ebook img

On some Riesz and Carleman type inequalities for harmonic functions on the unit disk PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On some Riesz and Carleman type inequalities for harmonic functions on the unit disk

1 ON SOME RIESZ AND CARLEMAN TYPE INEQUALITIES FOR HARMONIC FUNCTIONS ON THE UNIT DISK 7 DAVIDKALAJANDELVERBAJRAMI 1 0 2 ABSTRACT. We prove some isoperimetric type inequalities for real harmonic functionsintheunitdiskbelongingtotheHardyspacehp,p> 1andforcom- n plex harmonic functions in h4. The results extend some recent results on the a area.FurtherwediscussomeRiesztyperesultsforholomorphicfunctions. J 2 1 ] 1. INTRODUCTION AND STATEMENT OF MAIN RESULTS V C Throughout the paper we let U = z C : z < 1 be the open unit disk in . the complex plane C, and let T = z{ C∈: z |=|1 be}the unit circle in C. The th normalizedareameasureonUwill{be∈denote|db|ydσ}. Intermsofreal(rectangular a andpolar)coordinates, wehave m 1 1 [ dσ = dxdy = rdrdθ, z = x+iy = reiθ. π π 1 v For 0 < p < + let Lp(U,σ) = Lp denote the familiar Lebesgue space on U 9 withrespecttoth∞emeasureσ. TheBergmanspaceAp(U) = Ap isthespaceofall 2 holomorphic functions in Lp(U,σ). For a fixed 1 p < + , denote by Ap the 34 setofallfunctions f Ap forwhichf(0) = 0. Fo≤rafunctio∞n f inLp(U,σ)0, we ∈ 0 write . 1/p 1 f = f(z)pdσ . 0 p k k U| | 7 (cid:18)Z (cid:19) 1 Bergmanspacebp ofharmonicfunctions isdefinedsimilarly. : TheHardy space hp isdefined asthe space of (complex) harmonic functions f v i suchthat X 2π dt r f hp := sup ( f(reit)p )1/p < . a k k 0≤r<1 Z0 | | 2π ∞ Iff hp,thenby[1,Theorem6.13],thereexists ∈ f(eit) = limf(reit),a.e. r 1 → andf Lp(T).Itcanbeshownthattherehold ∈ 2π dt 2π dt f p = lim f(reit)p = f(eit)p . k khp r→1Z0 | | 2π Z0 | | 2π SimilarlywedefinetheHardyspaceHp ofholomorphic functions. File: kalbaj.tex, printed: 2017-1-13, 1.24 12010MathematicsSubjectClassification:Primary47B35 Keywordsandphrases. Harmonicfunctions,Riesinequality,Isoperimetricinequality. 1 ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 2 The starting point of this paper is the well known isoperimetric inequality for JordandomainsandisoperimetricinequalityforminimalsurfacesduetoCarleman [3]. In that paper Carleman, among the other results proved that if u is harmonic andsmoothinUthen 1 2π e2udxdy ( eudt)2. ZU ≤ 4π Z0 By using a similar approach as Carleman, Strebel ([13]) proved the isoperimetric inequality forholomorphic functions; thatisiff H1(U)then ∈ 1 (1.1) f(z)2dxdy ( f(eit)dt)2. U| | ≤ 4π T| | Z Z Thisinequality has been proved independently by Mateljevic´ and Pavlovic´ ([11]). In[6]havebeendonesomegeneralizations forthespace. Inthispaperweprovethefollowingresults. Theorem1.1. Letf bearealharmonic function. Forp > 1wehavethat (1.2) f b2p Cp f hp k k ≤ k k where cos π 4p, if1 < p 2; C = M = cos2πp ≤ p 2p  cos4πp, ifp 2.  