Algebra & Number Theory Volume 7 2013 No. 6 On the ample cone of a rational surface with an anticanonical cycle Robert Friedman msp ALGEBRAANDNUMBERTHEORY7:6(2013) dx.doi.org/10.2140/ant.2013.7.1481 msp On the ample cone of a rational surface with an anticanonical cycle Robert Friedman LetY beasmoothrationalsurface,andlet DbeacycleofrationalcurvesonY thatisananticanonicaldivisor,i.e.,anelementof|−K |. Looijengastudiedthe Y geometryofsuchsurfacesY incase Dhasatmostfivecomponentsandidentified ageometricallysignificantsubsetRofthedivisorclassesofsquare−2orthogonal tothecomponentsof D. MotivatedbyrecentworkofGross,Hacking,andKeel ontheglobalTorellitheoremforpairs(Y,D),weattempttogeneralizesomeof Looijenga’sresultsincase Dhasmorethanfivecomponents. Inparticular,given anintegralisometry f of H2(Y)thatpreservestheclassesofthecomponents of D,weinvestigatetherelationshipbetweentheconditionthat f preservesthe “generic”ampleconeofY andtheconditionthat f preservestheset R. Introduction TheampleconeofadelPezzosurfaceY (orrathertheassociateddualpolyhedron) was studied classically by, among others, Gosset, Schoute, Kantor, Coble, Todd, Coxeter,andDuVal. Forabriefhistoricaldiscussion,onecanconsulttheremarks in [Coxeter 1973, §11.x]. From this point of view, the lines on Y are the main object ofgeometric interest asthey are thewalls ofthe ample coneor the vertices of the dual polyhedron. The corresponding root system (in case K2 ≤ 6) only Y manifestsitselfgeometricallybyallowingdelPezzosurfaceswithrationaldouble points or, equivalently, smooth surfaces Y with −K nef and big but not ample. Y Thisis explicitly worked outin[DuVal1934]. Onthe otherhand,the rootsystem, or rather its Weyl group, appears for a smooth del Pezzo surface as a group of symmetries of the ample cone, a fact which (in a somewhat different guise) was alreadyknowntoCartan. Perhapstheculminationoftheclassicalsideofthestory is [Du Val 1937], where the blowup of (cid:80)2 at n ≥9 points is also systematically considered. Inmoderntimes,ManinexplainedtheappearanceoftheWeylgroup by noting that the orthogonal complement to K in H2(Y;(cid:90)) is a root lattice (cid:51). Y Moreover, given any root of (cid:51), in other words an element β of square −2, there MSC2010: 14J26. Keywords: rationalsurface,anticanonicalcycle,exceptionalcurve,amplecone. 1481 1482 Robert Friedman existsadeformationofY forwhichβ =±[C],whereC isasmoothrationalcurve ofself-intersection−2. For modernexpositionsof thetheory,seefor examplethe bookofManin[1986]ortheaccountofDemazure[1980a;1980b;1980c;1980d]. Ingeneral,itseemshardtostudyanarbitraryrationalsurfaceY withoutimposing some extra conditions. One very natural condition is that −K is effective, i.e., Y that −K = D for an effective divisor D. In case the intersection matrix of D Y is negative definite, such pairs (Y,D) arise naturally in the study of minimally elliptic singularities: the case where D is a smooth elliptic curve corresponds to the case of simple elliptic singularities, the case where D is a nodal curve or a cycle of smooth rational curves meeting transversally corresponds to the case of cusp singularities, and the case where D is reduced but has one component with a cusp, two components with a tacnode, or three components meeting at a point correspondstotrianglesingularities. Fromthispointofview,thecasewhere D isa