ebook img

On the adjugate of a matrix PDF

2 Pages·0.064 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the adjugate of a matrix

On the adjugate of a matrix Anto(cid:19)nio Guedes de Oliveira(cid:3) Universidade do Porto Let j(cid:21)I (cid:0)Aj = (cid:21)n +cn(cid:0)1(cid:21)n(cid:0)1 +(cid:1)(cid:1)(cid:1)+c1(cid:21)+c0 be the characteristic polynomial of an n-by-n matrix A over a given (cid:12)eld K. The elegant proof of the Cayley-Hamilton theorem of [1, p. 50] can be easily modi(cid:12)ed to prove that (see [2, p. 40]): ((cid:0)1)n(cid:0)1Aadj = An(cid:0)1 +cn(cid:0)1An(cid:0)2 +(cid:1)(cid:1)(cid:1)+c1I (1) where Aadj stands for the adjugate of A (or classical adjoint | the transpose of the cofactor matrixofA)andI fortheidentitymatrixofordern. Moregenerally, itcanbeeasilymodi(cid:12)ed to prove that (see [3, p. 38]): ((cid:21)I(cid:0)A)adj = An(cid:0)1+((cid:21)+cn(cid:0)1)An(cid:0)2+(cid:1)(cid:1)(cid:1)+((cid:21)n(cid:0)1+cn(cid:0)1(cid:21)n(cid:0)2+cn(cid:0)2(cid:21)n(cid:0)3+(cid:1)(cid:1)(cid:1)+c1)I (2) Proof. We start from the basic fact that: ((cid:21)I (cid:0)A)(cid:1)((cid:21)I (cid:0)A) adj = ((cid:21)n+cn(cid:0)1(cid:21)n(cid:0)1+(cid:1)(cid:1)(cid:1)+c1(cid:21)+c0)I (3) and by noting that, by de(cid:12)nition of adjugate, ((cid:21)I (cid:0) A) adj is a polynomial in (cid:21) of degree n(cid:0)1 with coe(cid:14)cients in the space of the n-by-n matrices over K, say, ((cid:21)I (cid:0)A)adj = Dn(cid:0)1(cid:21)n(cid:0)1+Dn(cid:0)2(cid:21)n(cid:0)2+(cid:1)(cid:1)(cid:1)+D1(cid:21)+D0 By equating the terms in (cid:21) of the same order in both sides of equation (3), we obtain: Dn(cid:0)1 = I (cid:0)A(cid:1)Dn(cid:0)1 +Dn(cid:0)2 = cn(cid:0)1I (cid:0)A(cid:1)Dn(cid:0)2 +Dn(cid:0)3 = cn(cid:0)2I . . . . . . . . . (cid:0)A(cid:1)D +D = c I 1 0 1 (cid:0)A(cid:1)D = c I 0 0 Finally, by multiplying the (cid:12)rst equation by An, the second by An(cid:0)1, and so on, up to the last equation, and by adding the new equations up, we obtain the Cayley-Hamilton theorem. This is the proof in [1, p. 50]. If, instead, we multiply the (cid:12)rst equation by An(cid:0)1, the second by An(cid:0)2, etc., and stop precisely before the last equation, by summing up we obtain at the left-hand side D , which is ((cid:0)1)n(cid:0)1Aadj, say, by putting (cid:21)= 0. Hence, we get (1). (2) can be 0 proven by obtaining the coe(cid:14)cients of ((cid:21)I(cid:0)A) adj step by step through the same procedure. (cid:3) Work partially supported by the Centro de Matematica da Universidade do Porto (CMUP), (cid:12)nanced by FCT (Portugal) through the programmes POCTI and POSI, with national and European Community structural funds. 1 References [1] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover Publications, Inc, New York (1992). [2] O. Taussky, \The factorization of the adjugate of a (cid:12)nite matrix", Linear Algebra Appl., 1 (1968), pp. 39{41. [3] R.A. Frazer, W.J. Duncan, and A.R. Collar, Elementary Matrices and Some Applica- tions to Dynamics and Di(cid:11)erential Equations, Cambridge University Press, Cambridge, England, (1955). 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.