sin2πp ≥ The inequality (1.2) extends the main result in [2], where Bajrami proved the  sameresultbutonlyforp =4. Butthewrongconstantappearin[2],duetoawrong citation to the Duren approach [5, p. 67-68]. Howeverthe same method produces the same constant namely C = 1 2.56292. We were not able to check 4 2sin1π6 ≈ if (1.2) is sharp. We are thankful to professor Hedenmalm who drawn attention to his paper [7], where is treated a problem which suggests that the inequalities from Theorem 2.1, which we use in order to prove (1.2), are maybe not sharp. The inequality (1.2) improves similar results for real harmonic functions proved byKalajandMesˇtrovic´ in[10]andbyChenandPonnusamyandWangin[4]. We expect that the inequality (1.2) is true for complex harmonic mappings for every p > 1. KalajandMesˇtrovic´ in[10]proved itforp = 2,namelytheyobtained that C = 1 1.3. Onthe same paper the example f (z) = z , when a 1 2 2sinπ8 ≈ a ℜ1−az ↑ produces the constant C = (5/2)1/4 1.257, so the constant C is not far from 0 2 ≈ thesharpconstant. Inthispaperweextenditforp = 4. Namelywehave Theorem 1.2. Iff h4(U) isanonzero complex harmonic function thenf b8 ∈ ∈ andthereholdtheinequality 1 kfkb8 ≤ 2sin π kfkh4. 16 The main ingredient of the proofs are some sharp M. Riesz type inequalities provedforHardyspacebyVerbitsky([14]): ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 3 Proposition 1.3 (Riesz type inequality). Letp > 1. For every holomorphic map- pingthereholdthesharpinequalities Lp f hp f hp Rp f hp, kℜ k ≤ k k ≤ kℜ k provided argf(0) π π ,orf(0) = 0,wherep¯= max p, p and | − 2| ≥ 2p¯ { p 1} − 1 , if1 < p 2; 1 , if1< p 2; R = cos2πp ≤ andL = sin2πp ≤ p 1 , ifp 2. p 1 , ifp 2. ( sin2πp ≥ ( cos2πp ≥ Inadditionwerefertothereferences [8]and[12]forrelated results. By results of Verbitsky we prove some similar inequalities for Bergman space (Theorem2.1). FromProposition1.3,weobtainthat,iff = u+ivisholomorphicwithf(0) = 0,then p R (1.3) f p p( u p + v p ) k kHp ≤ 2 k khp k khp and p L (1.4) p( u p + v p ) f p . 2 k khp k khp ≤ k kHp Now we formulate a similar result, where Rpp and Lpp are replaced by smaller, 2 2 respectively biggerconstants forpcloseto4. Theorem1.4. Letp 2andletf = u+iv beaholomorphicfunctionontheunit ≥ disksothatf(0)= 0andletf Hp. Thenforp [2,4]wehave ∈ ∈ 1/p p (1.5) kfkHp ≤ p 1 kukphp +kvkphp 1/p (cid:18) − (cid:19) (cid:0) (cid:1) andforp 4wehave ≥ 1/p p (1.6) kfkHp ≥ p 1 kukphp +kvkphp 1/p. (cid:18) − (cid:19) (cid:0) (cid:1) 1/p Remark1.5. IfC = p ,then2 1/pL C ifp 4andC 2 1/pR , p p 1 − p ≤ p ≥ p ≤ − p − if p1 p 4, so ine(cid:16)qualit(cid:17)ies (1.5) and (1.6) improve the inequalities (1.3) and ≤ ≤ (1.4), if p p 4, and if p 4, respectively. Here p 2.42484 is the only 1 1 ≤ ≤ ≥ ≈ solutionoftheequation 1/p p 1 = 2 1/p , p 2. p 1 − sin π ≥ (cid:18) − (cid:19) 2p Theproofsarepresented insections2and3and4. ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 4 2. PROOF OF THEOREM 1.1 FromProposition 1.3weobtain Lp f(reit)pdt f(reit)pdt Rp f(reit)pdt. p T|ℜ | ≤ T| | ≤ p T|ℜ | Z Z Z So 1 1 Lp rdr f(reit)pdt r f(reit)pdt pZ0 ZT|ℜ | ≤ Z0 ZT | | 1 Rp rdr f(reit)pdt. ≤ pZ0 ZT|ℜ | Thuswehavethefollowingtheorem Theorem2.1. Letp > 2andf = f +i f bp(U). If argf(0) π π ,or ℜ ℑ ∈ | − 2|≥ 2p f(0)= 0,thenwehave Lp f bp f bp Rp f bp kℜ k ≤ k k ≤ kℜ k and Lp f bp f bp Rp f bp. kℑ k ≤ k k ≤ kℑ k Fromnowonwewillusetheshorthand notation 1 2π f := f(eit)dt ZT 2π Z0 and 1 f := f(z)dxdy, z = x+iy. U π U Z Z Thusforp > 2wehave 1 ( f p)1/p ( f p)1/p U|ℜ | ≤ Lp U| | Z Z 1 ( f p/2)2/p ≤ Lp T| | Z R p/2( f p/2)2/p ≤ Lp T|ℜ | Z = M ( f p/2)2/p, p T|ℜ | Z where cos π 2p, if2 < p 4; M = cosπp ≤ p  cos2πp, ifp 4.  sinπp ≥ ThisfinishestheproofofTheorem1.1.  ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 5 3. PROOF OF THEOREM 1.2 Weassumethatf(z)= g(z)+h(z),whereh(0) = 0,andgandhareholomor- phicontheunitdisk. Lemma3.1. Thefunction a 2+ b 2islog-subharmonic, providedthataandbare | | | | analytic. Proof. Weneed toshowthat f(z) = log(a 2 + b 2)issubharmonic. Bycalcula- | | | | tionwefind aa¯+b¯b ′ ′ f = z a 2+ b 2 | | | | andso aa¯ +b¯b aa¯+b¯b aa¯ +b¯b ′ ′ ′ ′ ′ ′ ′ ′ f = zz¯ a 2+ b 2 − a 2+ b 2 a 2+ b 2 | | | | | | | | | | | | (a 2+ b 2)(a 2 + b 2) a¯a +¯bb 2 ′ ′ ′ ′ = | | | | | | | | −| | (a 2+ b 2)2 | | | | whichisclearlypositive. (cid:3) Now from the isoperimetric inequality for log-subharmonic functions (e.g. [9, Lemma2.2]),wehave Lemma 3.2. For every positive number p and analytic functions a and b defined ontheunitdiskU wehavethat 2 (a 2 + b 2)2p (a 2 + b 2)p . U | | | | ≤ T | | | | Z (cid:18)Z (cid:19) Furtherlet L = (g+¯h2)4 = (g 2 + h2+2 (gh))4. U | | U | | | | ℜ Z Z Then 4 4 L = (g 2 + h2)k(2 (gh))4 k − k U | | | | ℜ k=0(cid:18) (cid:19)Z X 4 4 ((g 2 + h2)4)k/4( 2 (gh)4)(4 k)/4. − ≤ k U | | | | U| ℜ | k=0(cid:18) (cid:19)Z Z X LetE = cos π. FromLemma3.2andTheorem2.1wehave 4 8 4 4 L E4 k( (g 2 + h2)4)k/4( (2gh)4)(4 k)/4 ≤ k 4− U | | | | U | | − k=0(cid:18) (cid:19) Z Z X 4 4 E4 k( (g 2 + h2)4/2)2k/4( (2gh)4/2)2(4 k)/4. ≤ k 4− T | | | | T | | − k=0(cid:18) (cid:19) Z Z X ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 6 Furtherwehave X := g+h¯ 4 T| | Z = (g 2 + h2+2 (gh))2 T | | | | ℜ Z = (g 2 + h2)2+4(g 2 + h2) (gh)2 +4( (gh))2 T | | | | | | | | ℜ ℜ Z = (g 2 + h2)2+4(g 2 + h2) (gh)+2gh2. T | | | | | | | | ℜ | | Z Let 1/2 A= (g 2 + h2)2 T | | | | (cid:18)Z (cid:19) and 1/2 B = 4g 2 h2 . T | | | | (cid:18)Z (cid:19) Then (g 2 + h2) (gh) ( ((g 2 + h2))2)1/2( gh2/2)1/2 T | | | | ℜ ≤ | T | | | | T| | (cid:12)Z (cid:12) Z Z (cid:12)(cid:12) (cid:12)(cid:12) √2 (cid:12) (cid:12) = AB . · 4 Furtherwehave B2 √2 X A2+ √2AB = (A B)2. ≥ 2 − − 2 Furthermore A2 B2 = (g 2 h2)2 0 − T | | −| | ≥ Z andthus 2 √2 (3.1) X ( − )2B2 ≥ 2 andsimilarly 2 2 √2 (3.2) X − A2. ≥ 2 ! Hence 4 4 2 4 2 (g+¯h)8 E4 k g+h¯ 4 U | | ≤ k 4− 2 √2 T| | Z Xk=0(cid:18) (cid:19) (cid:18) − (cid:19) (cid:18)Z (cid:19) 4 2 2(1+E ) = 4 g+h¯ 4 . 