cycleofrationalcurvesisthemostplentiful. Thesystematicstudyofsuchsurfaces incasetheintersectionmatrixof D isnegativedefinitedatesbackto[Looijenga 1981]. However, for various technical reasons, most of the results of that paper areprovedundertheassumptionthatthenumberofcomponentsinthecycleisat most5. Someofthemain pointsofLooijenga’sseminalpaperare asfollows. Let R denotethesetofelementsin H2(Y;(cid:90))ofsquare−2thatareorthogonaltothe componentsof D andthatareoftheform±[C],whereC isasmoothrationalcurve disjointfrom D,forsomedeformationofthepair(Y,D). Intermsofdeformations ofsingularities,theset R isrelatedtothepossiblerationaldoublepointsingularities thatcanariseasdeformationsofthedualcusptothecuspsingularitycorresponding to D. Looijenganotedthat,ingeneral,thereexistelementsin H2(Y;(cid:90))ofsquare −2thatareorthogonaltothecomponentsof D butthatdonotliein R. Moreover, reflectionsinelementsoftheset R givesymmetriesofthe“generic”amplecone (whichisthesameastheampleconeincasetherearenosmoothrationalcurveson Y disjointfrom D). Finally,stillundertheassumptionofatmostfivecomponents, any isometry of H2(Y;(cid:90)) that preserves the positive cone, the classes [D ], and i theset R preservesthegenericamplecone. This paper, which is an attempt to see how much of [Looijenga 1981] can be generalizedtothecaseofarbitrarilymanycomponents,ismotivatedbyaquestion raised by the recent work of Gross, Hacking, and Keel [Gross et al. 2013] on, among other matters, the global Torelli theorem for pairs (Y,D) where D is an anticanonicalcycleontherationalsurfaceY. Inordertoformulatethistheoremin afairlygeneralway,onewouldliketocharacterizetheisometries f of H2(Y,(cid:90)), preservingthe positiveconeand fixingthe classes[D ], whichpreservethe ample i cone of Y. It is natural to ask if, at least in the generic case, the condition that f(R) = R is sufficient. In this paper, we give various criteria on R that insure that, if an isometry f of H2(Y;(cid:90)) preserves the positive cone, the classes [D ], i On the ample cone of a rational surface with an anticanonical cycle 1483 and the set R, then f preserves the generic ample cone. Typically, one needs a hypothesis that says that R is large. For example, one such hypothesis is that thereis asubsetof R thatspans anegative definitecodimension-1subspaceof the orthogonalcomplementtothecomponentsof D. Intheory,atleastundervarious extra hypotheses, such a result gives a necessary and sufficient condition for an isometrytopreservethegenericamplecone. Inpractice,however,thedetermination oftheset R ingeneralisadifficultproblem,whichseemscloseinitscomplexityto theproblemofdescribingthegenericampleconeofY. Finally,weshowthatsome assumptionson(Y,D)arenecessarybygivingexampleswhere R=∅,sothatthe condition that an isometry f preserves R is automatic, and of isometries f such that f preservesthepositivecone,theclasses[D ],and(vacuously)theset R but f i doesnotpreservethegenericamplecone. Wedonotyethaveagoodunderstanding oftherelationshipbetweenpreservingtheampleconeandpreservingtheset R. An outline of this paper is as follows. The preliminary Section 1 reviews standardmethodsforconstructingnefclassesonalgebraicsurfacesandappliesthis to thestudy ofwhen thenormal surface obtainedby contractinga negativedefinite anticanonical cycle on a rational surface is projective. In Section 2, we analyze the ample cone and