ebook img

On Spectrum Sensing, Resource Allocation, and Medium Access Control in Cognitive Radio ... PDF

197 Pages·2015·3.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Spectrum Sensing, Resource Allocation, and Medium Access Control in Cognitive Radio ...

On Spectrum Sensing, Resource Allocation, and Medium Access Control in Cognitive Radio Networks by Madushan Thilina Karaputugala Gamacharige A Thesis submitted to The Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Electrical and Computer Engineering University of Manitoba Winnipeg January 2015 Copyright c 2015byMadushanThilinaKaraputugalaGamacharige (cid:13) Abstract Thecognitiveradio-basedwirelessnetworkshavebeenproposedasapromisingtechnology to improve the utilization of the radio spectrum through opportunistic spectrum access. In thiscontext,thecognitiveradiosopportunisticallyaccessthespectrumwhichislicensedto primaryuserswhentheprimaryusertransmissionisdetectedtobeabsent. Foropportunis- tic spectrum access, the cognitive radios should sense the radio environment and allocate the spectrum and power based on the sensing results. To this end, in this thesis, I develop a novel cooperative spectrum sensing scheme for cognitive radio networks (CRNs) based on machine learning techniques which are used for pattern classification. In this regard, unsupervised and supervised learning-based classification techniques are implemented for cooperative spectrum sensing. Secondly, I propose a novel joint channel and power al- location scheme for downlink transmission in cellular CRNs. I formulate the downlink resourceallocationproblemasageneralizedspectral-footprintminimizationproblem. The channel assignment problem for secondary users is solved by applying a modified Hun- garian algorithm while the power allocation subproblem is solved by using Lagrangian technique. Specifically,Iproposealow-complexitymodifiedHungarianalgorithmforsub- channelallocationwhichexploitsthelocalinformationinthecostmatrix. Finally,Ipropose a novel dynamic common control channel-based medium access control (MAC) protocol for CRNs. Specifically, unlike the traditional dedicated control channel-based MAC pro- tocols, the proposed MAC protocol eliminates the requirement of a dedicated channel for controlinformationexchange. Acknowledgements This dissertation would not have even been possible without the help and dedication of some special people in many ways. Undoubtedly, I would like to express my foremost heartiest gratitude to my dissertation advisor Professor Ekram Hossain for his excellent guidance, encouragement and dedication that pushed me far beyond my expectation. Spe- cially,nomatterhowbusyhewas,hecouldalwaysfindtimetodiscussions. Thankyoufor allofthat! I gratefully acknowledge the members of the dissertation examination committee Pro- fessorPradeepaYahampath,ProfessorPourangIraniandProfessorAbrahamFapojuwofor their constructive criticism, valuable comments and suggestions on this study. My spe- cial thank also should goes to other faculty staffs for their collaboration for improving my knowledge in numerous ways. I make this an opportunity to acknowledge the financial supportfromUMGFandNSERCtocarryoutmyPHD.Specially,Iwouldliketothankall mygroupmembers,labcolleaguesandtheSriLankancommunityinWinnipegforallkind ofsupportsgiventomeduringmystudy. No single piece of this dissertation would be a reality without the seamless support of my parents, Hemalatha and Dharmasena, who always encourage my dreams and aspira- tions no matter which direction I chose. I would have never been in this position without their love, care, dedications and support. The minimum I can give back is to dedicate this dissertationtomyparents. Iwouldliketoacknowledgemysisters,SamanthiandKeshala,andmybrother-in-law, Lakmal, for providing constant support and keeping me in good mood by taking care of everythingbackhomeonmybehalf. Most importantly, I have no word to express my gratitude to my loving wife, Saranga. Her continuous understanding, support, encouragement, patience and proof reading made i my life easy. Her love and care makes anywhere we live together called home. Nothing is possiblewithoutherdedication. Thankyouforallofthat! ii Table of Contents ListofFigures vii ListofTables ix ListofAbbreviations x ListofSymbols xiii Publications xvii 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 BasicsofCognitiveRadio: MotivationandDefinition . . . . . . . . 