2 √2 T| | (cid:18) − (cid:19) (cid:18)Z (cid:19) ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 7 So 2(1+E ) kg+h¯kb8 ≤ s 2 √24 kg+h¯kh4, − whereE = cos π = √2+√2. Finallywehavethat 4 8 2 1 (cid:2) (cid:3) kg+h¯kb8 ≤ 2sin π kg+h¯kh4. 16 Here 1 2.56292. ThisfinishestheproofofTheorem1.2. 2sin1π6 ≈ 4. PROOF OF THEOREM 1.4 WeusethefollowingformofGreenformula 2π ∂G(reit) (4.1) r dt = ∆G(z)dxdy. ∂r Z0 Z|z|≤r Let p > 2 and let f = u+iv be an analytic function. Let q = p and ǫ > 0 p 1 anddefine − F (z) = qǫ+ f(z)2 p/2 ǫ | | | | U (z) = ǫ+u(z)2 p/2 ǫ | | V (z) = ǫ+v(z)2 p/2 ǫ | | Thenbydirectcalculation weobtain (4.2) ∆F = p(qǫ+ f 2)p/2 2(2qǫ+p f 2)f 2, ǫ − ′ | | | | | | (4.3) ∆U = p(u2+ǫ)p/2 2 f 2(ǫ+(p 1)u2), ǫ − ′ | | − and (4.4) ∆V = p(v2+ǫ)p/2 2 f 2(ǫ+(p 1)v2). ǫ − ′ | | − Ifp= 4,then 3 ∆U +∆V = ∆F . ǫ ǫ ǫ 4 Lemma 4.1. Let f be a holomorphic function defined on the unit disk U. For p > 4andz Uandǫ > 0wehave ∈ p 1 ∆(U +V ) − ∆F . ǫ ǫ ǫ ≤ p (cid:18) (cid:19) For1 p 4andz Uandǫ > 0wehave ≤ ≤ ∈ p 1 ∆(U +V ) − ∆F . ǫ ǫ ǫ ≥ p (cid:18) (cid:19) ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 8 Proof. Letf = u+iv = reis anddefine ∆(U +V ) ǫ ǫ Q(s) = . ∆F ǫ Thenfrom(4.2),(4.3)and(4.4)wehave ǫ+r2cos2s −2+p2 ǫ+(p 1)r2cos2s Q(s)= − 2+p (cid:0) (2ǫ+(p (cid:1)1)r2)(cid:0) ǫp +r2 − 2 (cid:1) − 1+p − ǫ+r2sin2s −2+p2 ǫ+(cid:16)(p 1)r2s(cid:17)in2s + − . 2+p (cid:0) (2ǫ+(p (cid:1)1)r2)(cid:0) ǫp +r2 − 2 (cid:1) − 1+p − Weshouldprovethat (cid:16) (cid:17) ifp < 4; Q(s) ≥ ifp 4. (cid:26) ≤ ≥ Firstofall 2 p ( 2+p)r2 ǫp +r2 −2 cosssins − p 1 Q′(s)= 2(cid:16)ǫ+− (p 1(cid:17))r2 T − where T = ǫ+r2cos2s −3+p2 3ǫ+(1 p)r2cos2s − − + (cid:0)ǫ+r2sin2s(cid:1)−3+p2 (cid:0)3ǫ+(p 1)r2sin2s .(cid:1) − ThenT = 0,ifandonlyif (cid:0) (cid:1) (cid:0) (cid:1) 1 3ǫ+(p 1)r2sin2s L = S2(6−p) = R := − , 3ǫ+(p 1)r2cos2s − where ǫ+r2sin2s S = . ǫ+r2cos2s Ifp = 6,thencos2s = sin2s. Ifp > 6thenwealsohavecos2s= sin2s,because ifforexamplecos2s > sin2s,thenL > 1 > R. Similarlycos2s < sin2simplies L < 1< R. If4 < p < 6andcos2s > sin2s,then ǫ(4 p)r2cos(2s) R S = − < 0. − (ǫ+r2cos2s)(3ǫ+(p 1)r2cos2s) − Thus S < R < 1. Since0 < 6−p < 1,itfollowsthat 2 6−p S < R 2 < 1. SoL = R. If4 < p < 6andcos2s < sin2s,then 6 ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 9 S > R > 1. So 6−p S > R 2 . ThusL = R. 6 Ifp< 4,thencos2s > sin2simpliesthat 6−p 1 > S > R > R 2 . Finallyifp < 4andcos2s >sin2s. Then 6−p 1 < S < R < R 2 . Weprovedthattheonlystationary pointsofQare πj s = , j = 0,...,7. j 4 SoweeneedtoshowthatQ(s ) 