generic ample cone of a pair (Y,D) and show that the set R defined by Looijenga is exactly the set of elements β in H2(Y;(cid:90)) of square −2 thatareorthogonaltothecomponentsof D suchthatreflectionaboutβ preserves the generic ample cone. Much of the material of Section 2 overlaps with results in[Grossetal.2013],provedtherebysomewhatdifferentmethods. Section3is devoted to giving various sufficient conditions for an isometry f of H2(Y;(cid:90)) to preservethegenericamplecone,includingtheonedescribedabove. Section4gives examplesofpairs(Y,D)satisfyingthesufficientconditionsofSection3wherethe numberofcomponentsof D andthemultiplicity−D2 arearbitrarilylargeaswell asexamplesshowingthatsomehypotheseson(Y,D)arenecessary. Notationandconventions. Weworkover(cid:67). If X isasmoothprojectivesurface withh1(OX)=h2(OX)=0andα∈ H2(X;(cid:90)),welet Lα denotethecorresponding holomorphiclinebundle,i.e.,c1(Lα)=α. GivenacurveC ordivisorclassG on X, we let [C] or [G] denote the corresponding element of H2(X;(cid:90)). Intersection pairingoncurvesordivisors,oronelementsinthesecondcohomologyofasmooth surface(viewedasacanonicallyoriented4-manifold),isdenotedbymultiplication. 1. Preliminaries In this paper, Y denotes a smooth rational surface with −K = D =(cid:80)r D a Y i=1 i (reduced)cycleofrationalcurves;i.e.,each D isasmoothrationalcurveand D i i meets Di±1 transversally,wherei istakenmodr exceptforr =1,inwhichcase D = D isanirreduciblenodalcurve. Wenote,however,thatmanyoftheresults 1 1484 Robert Friedman inthispapercanbegeneralizedtothecasewhere D∈|−K |isnotassumedtobe Y acycle. Theintegerr =r(D)iscalledthelengthof D. Anorientationof D isan orientation of the dual graph (with appropriate modifications in caser =1). We shallabbreviatethe dataofthesurface Y andtheorientedcycle D by(Y,D)and refertoitasananticanonicalpair. Iftheintersectionmatrix(D ·D )isnegative i j definite,wesaythat(Y,D)isanegativedefiniteanticanonicalpair. Definition 1.1. An irreducible curve E on Y is an exceptional curve if E ∼=(cid:80)1, E2 =−1, and E (cid:54)= D for any i. An irreducible curve C on Y is a −2-curve if i C ∼=(cid:80)1,C2=−2,andC (cid:54)= D foranyi. Let(cid:49) bethesetofall−2-curvesonY, i Y andletW((cid:49) )bethegroupofintegralisometriesof H2(Y;(cid:82))generatedbythe Y reflectionsintheclassesintheset(cid:49) . Y Definition1.2. Let(cid:51)=(cid:51)(Y,D)⊆H2(Y;(cid:90))betheorthogonalcomplementofthe latticespannedbytheclasses[D ]. FixingtheidentificationPic0 D∼=(cid:71) defined i m bytheorientationofthecycle D,wedefinetheperiodhomomorphismϕ :(cid:51)→(cid:71) Y m asfollows: ifα∈(cid:51)and Lα isthecorrespondinglinebundle,thenϕY(α)∈(cid:71)m is theimageofthelinebundleofmultidegree0on D definedby Lα|D. ClearlyϕY is ahomomorphism. Theperiodmapisthefunctionthatassociatestothepair(Y,D) thehomomorphismϕ :(cid:51)→(cid:71) . Y m By[Looijenga1981;FriedmanandScattone1986;Friedman1984],wehave: Theorem 1.3. The period map is surjective. More precisely, given Y as above andgivenanarbitraryhomomorphismϕ:(cid:51)→(cid:71) ,thereexistsadeformationof m thepair(Y,D)overasmoothconnectedbase,whichwecantaketobe((cid:71) )n for m somen,suchthatthemonodromyofthefamilyistrivialandthereexistsafiberof thedeformation,say(Y(cid:48),D(cid:48)),suchthatϕY(cid:48) =ϕ undertheinducedidentificationof (cid:51)(Y(cid:48),D(cid:48))with(cid:51). (cid:3) Forfuturereference,werecallsomestandardfactsaboutnegativedefinitecurves