ebook img

On the absorption of microwaves by the one-dimensional spin-1/2 Heisenberg-Ising magnet PDF

0.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On the absorption of microwaves by the one-dimensional spin-1/2 Heisenberg-Ising magnet

Ontheabsorptionofmicrowavesbytheone-dimensionalspin-1/2Heisenberg-Isingmagnet Michael Brockmann, Frank Go¨hmann, Michael Karbach, and Andreas Klu¨mper Fachbereich C – Physik, Bergische Universita¨t Wuppertal, 42097 Wuppertal, Germany Alexander Weiße Max-Planck-Institut fu¨r Mathematik, P.O. Box 7280, 53072 Bonn, Germany WeanalyzetheabsorptionofmicrowavesbytheHeisenberg-Isingchaincombiningexactcalculations,based on the integrability of the model, with numerical calculations. Within linear response theory the absorbed intensityisdeterminedbytheimaginarypartofthedynamicalsusceptibility.Themomentsofthenormalized intensitycanbeusedtodefinetheshiftoftheresonancefrequencyinducedbytheinteractionsandtheline widthindependentlyoftheshapeofthespectralline.Thesemomentscanbecalculatedexactlyasfunctionsof 2 temperatureandstrengthofanexternalmagneticfield,aslongasthefieldisdirectedalongthesymmetryaxisof 1 thechain.Thisallowsustodiscussthelinewidthandtheresonanceshiftforagivenmagneticfieldinthefull 0 rangeofpossibleanisotropyparameters.Fortheinterpretationofthesedataweneedaqualitativeknowledgeof 2 thelineshapewhichweobtainfromfullynumericalcalculationsforfinitechains.Exactanalyticalresultsonthe lineshapeareoutofreachofcurrenttheories.Fromournumericalworkwecouldextract,however,anempirical n parameter-freemodelofthelineshapeathightemperatureswhichisextremelyaccurateoverawiderangeof a J anisotropyparametersandisexactatthefreefermionpointandattheisotropicpoint.Anotherpredictionofthe lineshapecanbemadeinthezero-temperatureandzeromagneticfieldlimit,wherethesufficientlyanisotropic 1 modelshowsstrongabsorption.Foranisotropyparametersinthemassivephasewederivetheexacttwo-spinon 3 contributiontothespectralline.Fromtheintensitysumruleitcanbeestimatedthatthiscontributionaccounts formorethan80%ofthespectralweightiftheanisotropyparameterismoderatelyaboveitsvalueattheisotropic ] l point. e - r t s I. INTRODUCTION Inthisworkweshallconcentrateontheone-dimensional . spin-1 case which is not covered by the more traditional t 2 a Short-rangeantiferromagneticexchangeinteractionsarethe approaches.1,2 Itisrelevantforthedescriptionofquasione- m predominantelectronicinteractionsinMottinsulators. They dimensionalcompounds3,4withstrongexchangeinteractions. - aremodeledbytheHeisenberg-IsingHamiltonian This case has been successfully studied by field theoretical d n methods5whichare,however,restrictedtosmalltemperatures o H=J∑ sxisxj+syisyj+(1+δ)sziszj , (1) andtoalimitedrangeofmagneticfields. Theyalsoseemto c ij havebuiltincertainaprioriassumptionsaboutthelineshapes. (cid:104) (cid:105)(cid:0) (cid:1) [ Inonedimensionpurelynumericalapproaches6,7areefficient wherethesumisovernearest-neighborsites,andJmeasures 1 thestrengthoftheexchangeinteraction. Theoperatorssα are aswell. Theyareunbiased,yettheextrapolationofthedatato v localspin-1 operators,andtheparameterδ takesaccounitofa thethermodynamiclimitoflargechainsmayrequireadditional 3 2 justificationandsupportfromanalyticalcalculations. possibleexchangeanisotropyandmayincludetheeffectsof 2 Theaimofthepresentworkistoestablishanumberofexact 5 dipolarinteractionsaswell. resultsforthemicrowaveabsorptionoftheone-dimensional 6 A sensitive experimental probe of magnetic interactions spin-1 Heisenberg-Isingmagnet,withthehomogeneousmag- . in solids is the absorption of microwaves, typically in ESR- 2 1 neticfieldalongthemagneticsymmetryaxisofthechain,and experiments. Inthesimplestexperimentalsetupacircularly 0 tointerprettheseresultsinthelightofnumericalcalculations. 2 polarizedwavetravelsalongthedirectionofahomogeneous Inturnsthequalityandvalidityofthenumericalcalculations 1 magneticfield. Thefieldisslowlychangedandoneormore : absorption lines are observed with increasing field, whose canbeestimatedfromtheanalyticalresults. v preciselocationandwidthdependsonthetemperature. Ourworkismotivatedbytherecentprogressincalculating i X Forexperimentallyaccessiblestrengthsoftheincidentmi- staticshort-rangecorrelationfunctionsoftheintegrablespin-1 2 r crowaveslinearresponsetheory1 providesasatisfactorythe- Heisenberg-Ising chain at finite temperatures and magnetic a oretical frame for the calculation of the absorbed intensity. fields. This makes it possible to extend a remarkable result ThenthekeyquantitytobecalculatedforagivenHamiltonian fortheresonanceshiftinone-dimensionalantiferromagnetic is the (imaginary part of) the dynamical susceptibility. It is chains,whichwasobtainedbyMaedaetal.8andwhichutilizes theFouriertransformofacertaindynamicalspin-spincorre- theexactnearest-neighborcorrelationfunctionsoftheisotropic lationfunction(seebelow). Sincesuchaquantitycannotbe spin-1 Heisenbergchain. Wepresentanalternativeframework 2 calculated for an interacting many-body system as the anti- for the derivation of the resonance shift which, in the limit ferromagnetic Heisenberg-Ising model (1), various kinds of of small anisotropy, reproduces the result of Ref. 8. In our approximationshavebeentriedinthepast. Mostoftheseap- approachtheanisotropyistreatednon-perturbatively. Itallows proximationsbreakdown,whenmany-bodycorrelationeffects us,moreover,toderiveanexactformulaforthelinewidthat arestrong,inparticularinone-andtwo-dimensionalsystems fixedmagneticfield. withstrongexchangeinteractions. We utilize the fact that the absorbed intensity I(ω,h) is a 2 positive function, whose integral over ω exists. The field- II. THEMETHODOFMOMENTS dependentmomentsofthecorrespondingnormalizedintensity turnouttobestaticshort-rangecorrelationfunctionswhichcan For any spin system with Hamiltonian H linear response becalculateddirectlyfortheinfinitechain. Thefirstmoment theoryrelatestheintensityabsorbedfromacircularlypolarized is the average absorption frequency. In case that there is a electro-magneticwave,whosewavelengthislargecompared singlepronouncedabsorptionlineitgivesameasureforthe tothedistancebetweenthespins,tothe(imaginarypartofthe) shiftoftheresonancecomparedtotheparamagneticabsorp- dynamicalsusceptibility1 tion frequency ω =h (in the units used in this work). This measureiscompletelyindependentoftheactualshapeofthe 1 ∞ χ (ω,h)= dteiωt [S+(t),S ] . (2) spectralline. Similarly,thesecondmomentprovidesashape- +(cid:48)(cid:48) 2L − T independent measure of the line width. The idea of using − (cid:90)−∞ (cid:10) (cid:11) momentswasintroducedbyvanVleck9evenbeforethelinear Here S = Sx iSy, and the Sα = ∑L sα, α = x,y,z, are response theory was created. Here we combine it with the the com±ponent±s of the total spin. Lj=is1thje number of lat- finite-temperaturelinearresponsetheory. Theresultsofvan tice sites, stands for the canonical average at tempera- T Vleckarethenrecoveredintheinfinite-temperaturelimit. ture T calc(cid:104)·u(cid:105)lated by means of the statistical operator ρ = Alternatively we may normalize the intensity by its inte- e−(H−hSz)/T/tr e−(H−hSz)/T . Through this average the dy- { } gral over h. In this case the moments cannot be expressed namical susceptibility depends on T and on an external ho- by finite-range correlation functions. Still, these frequency- mogeneousmagneticfieldhwhichisusuallyappliedinESR dependentmomentscanbeexpandedintoaninfiniteseriesof experiments. ThetimeevolutionofS+ in(2)mustbecalcu- field-dependentmoments10whichisausefulstartingpointfor latedwithH hSz. Theabsorbedintensityperspin,normal- − approximationssuchasthehigh-temperatureexpansionoran izedbytheintensityoftheincidentwaveandaveragedovera expansionforsmallanisotropy. Interestingly,thelinewidth half-periodπ/ω ofthemicrowavefield,is definedintermsofthefrequency-dependentmomentsshowsa ω temperaturebehaviorratherdifferentfromthatdeterminedby I(ω,h)= χ (ω,h). (3) 2 +(cid:48)(cid:48) thefield-dependentmoments. − Whenthereismorethanasingleresonance,theinterpreta- Inordertokeepthispaperself-containedweincludedaderiva- tionofthemomentsislessintuitive. Incaseoftwopeaks,for tionof(2)andof(3)inApp.A. instance,thefirstmomentwouldbesomethingliketheaverage In this work we shall exclusively concentrate on the one- location of the two peaks. For this reason it is desirable to dimensionalversionoftheHeisenberg-Ising(orXXZ)Hamilto- havesomeknowledgeaboutthefullabsorptionspectrum(‘the nian(1).ThisHamiltonianisintheclassofintegrableHamilto- lineshape’). Hence,wecomplementedourexactcalculation nians,butsofarthisdoesnotmeanthatdynamicalcorrelation ofthemomentswithnumericalcalculationsofthedynamical function such as the expectation value [S+(t),S ] in (2) − T susceptibility on finite lattices up to 32 sites. The combina- couldbecalculatedanalytically. Weareonlyawareofthree tion of both, the exact calculation of the moments and the veryspecialcaseswherethisispossible(cid:10). Theseare(cid:11)the‘free numerics,allowsustoproposeamodelforthelineshapein Fermion case’ δ = 1 at T ∞, the isotropic limit δ 0 thehigh-temperaturelimitwhichhasnofreeparameters. The and the Ising limit δ− ∞. W→e shall discuss these cases→be- actualparametersofthecorrespondingdistributionfunction low. In the general ca→se so far only the short time behavior (anormal-inverseGaussian)aredeterminedfromthefirstfour of [S+(t),S ] can be accessed by directly calculating − T ∞ exactlycalculatedmoments. thecommutatorsi→nvolvedinthetimeevolutionuptoacertain Anunbiasedbutapproximatecalculationofthelineshape pow(cid:10)er. Wegene(cid:11)ratedthisseriesuptotheordert38(cf.App.C). is possible in the massive ground state phase of the model Still,theresultsfortheshort-timebehavioralonearenothelp- atvanishingmagneticfield. Foranisotropicsystemthereis fulforcalculatingtherighthandsideof(2). noabsorptionwithoutanexternalfield. Forsufficientlyhigh Interestinglyenough, aswehaveshown,10 somemoreel- anisotropy, however, the absorption becomes large. In the ementaryspectralcharacteristics,suchasthepositionofthe massivephasethematrixelementsofthelocalspinoperators resonanceorthelinewidth,areeasiertocalculate. Theymay betweenthegroundstatesandexcitedstates(‘formfactors’) be expressed in terms of certain static correlation functions areexactlyknown11andgenerallynon-vanishinginthethermo- thatdeterminethemomentsofanormalizedintensityfunction dynamiclimit. Theyareclassifiedas2n-spinoncontributions inonevariable. SinceI(ω,h)isafunctionofthefrequencyω accordingtothe(even)numberofelementaryexcitationsin- andofthemagneticfieldhwemaynormalizeitbydividing volved. Herewecalculatethetwo-spinoncontributiontothe eitherbytheintegraloverω orbytheintegraloverh. absorbed intensity exactly. From