2 1.1.2 ChallengesinCognitiveRadioNetworks . . . . . . . . . . . . . . 3 1.2 ResearchGoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 ResearchContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 OrganizationoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 OverviewonCognitiveRadioNetworks 11 2.1 RegulatoryAspectsandStandardization . . . . . . . . . . . . . . . . . . . 12 2.2 CognitiveRadioNetworkArchitectures . . . . . . . . . . . . . . . . . . . 12 2.2.1 CentralizedCognitiveRadioNetworks . . . . . . . . . . . . . . . 13 2.2.2 DistributedCognitiveRadioNetworks . . . . . . . . . . . . . . . . 14 2.2.3 CROperationalModels . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 SpectrumAccessModel . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 SpectrumManagementFramework . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 SpectrumSensing . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 SpectrumDecision . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 SpectrumSharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.4 SpectrumMobility . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 SpectrumSensingTechniques . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.1 Non-CooperativeSpectrumSensing . . . . . . . . . . . . . . . . . 20 2.4.2 CooperativeSpectrumSensing . . . . . . . . . . . . . . . . . . . . 23 iii TableofContents 2.4.3 FusionTechniquesforCooperativeSpectrumSensing . . . . . . . 24 2.4.4 PatternClassificationTechniquesforCooperativeSpectrumSensing 25 2.4.5 DatabaseCentricApproachforSpectrumSensing . . . . . . . . . . 27 2.5 ResourceAllocationinCRNs . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 ElementsofResourceAllocationProblemsinCRNs. . . . . . . . . 28 2.5.2 ResourceAllocationApproachesinCognitiveRadioNetworks . . . 29 2.6 MediumAccessControlforCognitiveRadioNetworks . . . . . . . . . . . 32 2.6.1 GeneralCognitiveMediumAccessControl(C-MAC)Cycle . . . . 34 3 MachineLearningTechniquesforCooperativeSpectrumSensinginCognitive RadioNetworks 40 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.1 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.2 MotivationandContribution . . . . . . . . . . . . . . . . . . . . . 42 3.2 SystemModelandAssumptions . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1 CognitiveRadioNetworkandPrimaryUserModel . . . . . . . . . 44 3.2.2 EnergyVectorModel . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 MachineLearning-BasedCooperativeSpectrumSensingFramework . . . . 47 3.3.1 OperationofProposedCSSFramework . . . . . . . . . . . . . . . 47 3.3.2 AdvantagesofProposedCSSFramework . . . . . . . . . . . . . . 49 3.4 UnsupervisedLearningforCooperativeSpectrumSensing . . . . . . . . . 53 3.4.1 MotivationforUnsupervisedLearning . . . . . . . . . . . . . . . . 53 3.4.2 K-MeansClusteringAlgorithm . . . . . . . . . . . . . . . . . . . 55 3.4.3 GaussianMixtureModel . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 SupervisedLearningforCooperativeSpectrumSensing . . . . . . . . . . . 60 3.5.1 MotivationforSupervisedLearning . . . . . . . . . . . . . . . . . 60 3.5.2 SupportVectorMachine . . . . . . . . . . . . . . . . . . . . . . . 61 3.5.3 WeightedK-Nearest-Neighbor . . . . . . . . . . . . . . . . . . . . 65 3.6 PerformanceEvaluationandDiscussion . . . . . . . . . . . . . . . . . . . 66 3.6.1 SimulationParameters . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.2 TrainingDurationforDifferentClassifiers . . . . . . . . . . . . . . 67 3.6.3 AverageClassificationDelayforDifferentClassifiers . . . . . . . . 68 3.6.4 DetectionProbabilityforDifferentClassifiers . . . . . . . . . . . . 69 3.6.5 SummaryofResults . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 A Dynamic Common Control Channel-Based MAC Protocol for Cellular CRNs 74 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1.1 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1.2 MotivationandContribution . . . . . . . . . . . . . . . . . . . . . 76 4.2 SystemModelandAssumptions . . . . . . . . . . . . . . . . . . . . . . . 79 iv TableofContents 4.3 DynamicCCC-BasedMediumAccessControlProtocol . . . . . . . . . . . 81 4.3.1 SpectrumSensingPhase . . . . . . . . . . . . . . . . . . . . . . . 81 4.3.2 CCCSelectionPhase . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.3 DataTransmissionPhase . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.4 BeaconPhase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 CooperativeSpectrumSensingandSelectionofCCC . . . . . . . . . . . . 89 4.4.1 CalculationoftheMinimumNumberofMini-SlotsRequiredforat ¯ leastN SUstocooperateinspectrumsensing,N . . . . . . . . . . 90 b 4.4.2 SVM-BasedMethodforSelectionoftheCCC . . . . . . . . . . . . 93 4.4.3 SelectionofChannelsforSpectrumSensing . . . . . . . . . . . . . 94 4.5 SaturationThroughputAnalysisoftheDCCC-MACProtocol . . . . . . . . 94 4.6 RobustnessandScalabilityofDCCC-MACprotocol . . . . . . . . . . . . 97 4.6.1 A new SU appears in the CRN or an SU is not synchronized with beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6.2 Participate in the CCC selection process but does not receive the CCCinformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.6.3 TheselectedCCCmaybeoccupiedbyPUs . . . . . . . . . . . . . 100 4.6.4 Adaptationoftheprotocolfordownlinktransmission . . . . . . . . 101 4.7 PerformanceEvaluationResultsandDiscussions . . . . . . . . . . . . . . 102 4.7.1 SimulationParameters . . . . . . . . . . . . . . . . . . . . . . . . 102 4.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 GeneralizedSpectralFootprintMinimizationforOFDMA-BasedCRNs 112 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.1.1 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.1.2 MotivationandContribution . . . . . . . . . . . . . . . . . . . . . 114 5.2 SystemModelandProblemFormulation . . . . . . . . . . . . . . . . . . . 116 5.2.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2.2 ProblemFormulationforJointSubchannelandPowerAllocation . 117 5.3 SolutionsoftheSubchannelandPowerAllocationProblems . . . . . . . . 120 5.3.1 SubchannelAllocationProblem . . . . . . . . . . . . . . . . . . . 120 5.3.2 PowerAllocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3.3 CompleteResourceAllocationAlgorithm . . . . . . . . . . . . . . 130 5.4 SpectralFootprintAnalysisforaSingleUserScenario . . . . . . . . . . . 131 5.5 SimulationResultsandDiscussions . . . . . . . . . . . . . . . . . . . . . 135 5.5.1 SimulationParameters . . . . . . . . . . . . . . . . . . . . . . . . 135 5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 v TableofContents 6 ConclusionandFutureDirections 142 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.2 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.2.1 ImprovedCooperativeSpectrumSensing . . . . . . . . . . . . . . 145 6.2.2 ExtensionoftheGeneralizedSpectralFootprintMinimizationModel146 6.2.3 ExtensionoftheDCCC-MACProtocol . . . . . . . . . . . . . . . 148 6.2.4 Full-DuplexCognitiveRadioNetworks . . . . . . . . . . . . . . . 149 A AppendixA 172 A.1 Proof of Optimality of Algorithm 4 for a given number of subchannel re- quirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 A.1.1 ProofforCaseI: . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 A.1.2 ProofforCaseII: . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 A.1.3 ProofforCaseIII: . . . . . . . . . . . . . . . . . . . . . . . . . . 176 A.2 ComplexityofAlgorithm4foragivennumberofsubchannelrequirement 177 vi List of Figures 2.1 Cognitive radio operational models. a) Underlay operation b) Overlay op- erationc)Interweaveoperation. . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 SpectrummanagementframeworkinCRNs[1]. . . . . . . . . . . . . . . . 16 2.3 Spectrumdecisionflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Perfectly separable hyperplane for two class training data, where w is the weightingvectorandw isthebias. . . . . . . . . . . . . . . . . . . . . . 25 0 2.5 GeneralcognitiveMACcycle. . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1 ModulararchitectureoftheproposedCSSframework. . . . . . . . . . . . 49 3.2 Twoscenariosofuserlocations. . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Examplescatterplotsofenergyvectorsintwoscenarios. . . . . . . . . . . 52 3.4 TheCRnetworktopologyusedforsimulation. . . . . . . . . . . . . . . . . 67 3.5 The ROC curves when a single PU is present. I use 500 training energy vectorstotraineachclassifier. . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6 TheROCcurveswhentherearetwoPUs. Iuse500trainingenergyvectors totraineachclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.7 The detection probability according to the transmission power of a PU whenthefalsealarmprobabilityis0.1andthereare25(5 5)SUs. . . . . . 72 × 4.1 FramestructureoftheDCCC-MACprotocol. . . . . . . . . . . . . . . . . 82 4.2 TheoperationoftheDCCC-MACprotocol. . . . . . . . . . . . . . . . . . 83 4.3 Minimum number of mini-slots (N ) required for at least 4 or more SUs b participating in the cooperative decision making process when P = 0.4 s andW = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 max ¯ 4.4 NumberofSUsparticipating(N )inthecooperativedecisionmakingpro- N b cesswithinN mini-slotswhenP = 0.4andW = 16. . . . . . . . . . . 105 b s max 4.5 TheROCperformancefordifferentcombinationofSUs’cooperationwhen therearethreePUsandtheSVMclassifierwithlinearkernelisused. . . . . 106 4.6 Effect of sensing duration (τ) on the performance of cooperative decision making process when there are three PUs, four SUs and a linear kernel is usedinSVMclassifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 vii ListofFigures 4.7 SystemthroughputvariationwithrespecttothenumberofSUswhenP = s 0.4 and W = 16. The overhead of the OSA-MAC protocol is assumed max tobe25%[2]andaveragetimeformobilitysupportinCM-MACprotocol isassumedtobe3ms[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.8 System throughput variation with respect to contention window (W ) max ¯ whenP = 0.4and = 32. . . . . . . . . . . . . . . . . . . . . . . . . . 109 s K 4.9 Effect of sensing duration (τ) on the performance of system throughput ¯ whenW = 16, = 32andtheframedurationis50ms). . . . . . . . . 110 max K 5.1 Systemmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2 Blockdiagramoftheresourceallocationprocess. . . . . . . . . . . . . . . 120 5.3 Algorithmstepstoupdatethenumberofsubchannels. . . . . . . . . . . . . 126 5.4 BehaviourofΩ(see(5.18))whenthereisasingleuserinthenetwork. . . 135 5.5 Average number of subchannel requirement when there are 4 SUs in the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.6 Averagetransmitpowerofuserswhenthereare4SUsinthenetwork. . . . 138 5.7 Spectralfootprintwhenthereare4SUsinthenetwork. . . . . . . . . . . . 138 5.8 Convergenceoftheproposedresourceallocationalgorithm. . . . . . . . . . 139 5.9 Comparisonoftheproposedresourceallocationalgorithmwiththeoptimal resource allocation algorithm based on simulations when N = 2, = 5, K ω = [0.2, 0.3, 0.4, 0.5, 0.6],α = 1andβ = 1. . . . . . . . . . . . . . . 140 k viii

Description:
a novel cooperative spectrum sensing scheme for cognitive radio networks (CRNs) based on machine Her love and care makes anywhere we live together called home. 1.1.1 Basics of Cognitive Radio: Motivation and Definition 2 3.2.1 Cognitive Radio Network and Primary User Model .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.