On some recent applications of stochastic convex ordering theorems to some functional inequalities for convex functions - a survey TeresaRajba 7 1 0 2 n a J 1 3 Abstract This is a survey paper concerning some theorems on stochastic convex orderingandtheir applicationsto functionalinequalitiesforconvexfunctions.We ] A presenttherecentresultsonthosesubjects. C . Keywords: convexfunctions,higherorderconvexfunctions,Hermite-Hadamard h inequalities,convexstochasticordering. t a MathematicsSubjectClassification(2010)26A51,26D10,39B62. m [ 1 1 Introduction v 6 3 Inthepresentpaperwe lookatHermite-Hadamardtypeinequalitiesfromthe per- 0 spective provided by the stochastic convex order. This approach is mainly due to 9 0 Cal and Cárcamo. In the paper [10], the Hermite-Hadamard type inequalities are . interpreted in terms of the convex stochastic ordering between random variables. 1 Recently, also in [19, 32, 35, 36, 37, 38, 40, 41, 42]), the Hermite-Hadamard in- 0 7 equalities are studied based on the convex ordering properties. Here we want to 1 attractthereadersattentiontosomeselectedtopicsbypresentingsometheoremson v: theconvexorderingthatcanbeusefulinthestudyoftheHermite-Hadamardtype i inequalities. X The Ohlin lemma [31] on sufficient conditions for convex stochastic ordering r was first used in [36], to get a simple proof of some known Hermite-Hadamard a typeinequalitiesaswellasto obtainingnew Hermite-Hadamardtypeinequalities. In[32,41,42],theauthorsusedtheLevin-Stecˇkintheorem[25]tostudyHermite- Hadamardtypeinequalities. TeresaRajba University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland, e-mail: [email protected] 1 2 TeresaRajba ManyresultsonhigherordergeneralizationsoftheHermite-Hadamardtypein- equalityonecanfound,amongothers,in[1,2,3,4,5,14,36,37].Inrecentpapers [36, 37] the theorem of M. Denuit, C.Lefèvre and M. Shaked [13] was used to proveHermite-Hadamardtypeinequalitiesfor higher-orderconvexfunctions.The theorem of M. Denuit, C.Lefèvreand M. Shaked [13] on sufficient conditionsfor s-convexorderingisacounterpartoftheOhlinlemmaconcerningconvexordering. Atheoremonnecessaryandsufficientconditionsforhigherorderconvexstochas- tic ordering,which is a counterpartof the Levin-Stecˇkintheorem [25] concerning convexstochasticordering,isgiveninthepaper[38].Basedonthistheorem,use- fulcriteriafortheverificationofhigherorderconvexstochasticorderingaregiven. ThesecriteriacanbeusefulinthestudyofHermite-Hadamardtypeinequalitiesfor higherorderconvexfunctions,andinparticularinequalitiesbetweenthequadrature operators.Theymaybeeasiertoverifythehigherorderconvexorders,thanthose givenin[13,22]. InSection2,wegivesimpleproofsofknownaswellasnewHermite-Hadamard typeinequalities,usingOhlin’sLemmaandtheLevin-Stecˇkintheorem. In Sections 3 and 4, we study inequalities of the Hermite-Hadamard type in- volving numericaldifferentiationformulasof the first order and the second order, respectively. InSection5, wegivesimple proofsofHermite-Hadamardtypeinequalitiesfor higher-orderconvexfunctions,usingthetheoremofM. Denuit,C.LefèvreandM. Shaked,andageneralizationoftheLevin-Stecˇkintheoremtohigherorders.These resultsareappliedtoderivesomeinequalitiesbetweenquadratureoperators. 2 Some generalizations ofthe Hermite-Hadamardinequality Let f: [a,b] R be a convex function (a,b R, a<b). The following double → ∈ inequality a+b 1 b f(a)+f(b) f f(x)dx (1) (cid:18) 2 (cid:19)≤ b aZa ≤ 2 − is known as the Hermite-Hadamardinequality (see [14] for many generalizations andapplicationsof(1)). Inmanypapers,theHermite-Hadamardtypeinequalitiesarestudiedbasedonthe convexstochasticorderingproperties(see,forexample,[19,32,35,36,37,40,41]). In the paper [36], the Ohlin lemma on sufficient conditions for convex stochastic orderingisusedtogetasimpleproofofsomeknownHermite-Hadamardtypein- equalitiesaswellas to obtainnewHermite-Hadamardtypeinequalities.Recently, the Ohlin lemma is also used to study the inequalities of the Hermite-Hadamard type for convex functions in [32, 35, 40, 41]. In [37], also the inequalities of the Hermite-Hadamardtypefordelta-convexfunctionsare studiedbyusingthe Ohlin lemma.Inthepapers[32,40,41],furthermore,theLevin-Stecˇkintheorem[25](see also[30])isusedtoexaminetheHermite-Hadamardtypeinequalities.Thistheorem givesnecessaryandsufficientconditionsforthestochasticconvexordering. Stochasticconvexorderingtheoremstofunctionalinequalities 3 Letusrecallsomebasicnotionsandresultsonthestochasticconvexorder(see, forexample,[13]).Asusual,F denotesthedistributionfunctionofarandomvari- X ableX andm isthedistributioncorrespondingtoX.Forrealvaluedrandomvari- X ables X,Y with a finite expectation, we say that X is dominated by Y in convex orderingsense,if Ef(X) Ef(Y) ≤ forallconvexfunctions f: R R (forwhich theexpectationsexist). Inthatcase wewriteX Y,orm m →. cx X cx Y ≤ ≤ Inthe followingOhlin’slemma[31], aregivensufficientconditionsforconvex stochasticordering. Lemma1(Ohlin [31]). Let X,Y be two randomvariables such that EX =EY. If thedistributionfunctionsF ,F crossexactlyonetime,i.e.,forsomex holds X Y 0 F (x) F (x)ifx<x and F (x) F (x)ifx>x , X Y 0 X Y 0 ≤ ≥ then Ef(X) Ef(Y) (2) ≤ forallconvexfunctions f: R R. → The inequality (1) may be easily proved with the use of the Ohlin lemma (see[36]). Indeed, let X, Y, Z be three random variables with the distributions m =d ,m whichisequallydistributedin[a,b]andm = 1(d +d ),respec- X (a+b)/2 Y Z 2 a b tively.Thenitiseasytoseethatthepairs(X,Y)and(Y,Z)satisfytheassumptions oftheOhlinlemma,andusing(2),weobtain(1). Leta<c<d<b.Let f: I Rbeaconvexfunction,a,b I.Then(see[21]) → ∈ f(c)+f(d) c+d f(a)+f(b) a+b f f . (3) 2 − (cid:18) 2 (cid:19)≤ 2 − (cid:18) 2 (cid:19) Toprove(3)fromtheOhlinlemma,itsufficestotakerandomvariablesX,Y (see [27])with 1 1 m = (d +d )+ d , X 4 c d 2 (a+b)/2 1 1 m Y = (d a+d b)+ d d . 4 2 (c+d)/2 Then,byLemma1,weobtain f(c)+f(d) a+b f(a)+f(b) c+d +f +f , (4) 2 (cid:18) 2 (cid:19)≤ 2 (cid:18) 2 (cid:19) whichimplies(3). 4 TeresaRajba Similarly,itcanbeprovedthePopoviciuinequality 2 x+y y+z z+x f(x)+f(y)+f(z) x+y+z f +f +f +f , 3(cid:20) (cid:18) 2 (cid:19) (cid:18) 2 (cid:19) (cid:18) 2 (cid:19)(cid:21)≤ 3 (cid:18) 3 (cid:19) (5) where x,y,z I and f: I R is a convex function. To prove (5) from the Ohlin ∈ → lemma, it suffices (assuming x y z ) to take random variables X,Y (see [27]) ≤ ≤ with 1 m = d +d +d , X 4 (x+y)/2 (y+z)/2 (z+x)/2 (cid:0) (cid:1) 1 1 m = (d +d +d )+ d . Y 6 x y z 2 (x+y+z)/3 Convexityhasaniceprobabilisticcharacterization,knownasJensen’sinequality (see[6]). Proposition1([6]).Afunction f: (a,b) Risconvexif,andonlyif, → f(EX) Ef(X) (6) ≤ forall(a,b)-valuedintegrablerandomvariablesX. Toprove(6)fromtheOhlinlemma,itsufficestotakearandomvariableY (see [35])with m Y =d EX, thenwehave Ef(Y)= f(EX). (7) By the Ohlin lemma, we obtain Ef(Y) Ef(X), then taking into account(7), ≤ thisimplies(6). Remark1.Note,thatin[29],theOhlinlemmawasusedtoobtainasolutionofthe problemofRas¸aconcerninginequalitiesforBernsteinoperators. In[17],Fejérgaveageneralizationoftheinequality(1). Proposition2([17]).Let f: I RbeaconvexfunctiondefinedonarealintervalI, a,b Iwitha<bandletg: [a→,b] Rbenonnegativeandsymmetricwithrespect ∈ → tothepoint(a+b)/2(theexistenceofintegralsisassumedinallformulas).Then a+b b b f(a)+f(b) b f g(x)dx f(x)g(x)dx g(x)dx. (8) (cid:18) 2 (cid:19)·Za ≤Za ≤ 2 ·Za Thedoubleinequality(8)isknownintheliteratureastheFejérinequalityorthe Hermite-Hadamard-Fejérinequality(see[14,28,33]forthehistoricalbackground). Stochasticconvexorderingtheoremstofunctionalinequalities 5 Remark2([36]).UsingtheOhlinlemma(Lemma1),wegetasimpleproofof(8). Let f andgsatisfytheassumptionsofProposition2.LetX,Y, Z bethreerandom variablessuchthatm =d ,m (dx)=( bg(x)dx) 1g(x)dx,m = 1(d +d ). X (a+b)/2 Y a − Z 2 a b Then,byLemma1,weobtainthatX cxY anRdY cxZ,whichimplies(8). ≤ ≤ Remark3.Notethatforg(x)=w(x)suchthat bw(x)dx=1,theinequality(8)can a berewrittenintheform R a+b b f(a)+f(b) f f(x)w(x)dx . (9) (cid:18) 2 (cid:19)≤Za ≤ 2 Conversely, from the inequality (9), it follows (8). Indeed, if bg(x)dx>0, it a sufficestotakew(x)= bg(x)dx −1g(x).If bg(x)dx=0,thenR(8)isobvious. a a (cid:16)R (cid:17) R For various modifications of (1) and (8) see e.g. [3, 4, 5, 11, 12, 14], and the referencesgiventhere. As Fink noted in [18], one wonders what the symmetry has to do with the in- equality(8)andifsuchaninequalityholdsforotherfunctions(cf.[14,p.53]). As an immediate consequence of Lemma 1, we obtain the following theorem, whichisageneralizationoftheFejérinequality. Theorem1 ([36]).Let0< p<1.Let f: I Rbeaconvexfunction,a,b I with a<b. Let m be a finite measure on B([a,→b]) such that (i) m ([a,pa+qb])∈ pP, 0 (ii) m ((pa+qb,b]) qP,(iii) xm (dx)=(pa+qb)P,whereq=1 p≤,P = ≤ 0 [a,b] 0 − 0 m ([a,b]).Then R f(pa+qb)P f(x)m (dx) [pf(a)+qf(b)]P. (10) 0 0 ≤Z[a,b] ≤ Fink proved in [18] a general weighted version of the Hermite-Hadamard in- equality.Inparticular,wehavethefollowingprobabilisticversionofthisinequality. Proposition3([18]).LetX bearandomvariabletakingvaluesintheinterval[a,b] suchthatm istheexpectationofX and m isthedistributioncorrespondingto X. X Then b b m m a f(m) f(x)m X(dx) − f(a)+ − f(b). (11) ≤Za ≤ b a b a − − Moreover,in[19]itwasprovedthat,startingfromsuchafixedrandomvariable X, we can fill the whole space between the Hermite-Hadamard bounds by high- lighting some parametric families of random variables. The authors propose two alternativeconstructionsbasedontheconvexorderingproperties. In[35],basedonLemma1,averysimpleproofofProposition3isgiven.LetX bearandomvariablesatisfyingtheassumptionsofProposition3.LetY,Z betwo randomvariablessuchthatm =d ,m = b md +m ad ).Then,byLemma1,we Y m Z b−a a b−a b obtainthatY X andX Z,whichimp−lies(11).− cx cx ≤ ≤ 6 TeresaRajba In[36],someresultsrelatedtotheBrenner-Alzerinequalityaregiven.Inthepa- per[23]byM.Klaricˇic´Bakula,J.Pecˇaric´andJ.Peric´,someimprovementsofvari- ousformsoftheHermite-Hadamardinequalitycanbefound;namely,thatofFejér, Lupas, Brenner-Alzer, Beesack-Pecˇaric´. These improvementsimply the Hammer- Bulleninequality.In1991,BrennerandAlzer[9]obtainedthefollowingresultgen- eralizingFejér’sresultaswellastheresultofVasic´ andLackovic´ (1976)[43]and Lupas(1976)[26](seealso[33]). Proposition4([9]).Let p,qbegivenpositivenumbersanda a<b b .Then 1 1 ≤ ≤ theinequalities pa+qb 1 A+y pf(a)+qf(b) f f(t)dt (12) (cid:18) p+q (cid:19)≤ 2yZA y ≤ p+q − holdforA= pa+qb,y>0,andallcontinuousconvexfunctions f: [a ,b ] R if, p+q 1 1 → andonlyif, b a y − min p,q . ≤ p+q { } Remark4.Itisknown[33,p.144]thatunderthesameconditionsHermite-Hadamard’s inequalityholds,thefollowingrefinementof(12): pa+qb 1 A+y 1 pf(a)+qf(b) f f(t)dt f(A y)+f(A+y) (cid:18) p+q (cid:19)≤ 2yZA y ≤ 2{ − }≤ p+q − (13) holds. InthefollowingtheoremwegivesomegeneralizationoftheBrennerandAlzer inequalities(13),whichweproveusingtheOhlinlemma. Theorem2 ([36] ). Let p,q be given positive numbers, a a<b b , 0<y 1 1 b amin p,q andlet f: [a ,b ] Rbeaconvexfunction.≤Then ≤ ≤ p−+q { } 1 1 → pa+qb f (cid:18) p+q (cid:19)≤ a 1 A+(1 a )y f(A (1 a )y)+f(A+(1 a )y) + − f(t)dt 2 { − − − } 2yZA (1 a )y ≤ − − a (cid:229) n f A y+ka y +f A+y ka y + 1 A+(1−a )yf(t)dt 2nk=1n (cid:16) − n (cid:17) (cid:16) − n (cid:17)o 2yZA−(1−a )y ≤ 1 A+y f(t)dt, (14) 2yZA y − where0 a 1,n=1,2,..., ≤ ≤ Stochasticconvexorderingtheoremstofunctionalinequalities 7 1 A+y b 1 A+y f(t)dt f(A y)+f(A+y) +(1 b ) f(t)dt 2yZA y ≤ 2{ − } − 2yZA y − − 1 f(A y)+f(A+y) , (15) ≤ 2{ − } where0 b 1, ≤ ≤ 1 f(A y)+f(A+y) 2{ − }≤ 1 ( g ) f(A y c)+f(A+y+c) +g f(A y)+f(A+y) 2− { − − } { − }≤ pf(a)+qf(b) , (16) p+q wherec=min b (A+y),(A y) a ,g = 1 p . { − − − } 2− (cid:12) (cid:12) (cid:12) (cid:12) Toprovethistheorem,itsufficestoconsiderrandomvariablesX,Y,W,Z,x ,h n andl suchthat: m = d , X pa+qb p+q 1 m (dx)= c (x)dx, Y 2y [A−y,A+y] p q 1 1 m = d + d ,m = d + d , Z a b W A y A+y p+q p+q 2 − 2 m xn(dx)= 2ank(cid:229)=n1{d A−y+kany +d A+y−kany}+21yc [A−(1−a )y,A+(1−a )y](x)dx, b 1 b m h (dx)= 2{d A−y+d A+y}+ 2−y c [A−y,A+y](x)dx, 1 m l = ( g ) d A y c+d A+y+c +g d A y+d A+y . 2− { − − } { − } Then,usingtheOhlinlemma,weobtain: X Y,Y W andW Z,whichimpliestheinequalities(13), cx cx cx • X ≤ x ,x ≤ x andx ≤ Y,whichimplies(14), cx 1 1 cx n n cx • Y ≤ h and≤h W,whic≤himplies(15), cx cx • W≤ l andl ≤ Z,whichimplies(16). cx cx • ≤ ≤ Theorem3 ([36] ). Let p,q be given positive numbers, 0<a <1, a a<b 1 b ,0<y b amin p,q and0 a y b amin p,q .Let f: [a ,b≤] Rb≤e 1 ≤ p−+q { } ≤ 1 a ≤ p−+q { } 1 1 → aconvexfunction.Then − 8 TeresaRajba a A (1 a )2 A+1aa y f(A) f(t)dt+ − − f(t)dt ≤ y ZA y a y ZA − a a f(A y)+(1 a )f(A+ y) ≤ − − 1 a p q − f(a)+ f(b), (17) ≤ p+q p+q whereA= pa+qb. p+q LetX,Y,ZandW berandomvariablessuchthat: m = d , X A a (1 a )2 m Y(dx)= yc [A−y,A](x)dx+ −a y c [A,A+1−aa y](x)dx, m W = ad A−y+(1−a )d A+1aa y, p q − m = d + d . Z a b p+q p+q Then,usingtheOhlinlemma,weobtainX Y,Y W,W Z,whichimplies cx cx cx ≤ ≤ ≤ theinequalities(17). Remark5.If we choose a = 1 in Theorem 3, then the inequalities(17) reduce to 2 theinequalities(15). Remark6.Ifwechoosea = p andy=(1 p)zinTheorem3,thenwehave p+q − p A q A+p+pqz f(A) f(t)dt+ f(t)dt ≤ qzZA q z pzZA −p+q p q q p f(A z)+ f(A+ z) ≤ p+q − p+q p+q p+q p q f(a)+ f(b), ≤ p+q p+q whereA= pa+qb,0<z b a. p+q ≤ − In the paper [40], the author used Ohlin’s lemma to prove some new inequali- tiesoftheHermite-Hadamardtype,whichareageneralizationofknownHermite- Hadamardtypeinequalities. Theorem4 ([40]).Theinequality 1 y af(a x+(1 a )y)+(1 a)f(b x+(1 b )y) f(t)dt, (18) − − − ≤ y xZx − withsomea,a ,b [0,1],a >b issatisfiedforallx,y Randallcontinuousand convexfunctions f∈:[x,y] Rif,andonlyif, ∈ → Stochasticconvexorderingtheoremstofunctionalinequalities 9 1 aa +(1 a)b = , (19) − 2 andoneofthefollowingconditionsholdstrue: (i)a+a 1, (ii)a+b ≤ 1, (iii)a+a ≥>1,a+b <1anda+2a 2. ≤ Theorem5 ([40]).Let a,b,c,a (0,1)be numberssuch thata+b+c=1. Then ∈ theinequality 1 y af(x)+bf(a x+(1 a )y)+cf(y) f(t)dt (20) − ≥ y xZx − issatisfiedforallx,y Randallcontinuousandconvexfunctions f :[x,y] Rif, ∈ → andonlyif, 1 b(1 a )+c= (21) − 2 andoneofthefollowingconditionsholdstrue: (i)a+a 1, (ii)a+b≥+a 1, (iii)a+a <1≤,a+b+a >1and2a+a 1. ≥ Note that the original Hermite-Hadamard inequality consists of two parts. We treatedthesecasesseparately.However,itispossibletoformulatearesultcontaining bothinequalities. Corollary1 ([40]).Ifa,a ,b (0,1)satisfy(19)andoneoftheconditions(i),(ii), ∈ (iii)ofTheorem4,thentheinequality 1 y af(a x+(1 a y)+(1 a)f(b x+(1 b )y) f(t)dt − − − ≤ y xZx ≤ − (1 a )f(x)+(a b )f(ax+(1 a)y)+b f(y) − − − issatisfiedforallx,y Randforallcontinuousandconvexfunctions f :R R. ∈ → Aswecansee,theOhlinlemmaisveryuseful,however,itisworthnoticingthat in the case of some inequalities, the distribution functions cross more than once. ThereforeasimpleapplicationoftheOhlinlemmaisimpossible. Inthepapers[32,41],theauthorsusedtheLevin-Stecˇkintheorem[25](seealso [30], Theorem 4.2.7), which gives necessary and sufficient conditions for convex ordering of functions with bounded variation, which are distribution functions of signedmeasures. Theorem6 (Levin,Stecˇkin[25]).Leta,b R,a<bandletF ,F : [a,b] Rbe 1 2 ∈ → functionswithboundedvariationsuchthatF (a)=F (a).Then,inorderthat 1 2 b b f(x)dF (x) f(x)dF (x) (22) 1 2 Za ≤Za 10 TeresaRajba forallcontinuousconvexfunctions f: [a,b] R,itisnecessaryandsufficientthat → F andF verifythefollowingthreeconditions: 1 2 F (b)= F (b), (23) 1 2 b b F (x)dx = F (x)dx, (24) 1 2 Za Za x x F (t)dt F (t)dt forall x (a,b). (25) 1 2 Za ≤ Za ∈ Definethenumberofsignchangesofafunctionj : R Rby → S (j )=sup S [j (x ),j (x ),...,j (x )]: x <x <...x R,k N , − − 1 2 k 1 2 k { ∈ ∈ } where S [y ,y ,...,y ] denotes the number of sign changes in the sequence y , − 1 2 k 1 y ,..., y (zero terms are being discarded). Two real functions j ,j are said 2 k 1 2 to have n crossing points (or cross each other n-times) if S (j j )= n. Let − 1 2 a=x <x <...<x <x =b.Wesaythatthefunctionsj ,j −crossesn-times 0 1 n n+1 1 2 at the pointsx ,x ,...,,x (or that x ,x ,...,,x are the points of sign changesof 1 2 n 1 2 n j j )ifS (j j )=nandthereexista<x <x <...<x <x <x <b 1 2 − 1 2 1 1 n n n+1 suc−hthatS [x ,x −,...,x ]=n. − 1 2 n+1 Szostok[41]usedTheorem6tomakeanobservation,whichismoregeneralthan Ohlin’slemmaandconcernsthesituationwhenthefunctionsF andF havemore 1 2 crossing points than one. In [41] is given some useful modification of the Levin- Stecˇkintheorem[25],whichcanberewritteninthefollowingform. Lemma2([41]). Let a,b R, a<b and let F ,F : (a,b) R be functions with 1 2 ∈ → boundedvariationsuchthatF(a)=F(b)=0, bF(x)dx=0,whereF =F F . a 2− 1 Leta<x1<...<xm<bbethepointsofsignRchangesofthefunctionF.Assume thatF(t) 0fort (a,x ). 1 ≥ ∈ Ifmiseventhentheinequality • b b f(x)dF (x) f(x)dF (x) (26) 1 2 Za ≤Za isnotsatisfiedbyallcontinuousconvexfunctions f: [a,b] R. → Ifmisodd,defineA (i=0,1,...,m,x =a,x =b) i 0 m+1 • xi+1 A = F(x)dx. i Zxi | | Thentheinequality(26)issatisfiedforallcontinuousconvexfunctions f: [a,b] R,if,andonlyif,thefollowinginequalitiesholdtrue: →