the intensity sum rule we Inthefirstcaseweinterprettheresultingnormalizedfunc- inferthatforanisotropiesmoderatelyabovetheisotropicpoint tionasadistributionfunctionoffrequencieswhichdepends the two-spin contribution is dominant and amounts to more parametricallyonthemagneticfield. Thenitsmomentsm are n than80%oftheabsorbedintensity. Forgrowinganisotropyit fielddependent. Thiscorrespondstoanexperimentalsituation rapidlyapproaches100%. Butasopposedtothesituationwith wherethefieldiskeptfixedandthefrequencyisvaried. We thedynamicstructurefactorforwhichtherelativecontribution shallseethat,fromatheoreticalperspective,thiscaseiscom- ofthetwo-spinonexcitationisstilldominantintheisotropic paratively simple, since the moments depend only on static limit,12–14itdropsoffrapidlyforthedynamicalsusceptibility. correlation functions of finite range. The lowest moments 3 whichdeterminethepositionoftheresonanceanditswidth Thefirstfewofthemcanbeeasilycalculated. Inparticular, canbeexpressedbycorrelationfunctionsrangingoverupto fourlatticesites,whichcanbecalculatedexactly.15,16 m = 1 [S+,S ] = 1 Sz (9) In the second case, when the intensity is normalized as a 0 2L − T L T functionofthemagneticfield,thecorrespondingmomentsM (cid:10) (cid:11) (cid:10) (cid:11) n whichisthemagnetizationperlatticesite. Forthesubsequent dependonthefrequency.ThiscorrespondstothestandardESR moments,whichdonothavesuchanimmediateandsimple setupinwhichthemagneticfieldisslowlysweptatfixedfre- interpretation,weobtain quency. Asweshallseebelowthiscaseismoresophisticated foratheoreticalanalysis,sincestaticcorrelationfunctionsfor m =δ s+s 2szsz , (10a) arbitrarydistancesarealreadyinvolvedinthecalculationofthe 1 (cid:104) 1 −2 − 1 2(cid:105)T 1 lsoewrieesstinmtoemrmenstos.fSthtiellm,tohmeeMnntscmanbaendexthpeainrddeedriivnattoivaens,inwfihniicthe m2= 2δ2(cid:104)sz1+4sz1sz2sz3−4sz1s+2s−3(cid:105)T, (10b) n 1 mayserveasastartingpointforsystematicapproximations. m = δ2 2s+s+s s +4s+s s+s 2s+s s s+ 3 4 1 2 −3 −4 1 −2 3 −4 − 1 −2 −3 4 8(cid:10)szszs+s 4szs+szs +8szs+s sz 4s+s − 1 2 3 −4 − 1 2 3 −4 1 2 −3 4− 1 −2 A. Field-dependentmoments s+s +8szszszsz+2szsz 4szsz − 1 −3 1 2 3 4 1 3− 1 2 +δ(8szs+s sz+2s+s 8szsz) . (10c) We temporarily assume that our chain is large but finite. 1 2 −3 4 1 −2 − 1 2 T Thenthespectrumisboundedandtheintegrals Thesemomentsarecertaincombinationsof(cid:11)staticshort-range ∞ correlationfunctionswhichimplies,inparticular,thattheyall In= dωωnI(ω,h) (4) existinthethermodynamiclimitL ∞. Hence,wemayrelax (cid:90)−∞ our restriction that we are dealing→with a finite chain at this exist for all non-negative integers n. Since I(ω,h) is non- point. An interesting conclusion which can be drawn from negative everywhere and since I > 0, we may interpret theexistenceofthemomentsisthatthefield-dependentline 0 I(ω,h)/I asaprobabilitydistributionwithmomentsI . As shapecannotbeLorentzian,asissometimesassumedinthe 0 n weshallsee,inourcaseitisconvenienttoexpresstheI in literature,sincethesecondmomentofaLorentziandoesnot n termsofanothercloselyrelatedsequenceofintegrals exist. Infact,inournumericaldataforfinitechainsweseean exponentialdecayawayfromtheresonance(seebelow). Note ∞ dω mn(T,h)=J−n(cid:90)−∞ 2π(ω−h)nχ+(cid:48)(cid:48)−(ω,h) (5) tmh2atisfoorffionridteermδa2g,nbeutitcafillelhdigmh0erismoofmorednetrs1a,rme1ofisoordfeorrdδe2raδs, well. Thisisclearfrom(8)andwillberelevantbelow. which, by slight abuse of language, we shall call (shifted) The formulae (10) are appealing from a theoretical per- momentsaswell. Theexistenceoftheintegralsisobviousfor spective, since, due to recent progress in the theory of in- everyfinitechain. tegrable systems, static short-range correlation functions of Nowbydefinitiontheshiftoftheresonanceforfixedhis theHeisenberg-Isingchaincanbecalculatedexactly. Ithas thedeviationoftheaveragefrequencyfromtheparamagnetic been shown that all static correlation functions of the one- resonanceatω =h, dimensionalHeisenberg-Isingmodelarepolynomialsinthe δω = I1 h=JJm2+hm1. (6) derivativesofthreefunctions17ϕ,ω,andω(cid:48)which,asiscom- I0 − Jm1+hm0 mon in integrable models, can be expressed in terms of the solutionsofcertainnumericallywellbehavedlinearandnon- Ameasureforthelinewidthisthemeansquaredeviationfrom linearintegralequations.18Weprovidethedefinitionofthese theaveragefrequency functionsinthecriticalcase( 1<δ <0)inApp.D.Forthe − massive case (δ >0) the definitions are similar and can be ∆ω2= I2 I12 =J2Jm3+hm2 δω2. (7) foundinRef.16. I0 −I02 Jm1+hm0 − Although, in principle, all static correlation functions of the Heisenberg-Ising chain in the thermodynamic limit are Weseethat,inordertocalculatetheresonanceshiftandthe knownexactly,theirexplicitcalculationworksoutonlyatshort linewidth,weneedtoknowthefirstfourshiftedmomentsm , 0 distances. Atlargerdistancestheamountofcomputeralgebra m ,m ,m ofthedynamicsusceptibilityχ . 