onasurface. Lemma 1.4. Let X be a smooth projective surface, and let G ,...,G be irre- 1 n duciblecurveson X suchthattheintersectionmatrix(G ·G )isnegativedefinite. i j Let F beaneffectivedivisoron X notnecessarilyreducedorirreducibleandsuch that,foralli,G isnotacomponentof F. i (i) Givenr ∈(cid:82), if (F +(cid:80) r G )·G =0 for all j, thenr ≥0 for all i, and, i i i i j i for every subset I of {1,...,n}, if (cid:83) G is a connected curve such that i∈I i F·G (cid:54)=0forsome j ∈ I,thenr >0fori ∈ I. j i (ii) Givens ,t ∈(cid:82),if[F]+(cid:80) s [G ]=(cid:80) t [G ],then F=0ands =t foralli. i i i i i i i i i i Thefollowinggeneralresultisalsowellknown: On the ample cone of a rational surface with an anticanonical cycle 1485 Proposition 1.5. Let X be a smooth projective surface, and let G ,...,G be 1 n irreducible curves on X such that the intersection matrix (G ·G ) is negative i j (cid:83) definite. (Wedonot,however,assumethat G isconnected.) Thenthereexistsa i i nefandbigdivisor H on X suchthat H·G =0forall j and,ifC isanirreducible j curve such that C (cid:54)= G for any j, then H ·C > 0. In fact, the set of nef and j big (cid:82)-divisors that are orthogonal to {G ,...,G } is a nonempty open subset 1 n of{G ,...,G }⊥⊗(cid:82). 1 n Proof. Fix an ample divisor H on X. Since (G · G ) is negative definite, 0 i j there exist r ∈ (cid:81) such that (cid:0)(cid:80) r G (cid:1)·G = −(H ·G ) for every j. Hence, i i i i j 0 j (H +(cid:80) r G )·G =0. ByLemma1.4,r >0foreveryi. Thereexistsan N >0 0 i i i j i such that Nr ∈ (cid:90) for all i. Then H = N(H +(cid:80) r G ) is an effective divisor i 0 i i i satisfying H ·G =0forall j. IfC isanirreduciblecurvesuchthatC (cid:54)=G for j j any j,thenH ·C>0andG ·C≥0foralli. Hence, H·C>0. Inparticular, H isnef. 0 i Finally, H isbigsince H2=NH·(H +(cid:80) r G )=N(H·H )>0as H isample. 0 i i i 0 0 Toseethefinalstatement,weapplytheaboveargumenttoanample(cid:82)-divisor x (i.e.,anelementintheinterioroftheamplecone)toseethatx+(cid:80) r G isanefand i i i big(cid:82)-divisororthogonalto{G ,...,G }. Asx+(cid:80) r G issimplytheorthogonal 1 n i i i projection pofxonto{G ,...,G }⊥⊗(cid:82)and p:H2(X;(cid:82))→{G ,...,G }⊥⊗(cid:82) 1 n 1 n isanopenmap,theimageoftheinterioroftheampleconeof X isthenanonempty opensubsetof{G ,...,G }⊥⊗(cid:82)consistingofnefandbig(cid:82)-divisorsorthogonal 1 n to{G ,...,G }. (cid:3) 1 n Applying the above construction to X =Y and D ,...,D , we can find a nef 1 r andbigdivisor H suchthat H·D =0forall j andsuchthat,ifC isanirreducible j curvesuchthatC (cid:54)= D forany j,then H ·C >0. j Proposition 1.6. Let (Y,D) be a negative definite anticanonical pair, and let H be a nef and big divisor such that H · D =0 for all j and such that, if C is an j irreduciblecurvesuchthatC (cid:54)= D forany j,then H ·C >0. Supposeinaddition j thatO (H)|D=O ,i.e.,thatϕ ([H])=1. Thenthe D arenotfixedcomponents Y D Y i of|H|. Hence,ifY denotesthenormalcomplexsurfaceobtainedbycontracting the D ,then H inducesanampledivisor H onY and|3H|definesanembedding i ofY in(cid:80)N forsome N. Proof. Considertheexactsequence 0→O (H −D)→O (H)→O →0. Y Y D Lookingatthelongexactcohomologysequence,as H1(Y;O (H −D))= H1(Y;O (H)⊗K ) Y Y Y isSerredualto H1(Y;O (−H))=0,byRamanujam’svanishingtheorem,there Y existsasectionofO (H)thatisnowherevanishingon D,provingthefirststatement. Y 1486 Robert Friedman ThesecondfollowsfromtheNakai–Moishezoncriterionandthethirdfromgeneral resultsonlinearseriesonanticanonicalpairs[Friedman1983]. (cid:3) Remark1.7. Bythesurjectivityoftheperiodmap(Theorem1.3),forany(Y,D) anegativedefiniteanticanonicalpairand H anefandbigdivisoron Y suchthat H·D =0forall j and H·C >0forallcurvesC (cid:54)=D ,thereexistsadeformation j i of the pair (Y,D) such that the divisor corresponding to H has trivial restriction to D. Moregenerally,onecanconsiderdeformationssuchthatϕ ([H])isatorsion Y point of (cid:71) . In this case, if Y is the normal surface obtained by contracting D, m thenY isprojective. Notethatthisimpliesthatthesetofpairs(Y,D)suchthatY is projective is Zariski dense in the moduli space. However, as the set of torsion pointsisnotdensein(cid:71) intheclassicaltopology,thesetofprojectivesurfacesY m willnotbedenseintheclassicaltopology. 2. Rootsandnodalclasses Definition2.1. LetC=C(Y)bethepositiveconeofY,i.e., C={x ∈ H2(Y;(cid:82)):x2>0}. ThenChastwocomponents,andexactlyoneofthem,sayC+=C+(Y),contains theclassesofampledivisors. Wealsodefine C+ =C+(Y)={x ∈C+:x·[D ]≥0foralli}. D D i LetA(Y)⊆C+⊆ H2(Y;(cid:82))be(theclosureof)theample(nef,Kähler)coneofY inC+. Bydefinition,A(Y)isclosedinC+ butnotingeneralin H2(Y;(cid:82)). Definition2.2. Letα∈ H2(Y;(cid:90)),α(cid:54)=0. TheorientedwallWα associatedtoα is theset{x ∈C+:x·α=0},i.e.,theintersectionofC+ withtheorthogonalspace toα togetherwiththepreferredhalfspacedefinedbyx·α≥0. IfC isacurveonY, wewrite WC for W[C]. Astandardresult(see,forexample,[FriedmanandMorgan 1988,II(1.8)])showsthat,if I isasubsetof H2(Y;(cid:90))andthereexistsan N ∈(cid:90)+ such that −N ≤α2<0 for all α∈ I, then the collection of walls {Wα :α∈ I} is locally finite on C+. Finally, we say that Wα is a face of A(Y) if ∂A(Y)∩Wα containsanonemptyopensubsetof Wα and x·α≥0forall x ∈A(Y). Lemma2.3. A(Y)isthesetofallx ∈C+ suchthatx·[D ]≥0,x·[E]≥0forall i exceptionalcurves E,andx·[C]≥0forall−2-curvesC. Moreover,ifαistheclass associatedtoanexceptionalor−2-curve,orα=[D ]forsomei suchthat D2<0, i i then Wα isafaceofA(Y). Ifα andβ aretwosuchclasses,Wα =Wβ ⇐⇒α=β. Proof. Forthefirstclaim,itisenoughtoshowthat,ifG isanirreduciblecurveonY with G2<0,then G iseither D forsomei,anexceptionalcurve,ora−2-curve. i Thisfollowsimmediatelyfromadjunctionsince,ifG(cid:54)=D foranyi,thenG·D≥0 i On the ample cone of a rational surface with an anticanonical cycle 1487 and −2≤2p (G)−2=G2−G·D<0; hence, p (G)=0 and either G2=−2, a a G·D=0,or G2=G·D=−1. Thelasttwostatementsfollowfromtheopenness statementinProposition1.5andthefactthatnotwodistinctclassesofthetypes listedabovearemultiplesofeachother. (cid:3) Asanalternatecharacterizationoftheclassesinthepreviouslemma,wehave thefollowing: Lemma2.4. Let H beanefdivisorsuchthat H ·D>0. (i) If α ∈ H2(Y;(cid:90)) with α2 =α·[K ]=−1, then α·[H]≥0 if and only if α Y α is the class of an effective curve. In particular, the wall W does not pass throughtheinteriorofA(Y). (See[FriedmanandMorgan1988,p.332]fora moregeneralstatement.) (ii) Ifβ∈H2(Y;(cid:90))withβ2=−2,β·[D ]=0foralli,β·[H]≥0,andϕ (β)=1, i Y then±β istheclassofaneffectivecurve,andβ iseffectiveifβ·[H]>0. Hence, the ample cone A(Y) is the set of all x ∈ C+ such that x ·[D ] ≥ 0 and i x·α≥0forallclassesα andβ asdescribedin(i)and(ii)above,whereincase(ii) weassumeinadditionthatβ iseffectiveorequivalentlythatβ·[H]>0forsome nefdivisor H. Proof. (i) Clearly, if α is the class of an effective curve, then α·[H] ≥ 0 since H is nef. Conversely, assume that α2 =α·[K ]=−1 and that α·[H]≥0. By Y theRiemann–Rochtheorem,χ(Lα)=1. Hence,either h0(Lα)>0or h2(Lα)>0. But h2(Lα) = h0(L−α1 ⊗ KY) and [H]·(−α−[D]) < 0 by assumption. Thus, h0(Lα)>0andhenceα istheclassofaneffectivecurve. (ii)Asin(i), H·(−β−[D])<0,andhence,h0(L−β1⊗KY)=0. Thus,h2(Lβ)=0. Suppose that h0(Lβ)=0. Then, by the Riemann–Roch theorem, χ(Lβ)=0 and hence h1(Lβ) = 0. Hence, h1(L−β1⊗KY)=0. Since ϕY(β) = 1, L±β1|D=OD. Thus,thereisanexactsequence 0→ L−1⊗O (−D)→ L−1→O →0. β Y β D Since H1(L−1⊗K )= H1(L−1⊗O (−D))=0, the map H0(L−1)→ H0(O ) β Y β Y β D issurjectiveandhence−β istheclassofaneffectivecurve. (cid:3) Definition 2.5. Let α ∈ H2(Y;(cid:90)). Then α is a numerical exceptional curve if α2=α·[KY]=−1. Thenumericalexceptionalcurveα iseffectiveif h0(Lα)>0, i.e.,ifα=[G],where G isaneffectivecurve. AminorvariationoftheproofofLemma2.4showsthefollowing: Lemma2.6. Let H beanefandbigdivisorsuchthat H ·G >0forallirreducible curvesG notequalto D forsomei,andletα beanumericalexceptionalcurve. i 1488 Robert Friedman (i) Suppose that [H]·α ≥ 0. Then either [H]·α > 0 and α is effective or H ·D=[H]·α=0andα isanintegrallinearcombinationofthe[D ]. i (ii) If (Y,D) is negative definite and α is an integral linear combination of the [D ], then either some component D is a smooth rational curve of self- i i intersection−1or K2 =−1,α= K ,andhenceα isnoteffective. Y Y (iii) Ifnocomponent D isasmoothrationalcurveofself-intersection−1,thenα i iseffectiveifandonlyif[H]·α>0. Proof. (i) As in the proof of Lemma 2.4, either α or −α − [D] is the class of an effective divisor. If −α −[D] is the class of an effective divisor, then 0≤[H]·(−α−[D])≤0,so[H]·α= H·D=0. Inparticular,(Y,D)isnegative definite. Moreover, if G is an effective divisor with [G]=−α−[D], then every componentof G isequaltosome D . Hence,[G]andthereforeα=−[G]−[D] i areintegrallinearcombinationsofthe[D ]. i (ii)Supposethatα isanintegrallinearcombinationofthe[D ]butthatno D isa i i smooth rational curve of self-intersection −1. We shall show that K2 =−1 and Y α= K . Firstsupposethat K2 =−1. Then(cid:76) (cid:90)·[D ]=(cid:90)·[K ]⊕L,where L, Y Y i i Y the orthogonal complement of [K ] in (cid:76) (cid:90)·[D ], is even and negative definite. Y i i Thus,α=a[K ]+β,witheitherβ =0orβ2≤−2,andα2=−a2+β2. Hence, Y ifα2=α·[K ]=−1,theonlypossibilityisβ =0anda=1. Incase K2 <−1, Y Y D isreducible,andno D isasmoothrationalcurveofself-intersection−1,then i D2 ≤−2 for all i and either D2 ≤−4 for some i or there exist i (cid:54)= j such that i i D2= D2=−3. In this case, it is easy to check that, for all integers a such that i j i a (cid:54)=0forsomei,(cid:0)(cid:80) a D (cid:1)2<−1. Thiscontradictsα2=−1. i i i i (iii) If [H]·α >0, then α is effective by (i). If [H]·α <0, then clearly α is not effective. Suppose that [H]·α =0; we must show that, again, α is not effective. Supposethatα=[G]iseffective. Bythehypothesison H,everycomponentof G isa D forsomei sothatα=(cid:80) a [D ]forsomea ∈(cid:90),a ≥0. Let I ⊆{1,...,r} i i i i i i be the set of i such that a >0. Then H ·D =0 for all i ∈ I. If I ={1,...,r}, i i then (Y,D) is negative definite and we are done by (ii). Otherwise, (cid:83) D