1forp 4andQ(s ) 1forp 4. j j ≤ ≤ ≥ ≥ Lets = 0. Showthat ǫ−1+p2p+p ǫ+r2 −2+p2 ǫ+(p 1)r2 1, ifp 4; − Q(0) = ≥ ≤ (cid:16) p(2ǫ+((cid:0)p 1)r(cid:1)2) ǫp(cid:0) +r2 p2−2 (cid:1)(cid:17)(cid:26) ≤ 1, ifp ≥ 4. − p 1 − Letǫ = tr2,t > 0. Then (cid:16) (cid:17) 1+ ppt1 2−p2 t−1+p2 +(1+t)−2+p2(p−1+t) Q(0) = − . (cid:16)(cid:16) (cid:17)(cid:17) (cid:16) p 1+2t (cid:17) − Byusingconvexity ofthefunction k(x) = xp/2 2,forp < 4wehave − t−1+p2 (1+t)−2+p2(p 1+t) p 1+pt+2t2 −2+p2 + − > − . p 1+2t p 1+2t p 1+2t − − (cid:18) − (cid:19) Further p 1+pt+2t2 −2+p2 p 1+pt −2+p2 − > − . p 1+2t p 1 (cid:18) − (cid:19) (cid:18) − (cid:19) SoQ(0) 1. ≥ For4 pweneedtoshowthat ≤ t−1+p2 (1+t)−2+p2(p 1+t) p 1+pt −2+p2 + − < − , p 1+2t p 1+2t p 1 − − (cid:18) − (cid:19) i.e. t−1+p2 (1+t)−2+p2(p 1+t) t −2+p2 + − < 1+t+ . p 1+2t p 1+2t p 1 − − (cid:18) − (cid:19) Thelastinequality isequivalent withthetrivialinequalities t(t−2+p2 −(t+1)−2+p2) < 0< 1+t+ t −2+p2 (1+t)−2+p2. p 1+2t p 1 − − (cid:18) − (cid:19) ONSOMERIESZANDCARLEMANTYPEINEQUALITIESFORHARMONICFUNCTIONS 10 Fors = π/4,andǫ = r2t, 2 p Q(s)= 22−p2 p−1+pt −2 . (p 1)(1+2t) (cid:18) − (cid:19) So 1, ifp 4; Q(s) ≥ ≤ 1, ifp 4. (cid:26) ≤ ≥ Theothercasescanbetreatedinasimilarway. (cid:3) ProofofTheorem1.4. Assumethat p 4. Byusing theGreen formula (4.1),and ≤ Lemma4.1weobtain 2π ∂ r 2π r F dt = ρ∆F dρdt. ǫ ǫ ∂r Z0 Z0 Z0 p r 2π ρ(∆U +∆V )dρdt ǫ ǫ ≤ p 1 − Z0 Z0 p 2π ∂ = r (U +V )dt. ǫ ǫ p 1 ∂r − Z0 Dividingbyrandintegrating in[0,1]withrespecttor weobtain 2π [F (eit) F (0)]dt ǫ ǫ − Z0 p 2π 2π [U (eit) U (0)]dt+ [V (eit) V (0)] dt. ǫ ǫ ǫ ǫ ≤ p 1 − − − (cid:18)Z0 Z0 (cid:19) Lettingǫ 0weobtain → 2π p 2π 2π f(eit)pdt u(eit)pdt+ v(eit)p dt. | | ≤ p 1 | | | | Z0 − (cid:18)Z0 Z0 (cid:19) Similarlyweprovetherelatedinequality forp 4. (cid:3) ≥ REFERENCES [1] S. AXLER, P. BOURDON, W. RAMEY,Harmonicfunctiontheory, SpringerVerlagNewYork 1992. [2] E. BAJRAMI,Improvementofisoperimetrictypeinequalityforharmonicfunctionsinthecase p=4,toappearinIndagationesMathematicae,http://dx.doi.org/10.1016/j.indag.2016.10.003. [3] T.CARLEMAN,ZurTheoriederMinimalfla¨chen.(German)Math.Z.9(1921),no.1-2,154–160. [4] SH. CHEN, S. PONNUSAMY, AND X. WANG, The isoperimetric type and Fejer-Riesz type inequalities for pluriharmonic mappings, Scientia Sinica Mathematica (Chinese Version), 44(2)(2014),127–138. [5] P. L. DUREN,TheoryofHp spaces.PureandAppliedMathematics,Vol.38AcademicPress, NewYork-London1970xii+258pp. [6] F.HANG,X.WANG,X.YAN,Sharpintegralinequalitiesforharmonicfunctions.Comm.Pure Appl.Math.61(2008),no.1,54–95. [7] H. HEDENMALM, Bloch functions, asymptotic variance, and geometric zero packing, arXiv:1602.03358. [8] B. HOLLENBECK, I. E. VERBITSKY, Best constants forthe Rieszprojection. J. Funct. Anal. 175(2000),no.2,370–392.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.