1 2 3 +(cid:48)(cid:48) involvedinthecalculationsgrowsexcessively. InRefs.19,15, Inthefollowingweshallemploythenota−tionadX =[X, ] and16weobtainedallcorrelationfunctionsrangingoverat for the adjoint action of an operator X. Then ·S+(t) =· most four lattice sites. This is just enough to calculate the e−ihteitadHS+, since [H,Sz]=0 and [Sz,S+]=S+, and it fol- momentsm0,m1,m2,m3. Forthesimplercaseoftheisotropic lowswith(2)and(5)that modelinvanishingmagneticfieldweobtainedthecorrelation functionsrangingoveruptosevenlatticesites.20 1 mn= 2L [S+,adnH/JS−] T. (8) WhenconsideringtheHeisenberg-IsingHamiltonianasan integrable model it is customary to parameterize all func- (cid:10) (cid:11) The latter formula shows that the moments m are static tions by a deformation parameter q in terms of which the n correlationfunctionswhosecomplexitygrowswithgrowingn. anisotropy is δ = (q 1)2/2q. Employing the shorthand − 4 notationsϕ =∂nϕ(x) , f =∂m∂nf(x,y) , for f =ω,ω ,weobtain10 (n) x x=0 (m,n) x y x=y=0 (cid:48) | | 1 m = ϕ , 0 −2 (0) m = (q−1)2(q2+4q+1)ω((cid:48)0,1) (q3−1)ω(0,0), 1 16q2 − 4q(q+1) (q 1)2 m2= 25−6q4 4q(q+1)(q3−1)(ω(0,2)ϕ(0)−2ω(1,1)ϕ(0)−ω(0,0)ϕ(2)) (cid:2) +(q2 1)2(q2+4q+1)(ω ϕ +ω ϕ ) 16q2(q 1)2ϕ , − ((cid:48)1,2) (0) ((cid:48)0,1) (2) − − (0) m3= 98304q8((qq4−1)14)(q6 1) 16q2(q2−1)3(q4−1)(q6−1)(q2+4q+1)(ω(0,2)ω((cid:48)0,1)+ω(0,0)ω(cid:3)((cid:48)1,2)) − − +64q2(q2 1)4(2q10 q9+(cid:2)4q8 4q7 12q6 14q5 12q4 4q3+4q2 q+2)ω ω (0,0) (1,1) − − − − − − − − 16q2(q2 1)2(q4 1)(q6 1)(3q4+14q2+3)ω +8q2(q2 1)(q4 1)2(q6 1)(q+1)2(8ω ω ) − − − − ((cid:48)0,3) − − − ((cid:48)1,2)− ((cid:48)2,3) +192q4(q2 1)2(q4 1)(q6+18q4+8q3+18q2+1)ω (0,2) − − +64q2(q2 1)2(q4 1)(q+1)2(2q8 5q7+26q6 49q5+28q4 49q3+26q2 5q+2)ω (1,1) − − − − − − 16q2(q2 1)2(q4 1)(q+1)2(q8 q7+q6+q5+2q4+q3+q2 q+1)(2ω 3ω ) (1,3) (2,2) − − − − − − +64q2(q4 1)(q6 1)(3q8+2q6+24q5 130q4+24q3+2q2+3)ω − − − ((cid:48)0,1) +(q4 1)(q6 1)(q+1)2(q10 2q9+25q8+16q7+118q6+164q5 − − − +118q4+16q3+25q2 2q+1)(ω ω +ω ω ) − ((cid:48)0,3) ((cid:48)1,2) ((cid:48)0,1) ((cid:48)2,3) 1536q5(q4 1)(4q8 9q7 2q6 6q5+8q4 6q3 2q2 9q+4)ω (0,0) − − − − − − − − +4q2(q6 1)(q+1)2(q2+1)(5q8 2q7+32q6+50q5+70q4+50q3+32q2 2q+5) − − − (2ω ω 3ω ω +ω ω 2ω ω 3ω ω ω ω ) (1,3) ((cid:48)0,1)− (2,2) ((cid:48)0,1) (0,2) ((cid:48)0,3)− (1,1) ((cid:48)0,3)− (0,2) ((cid:48)1,2)− (0,0) ((cid:48)2,3) 16q2(q+1)2(q16 q15+8q14+9q13+47q12+45q11+96q10+91q9+128q8+91q7+96q6 − − +45q5+47q4+9q3+8q2 q+1)(3ω2 6ω ω +2ω ω 3ω ω ) . (11) − (0,2)− (1,1) (0,2) (0,0) (1,3)− (0,0) (2,2) (cid:3) Thesearethemomentsinthethermodynamiclimit. Wecan e.g. the distance between the inflection points right and left calculatethemwithhighnumericalaccuracyoverthewhole tothemaximumoftheintensity(‘peak-to-peakwidth’). This rangeofthephasediagram,foralltemperaturesandmagnetic discrepancywasalreadynotedbyvanVleck.9Oneadvantage fields as well as for arbitrary anisotropy δ. In Figs. 1-3 we ofthemeansquaredeviationfromtheresonancefrequencyas showtwoexamplesnottoofarawayfromtheisotropicpoint, ameasureofthelinewidthisthatitisdefinedindependentlyof namely δ = 0.1 in the critical phase and δ =0.25 in the thelineshape. Inprincipleitshouldbenoproblemtoextractit − massivephase.Valuesnottoofarawayfromtheisotropicpoint fromexperimentaldata. Yet,weexpectthatincases,wherethe aremostrelevantforrealmaterials. Inbothcasesweobserve contributionsfromthetailsofthespectrallineareimportant,a anincreaseoftheresonanceshiftδω andabroadeningofthe problemmightbetoresolvethesetailsfromthe‘background’. spectrallines,measuredasanincreaseof∆ω,fordecreasing temperatures. Thedifferencebetweendifferentmeasuresofthelinewidth This is interesting as it seems to contradict experimental becomesratherclearfromournumericalanalysisbelow(com- results4whichclaimanarrowing. Thisdiscrepancyisdueto pare also Ref. 7). For high temperatures, where we could thedifferentmeasuresforthelinewidthhereandintheexperi- extract a model for the line width from our numerical data, mentalliterature. ThemeansquaredeviationusedinFigs.1-3 the‘peak-to-peakwidth’ismuchsmallerthan∆ω. Thiscan isacustomarymeasureforthewidthofwavefunctionsinquan- beattributedtotheshallowtailsoftheabsorbedintensity. In tummechanics. ForGaussiansitisoftheorderofmagnitude experiments these tails may be misinterpreted as stemming ofanintuitivelinewidthdrawnbyeye,butfordistributions fromcouplingsofthespinchaintootherdegreesoffreedom whichhavelongandshallowtailsthisisnolongerthecase. andmayleadtoanoverestimationofthebackground. Onthe Hence,∆ω maystronglydeviatefromatypicalmeasureofthe other hand, tails are expected to have less influence on the linewidthusedintheinterpretationofexperimentaldataas resonanceshift. Aslongastheyarenottooasymmetricthe 5 0.30 0.10 +L=16 h/J =0.1 h/J =0.3 L=24 × 0.20 h/J =0.5 h/J =0.7 J J / / ω ω δ 0.05 δ 0.10 0.00 0.00 2.0 h/J =0.1 +L=16 T/J =0.01 2.0 h/J =0.3 L=24 T/J =0.30 1.5 × T/J =1.00 h/J =0.5 1.5 h/J =0.7 J T/J =3.00 J / / ω 1.0 T/J =100. ω ∆ ∆ 1.0 0.5 0.5 0.0 0.0 0.0 0.5 1.0 1.5 2.0 10 2 10 1 100 101 102 − − h/J T/J FIG.1. Resonanceshiftδω/Jandlinewidth∆ω/Jinthecritical FIG.3. Resonanceshiftδω/Jandlinewidth∆ω/Jinthemassive regimeatδ = 0.1asfunctionofthemagneticfield.Crossesfrom regimeatδ =0.25asfunctionofthetemperature. − fullynumericalcalculationforfinitechainHamiltoniansof16and24 sites. inexperiments. Forothervaluesoftheanisotropyparameterstheresonance 0.10 +L=16 shiftandthelinewidthinthecriticalregimefor, 1 δ <0, L=24 showaqualitativelysimilarbehaviorasinFigs.1−and≤2. Both, × δω and ∆ω, increase with decreasing temperature at fixed J magneticfield. Notethatinthemassiveregime,exemplified / ω 0.05 withFig.3,theresonanceshiftmaybehavenon-monotonically δ h/J =0.1 asafunctionoftemperature. h/J =0.2 h/J =0.3 h/J =0.4 0.00 B. Frequency-dependentmoments 1.5 In order to obtain the resonance shift and the line width +L=16 L=24 asdefinedintheprevioussectionexperimentallyonewould × have to measure the microwave absorption at fixed Zeeman 1.0 J fieldhforvariousvaluesofthefrequencyω andthencalculate / ω the required averages as integrals over ω. In current ESR ∆ 0.5 experimentsdifferentdatasetsarerecorded. Themicrowave frequencyω iskeptfixedandtheabsorbedintensityI(ω,h)= ωχ (ω,h)/2isdeterminedasafunctionofh. Thisintensity +(cid:48)(cid:48) 0.0 funct−ioncanbenormalizedbydividingbyitsh-integral,and 10−2 10−1 100 101 102 thecorrespondingfrequency-dependingmomentsdefinethe T/J resonance shift and line width in ‘h-direction’. Away from theisotropicpoint(δ =0),whereχ (ω,h)issymmetricand +(cid:48)(cid:48) FIG.2. Resonanceshiftδω/Jandlinewidth∆ω/Jinthecritical theabsorptionlineisextremelynarr−ow,thesemayberather regimeatδ= 0.1asfunctionofthetemperature.Crossesfromfully unrelatedtotheirfield-dependentcounterpartsoftheprevious − numericalcalculationforfinitechainHamiltoniansof16and24sites. section. Inanalogywith(5)wedefinethefrequency-dependentmo- ments shiftδω oftheaverageoftheabsorbedintensityshouldagree ∞ dh M (T,ω)=J n (h ω)nχ (ω,h). (12) withtheshiftofitsmaximum,whichisthecommonmeasure n − (cid:90)−∞2π − +(cid:48)(cid:48)− 6 Thesecanbeexpressedintermsofthem andtheirderivatives. whereω isthemicrowavefrequency. Thisformulaprovides n Denotingthekthderivativewithrespecttothesecondargument asimplemeanstodirectlymeasuretheanisotropyparameter byasuperscript(k)weobtaintherepresentation δ. ForT ∞itturnsintoEq.(10)ofRef.9uponaproper → identificationofparameters. Mn(T,ω)=(−1)n∑∞ (−kJ!)km(kk+)n(T,ω), (13) iniItnialtlhyisslciagshetlaysinwcerlelatshinegmforommenittsumin-fibnaistee-dtelminpeewraitdutrhe∆lihmiist k=0 δ /√2 when the temperature is reduced. But our numeri- for the frequency-dependent moments. This representation | | caldata(seecrossesinFig.4)andthesecondordertermof involves static correlation functions for arbitrarily large dis- the high-temperature expansion show that ∆h behaves non- tances. For this reason the M cannot be calculated by our n monotonically and decreases again for temperatures lower exactmethodabove. Yet,incertaincasesfinitelymanyterms thanJ. Forsmalltemperaturesitseemstoapproachzerolin- oftheseriesaresufficientforagoodapproximation. early. Thelattertypeofbehaviorisinaccordancewithfield Wefirstofallexpresstheresonanceshiftδh=(cid:104)h(cid:105)−ω and theoreticalpredictions5andexperimentalresults.3,4Wewould themeansquaredeviationfromthecenteroftheabsorption liketostress,however,thatthereisnocontradictionbetween peak∆h2= h2 h 2intermsoftheM , (cid:104) (cid:105)−(cid:104) (cid:105) n thebroadeningshownbytheuppercurveinthefirstpanelof δh M ∆h2 M M2 Fig.4andthenarrowingshownbythelowercurve. Infact, = 1, = 2 1 . (14) bothcurveswereobtainedfromthesamenumericaldatasetfor J M0 J2 M0 −M02 thedynamicalsusceptibility. Theuppercurvewascalculated Thereareatleasttwocases,wheretheseformulaesimplifyand with(7),whereasthelowercurvewascalculatedbymeansof finitelymanyofthem areenoughtodetermineasystematic (14). What is important is that the upper curve can be com- n approximationtoδhand∆h. paredwithourexactresults(solidlineintheupperpanel). The The equation for the resonance shift simplifies for small goodagreementofthecrosseswiththeexactcurvecreatescon- anisotropy, δ 1. Since M =m +O(δ), M = m + fidenceinournumericaldata. Itshowsthattheyarereliable 0 0 1 1 O(δ2)and,g|en|e(cid:28)rically,m itselfisoforderδ (see(10)−,(13)) whenusedinintegrations. Thisisanon-trivialstatement,since 1 weobtaintolinearorderinδ ournumericaldatahappentobenoisyandfinite-sizeaffected atlowtemperatures(seeSec.VE). δh m = 1. (15) Wewouldliketopointoutthattheresonanceshiftδω/J J −m0 orδh/Jandthelinewidth∆ω/Jor∆h/Jdefinedintermsof Inpreviouswork2,8thesameequationwasobtainedbyamore momentsshowasimplescalingbehavior. Theydependonthe intuitivereasoning. Itleadstoresultswhichcomparerather exchangeinteractiononlythroughtheratiosT/Jandh/J. In wellwithexperiments.8However,somecareisnecessarywith thissensethecurvesinFigs.1-4areuniversal. theinterpretationof(15). Sincem /δ vanishesatδ =h=0, Themethodofmomentsisnotonlyusefulfortheintegrable 1 itfollowsthatm =δ(ah+bδ+...)withsomecoefficients Heisenberg-Isingchain. Itmaybeappliedtonon-integrable 1 a,b,whenceh/J mustbelargecomparedtoδ for(15)tobe spinchainsandtotwo-andthree-dimensionalmodelsaswell. applicable. Thefield-dependentmomentsandthecorrespondingshiftsand Recall that the higher moments m , n 2, are of order widths may be accurately calculated by approximate meth- n δ2. Hence, for the line width there is no≥simplification for ods,sincetheyaredeterminedbystaticshort-rangecorrelation smallanisotropy,likein(15). Butthereisanothermeasurable functions. For a discussion of the numerical calculation of quantitywhichdoesallowforasystematicsmall-δ expansion the moments in one dimension see below. In any case, the tofirstorder,namelytheintegratedintensityπωM ,since frequency-dependentmomentsarehardertoobtain,sincethey 0 requirethecalculationofaninfinitenumberofstaticcorrela- M0=m0−Jm(cid:48)1. (16) tionfunctions. Fortheresonanceshiftitfollowstolinearorderinδ from(6) and(15)thatδh(T,ω)= δω(T,h) . Forthelinewidth h=ω thereisnosuchsimplerel−ationbetwe|en∆ω and∆h,noteven C. Integratedintensity forsmallδ. Therepresentation(13)isaseriesinascendingpowersof