is a i∈I i unionofchainsofcurveswhosecomponents D satisfy D2≤−2. Itistheneasy i i tocheckthatα2<−1inthiscase,acontradiction. Hence,α isnoteffective. (cid:3) Definition2.7. LetY beagenericsmalldeformationofY,andidentify H2(Y ;(cid:82)) t t with H2(Y;(cid:82)). DefineA =A (Y)tobetheampleconeA(Y )ofY ,viewed gen gen t t asasubsetof H2(Y;(cid:82)). Lemma2.8. Withnotationasabove,thefollowingaretrue: (i) Iftheredonotexistany−2-curvesonY,thenA(Y)=A . Moregenerally, gen A isthesetofallx ∈C+ suchthatx·[D ]≥0andx·α≥0foralleffective gen i numericalexceptionalcurves. Inparticular,A(Y)⊆A . gen On the ample cone of a rational surface with an anticanonical cycle 1489 (ii) WehaveA(Y)={x ∈A :x·[C]≥0forall−2-curvesC}. gen Proof. LetY beasurfacewithno−2-curves(suchsurfacesexistandaregeneric by the surjectivity of the period map (Theorem 1.3)). Fix a nef divisor H on Y with H · D > 0. Then A(Y) is the set of all x ∈ C+ such that x ·[D ] ≥ 0 and i x ·[E] ≥ 0 for all exceptional curves E, and this last condition is equivalent to x ·α ≥0 for all α ∈ H2(Y;(cid:90)) such that α2 =α·[K ]=−1 and α·[H]≥0 by Y Lemma2.4. SincethisconditionisindependentofthechoiceofY,becausewecan choosethedivisor H tobeampleandtovaryinasmalldeformation,thefirstpart of(i)follows,andtheremainingstatementsareclear. (cid:3) Infact,theargumentaboveshowsthefollowing: Lemma 2.9. The set of effective numerical exceptional curves and the set A gen arelocallyconstantandhenceareinvariantinaglobaldeformationwithtrivial monodromyundertheinducedidentifications. (cid:3) Lemma2.10. IfC isa−2-curveonY,thenthewallWC meetstheinteriorofA , gen andinfact,r (A )=A ,wherer : H2(Y;(cid:82))→ H2(Y;(cid:82))isreflectioninthe C gen gen C class[C]. Hence,A(Y)isafundamentaldomainfortheactionofthegroupW((cid:49) ) Y onA ,whereW((cid:49) )isthegroupgeneratedbythereflectionsintheclassesin gen Y theset(cid:49) of−2-curvesonY. Y Proof. Clearly,ifr (A )=A ,then WC meetstheinteriorofA . Toseethat C gen gen gen r (A )=A ,assumefirstmoregenerallythatβ∈(cid:51)isanyclasswithβ2=−2, C gen gen andletrβ bethecorrespondingreflection. Thenrβ permutesthesetofα∈H2(Y;(cid:90)) suchthatα2=α·[K ]=−1butdoesnotnecessarilypreservetheconditionthatαis Y effective,i.e.,thatα·[H]≥0forsomenefdivisor H onY with H·D>0. However, for β = [C], there exists by Proposition 1.5 a nef and big divisor H such that 0 H ·C=0and H·D>0. Hence,[H ]isinvariantunderr ,andsor permutesthe 0 0 C C setofα∈H2(Y;(cid:90))suchthatα2=α·[K ]=−1andα·[H ]≥0. Thus,r permutes Y 0 C thesetofeffectivenumericalexceptionalcurvesandhencethefacesofA sothat gen r (A )=A . SinceA(Y)⊆A isgivenbyLemma2.8(ii),thefinalstatement C gen gen gen isthenageneralresultinthetheoryofreflectiongroups[Bourbaki1981,V§3]. (cid:3) Remark2.11. (i)TheargumentforthefirstpartofLemma2.10essentiallyboils down to the following. Let Y be the normal surface obtained by contracting C. Thenthereflectionr isthemonodromyassociatedtoagenericsmoothingofthe C singularsurfaceY,andtheconeA isinvariantundermonodromy. gen (ii) If E is an exceptional curve, then WE is a face of A(Y). For a generic Y (i.e.,no −2-curves),Lemma2.10thensays thatthesetofexceptionalcurveson Y is invariant under the reflection group generated by all classes of square −2 that become the classes of a −2-curve under some specialization. A somewhat more involvedstatementholdsinthenongenericcase.
Description: