Wealsodefine C+ =C+(Y)={x ∈C+:x·[D ]≥0foralli}. D D i LetA(Y)⊆C+⊆ H2(Y;(cid:82))be(theclosureof)theample(nef,Kähler)coneofY inC+. Bydefinition,A(Y)isclosedinC+ butnotingeneralin H2(Y;(cid:82)). Definition2.2. Letα∈ H2(Y;(cid:90)),α(cid:54)=0. TheorientedwallWα associatedtoα is theset{x ∈C+:x·α=0},i.e.,theintersectionofC+ withtheorthogonalspace toα togetherwiththepreferredhalfspacedefinedbyx·α≥0. IfC isacurveonY, wewrite WC for W[C]. Astandardresult(see,forexample,[FriedmanandMorgan 1988,II(1.8)])showsthat,if I isasubsetof H2(Y;(cid:90))andthereexistsan N ∈(cid:90)+ such that −N ≤α2<0 for all α∈ I, then the collection of walls {Wα :α∈ I} is locally finite on C+. Finally, we say that Wα is a face of A(Y) if ∂A(Y)∩Wα containsanonemptyopensubsetof Wα and x·α≥0forall x ∈A(Y). Lemma2.3. A(Y)isthesetofallx ∈C+ suchthatx·[D ]≥0,x·[E]≥0forall i exceptionalcurves E,andx·[C]≥0forall−2-curvesC. Moreover,ifαistheclass associatedtoanexceptionalor−2-curve,orα=[D ]forsomei suchthat D2<0, i i then Wα isafaceofA(Y). Ifα andβ aretwosuchclasses,Wα =Wβ ⇐⇒α=β. Proof. Forthefirstclaim,itisenoughtoshowthat,ifG isanirreduciblecurveonY with G2<0,then G iseither D forsomei,anexceptionalcurve,ora−2-curve. i Thisfollowsimmediatelyfromadjunctionsince,ifG(cid:54)=D foranyi,thenG·D≥0 i On the ample cone of a rational surface with an anticanonical cycle 1487 and −2≤2p (G)−2=G2−G·D<0; hence, p (G)=0 and either G2=−2, a a G·D=0,or G2=G·D=−1. Thelasttwostatementsfollowfromtheopenness statementinProposition1.5andthefactthatnotwodistinctclassesofthetypes listedabovearemultiplesofeachother. (cid:3) Asanalternatecharacterizationoftheclassesinthepreviouslemma,wehave thefollowing: Lemma2.4. Let H beanefdivisorsuchthat H ·D>0. (i) If α ∈ H2(Y;(cid:90)) with α2 =α·[K ]=−1, then α·[H]≥0 if and only if α Y α is the class of an effective curve. In particular, the wall W does not pass throughtheinteriorofA(Y). (See[FriedmanandMorgan1988,p.332]fora moregeneralstatement.) (ii) Ifβ∈H2(Y;(cid:90))withβ2=−2,β·[D ]=0foralli,β·[H]≥0,andϕ (β)=1, i Y then±β istheclassofaneffectivecurve,andβ iseffectiveifβ·[H]>0. Hence, the ample cone A(Y) is the set of all x ∈ C+ such that x ·[D ] ≥ 0 and i x·α≥0forallclassesα andβ asdescribedin(i)and(ii)above,whereincase(ii) weassumeinadditionthatβ iseffectiveorequivalentlythatβ·[H]>0forsome nefdivisor H. Proof. (i) Clearly, if α is the class of an effective curve, then α·[H] ≥ 0 since H is nef. Conversely, assume that α2 =α·[K ]=−1 and that α·[H]≥0. By Y theRiemann–Rochtheorem,χ(Lα)=1. Hence,either h0(Lα)>0or h2(Lα)>0. But h2(Lα) = h0(L−α1 ⊗ KY) and [H]·(−α−[D]) < 0 by assumption. Thus, h0(Lα)>0andhenceα istheclassofaneffectivecurve. (ii)Asin(i), H·(−β−[D])<0,andhence,h0(L−β1⊗KY)=0. Thus,h2(Lβ)=0. Suppose that h0(Lβ)=0. Then, by the Riemann–Roch theorem, χ(Lβ)=0 and hence h1(Lβ) = 0. Hence, h1(L−β1⊗KY)=0. Since ϕY(β) = 1, L±β1|D=OD. Thus,thereisanexactsequence 0→ L−1⊗O (−D)→ L−1→O →0. β Y β D Since H1(L−1⊗K )= H1(L−1⊗O (−D))=0, the map H0(L−1)→ H0(O ) β Y β Y β D issurjectiveandhence−β istheclassofaneffectivecurve. (cid:3) Definition 2.5. Let α ∈ H2(Y;(cid:90)). Then α is a numerical exceptional curve if α2=α·[KY]=−1. Thenumericalexceptionalcurveα iseffectiveif h0(Lα)>0, i.e.,ifα=[G],where G isaneffectivecurve. AminorvariationoftheproofofLemma2.4showsthefollowing: Lemma2.6. Let H beanefandbigdivisorsuchthat H ·G >0forallirreducible curvesG notequalto D forsomei,andletα beanumericalexceptionalcurve. i 1488 Robert Friedman (i) Suppose that [H]·α ≥ 0. Then either [H]·α > 0 and α is effective or H ·D=[H]·α=0andα isanintegrallinearcombinationofthe[D ]. i (ii) If (Y,D) is negative definite and α is an integral linear combination of the [D ], then either some component D is a smooth rational curve of self- i i intersection−1or K2 =−1,α= K ,andhenceα isnoteffective. Y Y (iii) Ifnocomponent D isasmoothrationalcurveofself-intersection−1,thenα i iseffectiveifandonlyif[H]·α>0. Proof. (i) As in the proof of Lemma 2.4, either α or −α − [D] is the class of an effective divisor. If −α −[D] is the class of an effective divisor, then 0≤[H]·(−α−[D])≤0,so[H]·α= H·D=0. Inparticular,(Y,D)isnegative definite. Moreover, if G is an effective divisor with [G]=−α−[D], then every componentof G isequaltosome D . Hence,[G]andthereforeα=−[G]−[D] i areintegrallinearcombinationsofthe[D ]. i (ii)Supposethatα isanintegrallinearcombinationofthe[D ]butthatno D isa i i smooth rational curve of self-intersection −1. We shall show that K2 =−1 and Y α= K . Firstsupposethat K2 =−1. Then(cid:76) (cid:90)·[D ]=(cid:90)·[K ]⊕L,where L, Y Y i i Y the orthogonal complement of [K ] in (cid:76) (cid:90)·[D ], is even and negative definite. Y i i Thus,α=a[K ]+β,witheitherβ =0orβ2≤−2,andα2=−a2+β2. Hence, Y ifα2=α·[K ]=−1,theonlypossibilityisβ =0anda=1. Incase K2 <−1, Y Y D isreducible,andno D isasmoothrationalcurveofself-intersection−1,then i D2 ≤−2 for all i and either D2 ≤−4 for some i or there exist i (cid:54)= j such that i i D2= D2=−3. In this case, it is easy to check that, for all integers a such that i j i a (cid:54)=0forsomei,(cid:0)(cid:80) a D (cid:1)2<−1. Thiscontradictsα2=−1. i i i i (iii) If [H]·α >0, then α is effective by (i). If [H]·α <0, then clearly α is not effective. Suppose that [H]·α =0; we must show that, again, α is not effective. Supposethatα=[G]iseffective. Bythehypothesison H,everycomponentof G isa D forsomei sothatα=(cid:80) a [D ]forsomea ∈(cid:90),a ≥0. Let I ⊆{1,...,r} i i i i i i be the set of i such that a >0. Then H ·D =0 for all i ∈ I. If I ={1,...,r}, i i then (Y,D) is negative definite and we are done by (ii). Otherwise, (cid:83) D is a i∈I i unionofchainsofcurveswhosecomponents D satisfy D2≤−2. Itistheneasy i i tocheckthatα2<−1inthiscase,acontradiction. Hence,α isnoteffective. (cid:3) Definition2.7. LetY beagenericsmalldeformationofY,andidentify H2(Y ;(cid:82)) t t with H2(Y;(cid:82)). DefineA =A (Y)tobetheampleconeA(Y )ofY ,viewed gen gen t t asasubsetof H2(Y;(cid:82)). Lemma2.8. Withnotationasabove,thefollowingaretrue: (i) Iftheredonotexistany−2-curvesonY,thenA(Y)=A . Moregenerally, gen A isthesetofallx ∈C+ suchthatx·[D ]≥0andx·α≥0foralleffective gen i numericalexceptionalcurves. Inparticular,A(Y)⊆A . gen On the ample cone of a rational surface with an anticanonical cycle 1489 (ii) WehaveA(Y)={x ∈A :x·[C]≥0forall−2-curvesC}. gen Proof. LetY beasurfacewithno−2-curves(suchsurfacesexistandaregeneric by the surjectivity of the period map (Theorem 1.3)). Fix a nef divisor H on Y with H · D > 0. Then A(Y) is the set of all x ∈ C+ such that x ·[D ] ≥ 0 and i x ·[E] ≥ 0 for all exceptional curves E, and this last condition is equivalent to x ·α ≥0 for all α ∈ H2(Y;(cid:90)) such that α2 =α·[K ]=−1 and α·[H]≥0 by Y Lemma2.4. SincethisconditionisindependentofthechoiceofY,becausewecan choosethedivisor H tobeampleandtovaryinasmalldeformation,thefirstpart of(i)follows,andtheremainingstatementsareclear. (cid:3) Infact,theargumentaboveshowsthefollowing: Lemma 2.9. The set of effective numerical exceptional curves and the set A gen arelocallyconstantandhenceareinvariantinaglobaldeformationwithtrivial monodromyundertheinducedidentifications. (cid:3) Lemma2.10. IfC isa−2-curveonY,thenthewallWC meetstheinteriorofA , gen andinfact,r (A )=A ,wherer : H2(Y;(cid:82))→ H2(Y;(cid:82))isreflectioninthe C gen gen C class[C]. Hence,A(Y)isafundamentaldomainfortheactionofthegroupW((cid:49) ) Y onA ,whereW((cid:49) )isthegroupgeneratedbythereflectionsintheclassesin gen Y theset(cid:49) of−2-curvesonY. Y Proof. Clearly,ifr (A )=A ,then WC meetstheinteriorofA . Toseethat C gen gen gen r (A )=A ,assumefirstmoregenerallythatβ∈(cid:51)isanyclasswithβ2=−2, C gen gen andletrβ bethecorrespondingreflection. Thenrβ permutesthesetofα∈H2(Y;(cid:90)) suchthatα2=α·[K ]=−1butdoesnotnecessarilypreservetheconditionthatαis Y effective,i.e.,thatα·[H]≥0forsomenefdivisor H onY with H·D>0. However, for β = [C], there exists by Proposition 1.5 a nef and big divisor H such that 0 H ·C=0and H·D>0. Hence,[H ]isinvariantunderr ,andsor permutesthe 0 0 C C setofα∈H2(Y;(cid:90))suchthatα2=α·[K ]=−1andα·[H ]≥0. Thus,r permutes Y 0 C thesetofeffectivenumericalexceptionalcurvesandhencethefacesofA sothat gen r (A )=A . SinceA(Y)⊆A isgivenbyLemma2.8(ii),thefinalstatement C gen gen gen isthenageneralresultinthetheoryofreflectiongroups[Bourbaki1981,V§3]. (cid:3) Remark2.11. (i)TheargumentforthefirstpartofLemma2.10essentiallyboils down to the following. Let Y be the normal surface obtained by contracting C. Thenthereflectionr isthemonodromyassociatedtoagenericsmoothingofthe C singularsurfaceY,andtheconeA isinvariantundermonodromy. gen (ii) If E is an exceptional curve, then WE is a face of A(Y). For a generic Y (i.e.,no −2-curves),Lemma2.10thensays thatthesetofexceptionalcurveson Y is invariant under the reflection group generated by all classes of square −2 that become the classes of a −2-curve under some specialization. A somewhat more involvedstatementholdsinthenongenericcase.

Description:
to the components of D. Motivated by recent work of Gross, Hacking, and points or, equivalently, smooth surfaces Y with −KY nef and big but not symmetries of the ample cone, a fact which (in a somewhat different guise) was book of Manin [1986] or the account of Demazure [1980a; 1980b; 1980c;
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.