Animportantquantityinexperimentsofelectronspinreso- J/T (withstilltemperature-dependentcoefficients). Thiscan nanceistheintegratedintensity.21 Asinthedefinitionofthe beusedtoevaluate(14)asymptoticallyforhightemperatures. momentswemayeitherintegrateoverthefrequencyorover It turns out that the leading terms in the J/T expansion of themagneticfield. Forfixedmagneticfieldhourdefinition(5) m1 and Jm(cid:48)2 cancel each other (δh∼ 2hTδ →0 in the high- ofthemomentsm0andm1impliesthat temperaturelimitT J)and (cid:29) ∞ ω dω χ (ω,h)=π(Jm +hm ). (18) ∆h δ (1+δ)J 2 +(cid:48)(cid:48) 1 0 = | | 1+ (cid:90)−∞ − J √2 4T (cid:18) Asexplainedintheprevioussection,inusualESRexperi- (6δ2+10δ+9)J2+4ω2 +... , (17) mentstheabsorbedintensityismeasuredasfunctionofhfor − 32T2 fixedmicrowavefrequencyω. Bydefinitionthecorresponding (cid:19) 7 Intheremainderofthisworkweshalltrytodrawatleasta L=24 × qualitativepictureofhowthelinesareshapedbyconsidering 0.4 allavailablelimitingcases,whereexactresultsareknown,and J / bycomplementingthesewithnumericaldata. Inthissection ω ∆ ω integration(h/J =0.4) wereviewthoselimitingcaseswhereexactresultsareknown. d n Inthefollowingsectionwedescribeournumericalcalculations. a J 0.2 Finally,inSec.V,weshallconsiderthelineshapesforδ >0 / h andT =h=0intwo-spinonapproximation. ∆ hintegration(ω/J =0.4) 0.0 A. Heisenberglimit 0.0 1.0 2.0 3.0 The simplest case where we know the line shape exactly istheisotropiccaseδ =0.5 ItmaybecalledtheHeisenberg 0.09 high-T expansions: L=24 × limit of the Heisenberg-Ising chain. In this case H is still a √|δ2| 1+(1+4Tδ)J ω/J =0.4 complicatedmanybodyHamiltonian,butS+commuteswithH ∆h/J 0.08 √|δ2| (cid:0)(cid:0)1+(1+4Tδ)J(cid:1)−(6δ2+103δ2+T92)J2+4ω2(cid:1) Tanhdusth,eS+ti(mt)e=evoe−luihtitoSn+o,fanSd+isdrivenbySzalone(seeApp.A). I(ω,h)=πδ(ω h)hm(T,h). (21) − Thismeansthatthereisasinglesharppeak,andtheabsorbed 0.07 intensityisproportionaltothemagneticenergyhm(T,h)per latticesite. Thiscaseincludesthefamiliarparamagneticreso- 1 3 5 7 9 nance(Zeemaneffect)forwhichthemagnetizationisknown T/J explicitly,namelym(T,h)= 1th h forJ=0. Inthegeneral 2 2T casethemagnetizationmustbecalculatedfromsolutionsof FIG.4. Linewidths∆ω/J (green)and∆h/J (red)inthecritical linearandnon-linearintegraleq(cid:0)uati(cid:1)ons.22 Inourcontextwe rneugmimereicaatlδc=alc−ul0a.t1ioansffourncatifionnisteocfhthaeinteHmapmeirlattounriea.nDoafta24frosimtesa.fTulhlye infer from (9) and (11) that m(T,h)=m0=−12ϕ(0), i.e. the lowestmomentm alonecharacterizesthelineshape. blackcrossinthelowerpanelmarkstheinfinite-temperaturelimit 0 δ /√2. Thesolidorangelinesarehigh-temperatureexpansionsof | | ∆h/Jaccordingto(17)uptofirstandsecondorderinJ/T. B. Isinglimit Theonlyotherlimitingcaseinwhichthelineshapeisknown integratedintensityis foralltemperaturesandmagneticfieldsistheIsinglimit.23For ∞ ω theIsinglimitwereplacetheHeisenberg-IsingHamiltonian I+(int)(ω)= dh 2χ+(cid:48)(cid:48) (ω,h)=πωM0(T,ω). (19) H H/δ andsendδ ∞. Then − (cid:90)−∞ − → → L Intheparamagneticregime,wherehislargecomparedtoJ, H H =J∑sz sz. (22) the integrated intensity is proportional to the magnetization → I j 1 j j=1 − m(T,ω). The high-temperature expansion of the frequency- dependentmomentM0, Dδunemto(f8o)rtδhisim∞p.liesthatthemomentsarereplacedasmn→ − n M (T,ω)= h + Jh (δ 1)+..., (20) In the Isin→g limit the time evolution of S+ in (2) can be 0 4T 8T2 − calculatedexplicitly. AsweshowinApp.A6thisleadstothe followingfrom(13),providesanothermeanstodeterminethe formula anisotropyδ fromexperimentaldata. 1 1 χ (ω,h)= (m m )δ(ω h+J) 2π +(cid:48)(cid:48)− 2 2− 1 − 1 III. EXACTLINESHAPES +(m m )δ(ω h)+ (m +m )δ(ω h J) (23) 0 2 2 1 − − 2 − − Aswehaveseenthemethodofmomentsallowsus,atleast forthedynamicalsusceptibility. inthefield-dependentcase,toobtainexactcharacterizationsof Using this formula we can calculate the moments mn by theresonanceshiftandthelinewidthforarbitrarytemperatures, meansof(5)andverifyitsconsistency. Integratingoverω we magneticfieldsandanisotropyparametersfortheinfinitechain. obtainindeedm0. Theintegralsforthehighermomentsyield Unfortunately,itdoesnotteachusmuchabouttheactualline m ifn Nisodd sthheapliense.cEovmenprtihseesm,roesmtealienmsgenentaerryalqlyueusntiaonns,wheorwedm. anypeaks mn=(cid:40)m21 ifn∈Niseven, (24) ∈ 8 i.e. thereareno‘newmoments’forn>2. Thethreeindepen- T/J =0.1 T/J =5 dentmomentsm ,m andm correspondtothethreeδ-peaks 9 0 1 2 0.4 in the dynamical susceptibility. They can be calculated by 6 meansofthe2 2transfermatrix24oftheIsingchain.Explicit × 0.2 expressionsareshowninApp.A6. 3 TheIsinglimitisimportantforus,sinceitiseasytointer- 0 0.0 pret and since itprovides aphysicalpicture for the massive phase. TheeigenstatesoftheIsingchainHamiltonianareten- T/J =0.5 T/J =10 sorproductsoflocalszeigenstates. Weinferfromthespectral 6 0.2 representation, App. A7, that transitions can occur only be- 4 tweenstateswhichdifferbyasingleflippedspin. Thus,the 0.1 followingtransitionsinwhichthechainabsorbstheenergy∆E 2 arepossible: 0 0.0 , ∆E=J h T/J =1.0 T/J =50 ···↑↓↑···→···↑↑↑··· − 3 , ∆E=J+h 0.04 ···↓↑↓···→···↓↓↓··· , ∆E=h 2 ···↑↑↓···→···↑↓↓··· 0.02 1 Thefirsttwocorrespondtothecreationofapairofdomain walls(orspinons)inoneoftheNe´elgroundstates. Thethird 0 0.00 oneisimpossibleinthegroundstates,whencethecoefficient -1 0 1 2 3 4 -1 0 1 2 3 4 m m infrontofthecorrespondingtermin(23)mustvanish 0 2 h/J h/J − atzerotemperature. Atfiniteδ >0theoperatorS−inthespectralrepresentation FIG.5. DynamicalsusceptibilityJχ+(cid:48)(cid:48) from(23)asfunctionofh/J (A35)doesnolongerinducetransitionsbetweeneigenstates. forω=J. Theδ-peaksareconvolve−dwithaLorentzian(25)with Thethreeδ-peaksin(23)broadenwhichreflectstheonsetof parameterε=0.12J. interactionsbetweenthespinons. Still,webelievethatthree peaksarecharacteristicofthemassivephase,δ >0,atleast at not too large magnetic fields. This is in accordance with ournumericaldataandwithpreviousnumericalwork.6,7The Ifweuse(23)andtheformulae(A32)forthemomentsm1 relativeheight ofthe three peaksis stillapproximately well andm2,wecanexplicitlyperformtheinfinite-temperaturelimit describedbytherelativeprefactorsoftheδ-peaksin(23). At andobtainthefunctionφ(ω h)definedinthenextsection − T =0inthetwo-spinonapproximation(seebelow)thecentral in(26)and(27). Wefindthatitsδ-peaksareweightedby1/2 peak vanishes due to the same intuitive argument as given forthecentralpeakandby1/4forthetwoside-peaks. above. Figure5showsthedynamicalsusceptibility(23)intheIsing limitasafunctionofh/J. Wevisualizetheδ-peaksbycon- C. High-temperaturelimit volvingthemwithaLorentzianoftheform Intheinfinite-temperaturelimitthedynamicalsusceptibility J ε L(h)= π h2+ε2. (25) Eχ+q(cid:48)(cid:48).−(Ava3n7i)s.heFsroidmenthtiecaslalym.eTehqiusaftioolnlowansd, fforormintshtaenscuem, frroumle (A38)weobtaintheleadinghigh-temperaturecontributionto Whileinthelow-temperaturelimit(T/J=0.1)therightpeak χ , at h=ω+J is the highest, in the intermediate-temperature +(cid:48)(cid:48) − regime (T/J =0.5,1.0,5) the relative height of the central ωπ peakath=ω increasesrapidlywithincreasingtemperatures. χ (ω,h)= φ(ω h)+O(T 2), (26) For even higher temperatures (T/J =5,10,50) the relative +(cid:48)(cid:48)− 2T − − height of the left peak at ω =h J increases as well and where − reaches values comparable to those of the right peak. The relativeheightsofthecentralpeakandtherightpeakarecom- 2 L ∞ φ(ω)= − dteiωttr (eitadHS+)S . (27) pRaetfi.b6le.wTihthetahbesonluumteevriaclauledoaftathfeorhδeig=h1t osfhothwencienntFriagl.p8eaokf πL (cid:90)−∞ − (cid:8) (cid:9) differsapproximatelybyafactorof8,becausetheauthorsof Thefunctionφ iseven,non-negativeandnormalized. Hence, Ref.6plotthefunctionχ =(χ +χ )/4insteadofJχ itmaybeinterpretedagainasadistributionfunction. x(cid:48)(cid:48)x +(cid:48)(cid:48) (cid:48)(cid:48)+ +(cid:48)(cid:48) andscaleitwithafactorof1+δ−=2−. Concerningtheloca−- The function φ is simpler as compared to χ . Still, in +(cid:48)(cid:48) tionofthethreepeaksaswellastherelativeandtheabsolute general,weareunabletocalculateitexactly. In−App.Cwe heights of the central peak and the right peak, the curves in commentonthesmall-t expansionoftheintegrand,whichwe Fig. 8 of Ref. 6 can be qualitatively explained by the exact havecalculateduptotheordert38,anddrawsomeconclusions. result(23)forthedynamicalsusceptibilityintheIsinglimit. InthefreeFermioncaseδ = 1itispossibletocalculateitto − 9 allorders. ThetermssumuptoaGaussian,25and δ= 1.0 − 100 0.6 e (ω/J)2 φ(ω)= − . (28) J√π 10 2 0.3 − From this explicit result we can calculate the field- and frequency-dependentlinewidthsoftheprevioussection, 10 4 0.0 − ∆ω2 3/2+2(h/J)4 ∆h 1 -2 0 2 -2 0 2 = , = . (29) J2 1+2(h/J)2 2 J √2 δ= 0.7 − 100 Thesecondequatio(cid:0)nisinaccord(cid:1)ancewiththehigh-tempera- 1.0 tureresult(17). Ourexplicitexampleclearlyshowsthatχ +(cid:48)(cid:48) isasymmetricinhandω andthatthetwolinewidths∆ω an−d 10−2 0.5 ∆hareratherdifferentquantities. Welearnfromtheabovediscussionthat2Tχ+(cid:48)(cid:48) (ω,h)/πω 10 4 0.0 is a ‘good function’. It converges to a normaliz−ed function − -2 0 2 -2 0 2 which depends only on the difference ω h for T ∞. In the free Fermion case δ = 1 and in the−isotropic→case this δ= 0.4 functionhasasinglepeakat−ω =h. Fromournumericaldata − 3.0 (see Fig. 6) we see that this seems to be true for all values 100 of δ between 1 and 0 and even for small positive δ. The 1.5 Gaussiandeca−yforlargeω seemstobepeculiarofthefree 10−2 Fermionpoint. Atallvaluesofδ whicharelargerthan 1our − logarithmicplotsinFig.6indicateanexponentialdecay. 10 4 0.0 − Whenlookingforasimplemodelforsuchtypeoflineshape -2 0 2 -2 0 2 wefoundtheso-called‘normal-inverseGaussian’, δ= 0.1 − αβeαβK (α x2+β2) N(xα,β)= 1 , α,β >0, (30) 101 40 | π x2+(cid:112)β2 10 1 − whereK isamodifiedB(cid:112)esselfunction. ItbecomesaGaussian 20 1 10 3 − inthelimitα ∞,aLorentzianforα 0andaδ-function for β 0. It→s moments can be easil→y calculated from its 10−5 0 → characteristicfunction -2 0 2 -0.1 0 0.1 ∞ N(kα,β)= dω eikxN(xα,β)=eβ(α √k2+α2). (31) δ=0.25 − | (cid:90)−∞ | 8 For(cid:101)instance, 100 x2 N= β , x4 N=3 β2 + β . (32) 10−2 4 (cid:104) (cid:105) α (cid:104) (cid:105) α2 α3 (cid:18) (cid:19) 10 4 0 − Thiscanbecomparedwiththedimensionlessmomentsof -2 0 2 -2 0 2 thedistributionfunctionφ,whichfollowfrom(5)and(26), h/J h/J ω2n 4T φ (cid:104) (cid:105) = lim m (T,h). (33) J2n T ∞ J 2n−1 FIG.6. Normal-inverseGaussian(blacklines)asamodelforthe → high-temperaturelineshape,comparisonwithnumericaldata(red Heretherighthandsidecanbeeasilycalculated.Ifwedemand lines). Parametersofthenormal-inverseGaussianascalculatedin that (35). AllpanelsshowJχ (ω,h)asafunctionofh/J,leftpanels +(cid:48)(cid:48) logarithmicscale,rightpane−lslinearscale.Notethedifferentscaleon ω2 δ2 (cid:104)x2(cid:105)N= (cid:104) J2(cid:105)φ = 2 , (34a) tdhaetaxw-aexriesoibntathineerdigfohrtTpa/nJe=lfo10r0δ,=ω/−J0=.10..I4n,Lge=ne1r6a,lathnednMum=e1r0ic2a4l ω4 δ2 3 (seebelow).Forδ = 0.1thechainlengthwasincreasedtoL=20 (cid:104)x4(cid:105)N= (cid:104) J4(cid:105)φ = 2 2+δ+δ2 , (34b) andtheresolutiontoM−=4096. (cid:18) (cid:19) weobtain 6 δ2 6 Figure6comparesthenormal-inverseGaussianwithparame- α = , β = . (35) (cid:115)(1+δ)(3 δ) 2 (cid:115)(1+δ)(3 δ) ters(35)withournumericalhigh-temperaturelineshapes. − − 10 Forδ = 1themodellineshapeisexact. Thisisnolonger theresonanceshiftbasedonthedataofRef.26.Theauthorsof − thecaseforδ > 1whichcanbeseenbycomparingthesixth Ref.27obtainforthesamematerialasinRef.26(LiCuVO ) 4 normalizedmom−entofφ withthesixthmomentofN. Still, theexchangeintegralJ=30K. FromFig.4thereinwecan wefinditremarkablehowwellthemodellineshapefitsour readoff∆ h=1.5kOe,andobtaintogetherwithEq.(39)the pp numericaldata. Especiallytheexponentialtailsvisibleinthe anisotropy δ 0.088 which is compatible with the value ≈− leftpanelsofFig.6havenotbeenfittedtothenumericaldata. J /J 2K/30K 0.067ofRef.27. zz ≈− ≈− Thegoodagreementcomesoutautomatically. Ontheother hand,thedeviationofthecenterofthepeakintherightpanel forδ = 0.1inFig.6doesnotseemtobeduetoaresolution IV. NUMERICALLINESHAPES − problemofournumericalcalculation. Weratherattributeit toaslightmismatchofthenormalinverseGaussianatsmall The numerical approach we are using for the calculation anisotropy. ofthedynamicalsusceptibility χ (ω,h),Eq.(2),hasbeen Ifwefixtheparametersα andβ ofN(xα,β)accordingto described in detail elsewhere.28 W+(cid:48)(cid:48)−e will therefore give only | (35),weseefrom(34a)thatthewidth,calculatedbyitssecond ashortoutlineofthemethodanddiscussafewspecialtricks moment,behavesas x2 N δ . Ontheotherhand,itis beneficialforthepresentproject. (cid:104) (cid:105) ∼| | easytocalculatethepeak-to-peakwidthofthenormal-inverse Startingpointofthenumericsforfinitechainsisthespectral (cid:112) Gaussian, which is the distance of its two inflection points. representation(seealsoApp.A7), Settingthesecondderivative∂2N(xα,β)tozeroandusing x thedifferentialequationdefiningK1,| χ (ω,h)= π ∑ e En/T e Em/T +(cid:48)(cid:48)− LZm,n − − − y2K1(cid:48)(cid:48)(y)=(y2+1)K1(y)−yK1(cid:48)(y), y=α x2+β2, (36) m(cid:0) S− n 2δ(ω E(cid:1)m+En) (41) ×|(cid:104) | | (cid:105)| − weseethatthepositiveinflectionpointy isth(cid:112)esolutionofthe π ∞ 0 = dys(y+ω,y) e y/T e (y+ω)/T , equation LZ(cid:90)−∞ − − − (cid:0) (cid:1) 1 y(y2 (αβ)2) which can be written as an integral over thermal weighting y+ 3y2 −4(αβ)2 =∂yln(K1(y)). (37) factorsandthetemperature-independentfunction − In principle this algebraic equation can be solved numeri- s(x,y)=∑ mS− n 2δ(x Em)δ(y En). (42) |(cid:104) | | (cid:105)| − − cally, but for our purposes the following argument leading m,n to an estimation for the inflection point is sufficient. Since At first sight the calculation of this function seems to ∂ ln(K (y))< 1forally 0andtheleft-handsidebecomes y 1 − ≥ require knowledge of all eigenvectors and eigenvalues of largeandpositivefory 0,∞,thesolutiony hastobelocated → 0 the Heisenberg-Ising Hamiltonian on a finite lattice. How- closetotheleftofthepole. Hence,weobtain ever, it is significantly more efficient to rescale all energies E E=aE+b,suchthatE [ 1,1],andtoexpands(x,y) 4 β y0<∼(cid:114)3αβ ⇒ x0<∼ √3. (38) in→term(cid:101)sofChebyshevpolyn(cid:101)om∈ia−lsofthefirstkindTi, (cid:101)(cid:101) Anupperlimitofthepeak-to-peakwidthisthereforegivenby s(x,y)=M∑−1 µijgigj(2−δi0)(2−δj0)Ti(x)Tj(y). (43) π2 (1 x2)(1 y2) i,j=0 − − ∆ x 2 (cid:101) (cid:101) pp =2x <δ2 δ2. (39) (cid:101)(cid:101) (cid:112) 0 Theproblemthenreducestothecalculationoftheexpansion J ∼ (cid:115)(1+δ)(3+δ) ∼ (cid:101) (cid:101) coefficientsµ whicharegivenbytraces, ij Accordingly, the normal-inverse Gaussian is an example of 1 a distribution for which the width calculated by its second µ = dxdys(x,y)T(x)T (y)=tr[S+T(H)S T (H)]. ij i j i − j moment ( δ ) and the peak-to-peak width ( δ2) behave 1 ∼| | ∼ (cid:90)(cid:90)− (44) asymptotically differently for small anisotropies δ and can InsteadofsummingoverthewholeHilbertspa(cid:101)ce,these(cid:101)traces thereforedifferstronglyinvalue. Fittingexperimentaldataat arewellapproximatedbyaveragesoverafewrandomstates. hightemperaturestoanormal-inverseGaussian,thisoffersa waytodetermineδ independentlyoftheexchangeintegralJ TheactionofTk(H)onanarbitrarystatecanbequicklyeval- fromtheratioofthetwolinewidths, uatedwith therecursion relationsof theChebyshevpolyno- mials. Taking int(cid:101)o account symmetries of the Hamiltonian ∆ppx 2δ (Sz-conservationandtranslation),itisthusfeasibletocalculate | | . (40) x2 N ≈ (1+δ)(3+δ) theµij forsystemsofuptoL=32latticesitesandexpansion (cid:104) (cid:105) ordersuptoM=4096onaveragehardware. Ifweestimat(cid:112)ethepeak-t(cid:112)o-peakwidthofFig.6ofRef.26 Oncewehaveacompletesetofexpansioncoefficientsµ ij to∆ h 2kOe=0.27K,wecansolve(39)numerically(J= foragivenlatticesizeL,anisotropyδ andallSz sectors,we pp ≈ 22K)andobtainδ 0.12. Thisvalueiscompatiblewiththe obtain s(x,y) from Eq. (43) using fast Fourier methods. In predictionofMaeda≈e−tal.8(δ = 0.15)obtainedfromafitfor Eq. (43), the damping factors g cure the Gibbs oscillations (cid:98) − k

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.