ebook img

On Some NeutroHyperstructures PDF

2021·0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Some NeutroHyperstructures

SS symmetry Article On Some NeutroHyperstructures MadeleineAl-Tahan1 ,BijanDavvaz2 ,FlorentinSmarandache3,* andOsmanAnis4 1 DepartmentofMathematics,LebaneseInternationalUniversity,Bekaa1803,Lebanon; [email protected] 2 DepartmentofMathematics,YazdUniversity,Yazd89139,Iran;[email protected] 3 MathematicsandScienceDivision,GallupCampus,UniversityofNewMexico,705GurleyAve., Gallup,NM87301,USA 4 DepartmentofMathematics,LebaneseInternationalUniversity,Akkar35111,Lebanon; [email protected] * Correspondence:[email protected] Abstract: Neutrosophy,thestudyofneutralities,isanewbranchofPhilosophythathasapplications inmanydifferentfieldsofscience.InspiredbytheideaofNeutrosophy,Smarandacheintroduced NeutroAlgebraicStructures(orNeutroAlgebras)byallowingthepartialityandindeterminacytobe includedinthestructures’operationsand/oraxioms.Theaimofthispaperistocombinetheconcept ofNeutrosophywithhyperstructurestheory.Inthisregard,weintroduceNeutroSemihypergroupsas wellasNeutroHv-Semigroupsandstudytheirpropertiesbyprovidingseveralillustrativeexamples. Keywords:NeutroHypergroupoid;NeutroSemihypergroup;NeutroHv-semigroup;NeutroHyper- ideal;NeutroStrongIsomorphism (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) MSC:03A99;03G99;20N20 (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Citation: Al-Tahan,M.;Davvaz,B.; Smarandache,F.;Anis,O. OnSome 1. Introduction NeutroHyperstructures.Symmetry 2021,13, 535. https://doi.org/ In1995andinspiredbytheexistenceofneutralities,SmarandacheintroducedNeu- 10.3390/sym13040535 trosophyasanewbranchofPhilosophythatdealswithindeterminacy. Duringthepast, ideaswereviewedas“True”or“False”;however, ifweviewanideafromaneutrosophic AcademicEditor:PalleE.T. point of view, it will be “True”, “False”, or “Indeterminate”. The indeterminacy is the Jorgensen key that distinguishes Neutrosophy from other approaches. In the past twenty years, this field demonstrated important progress in which it grabbed the attention of many Received:20February2021 researchersanddifferentworksweredonefrombothatheoreticalpointofviewandfrom Accepted:23March2021 anapplicativeview. Unlikeourrealworldthatisfullofimperfectionsandpartialities, Published:25March2021 abstractsystemsareconstructedonagivenperfectspace(set),wheretheoperationsare totallywell-definedandtheaxiomsaretotallytrueforallspacialelements. Startingfrom Publisher’sNote:MDPIstaysneutral thelatteridea,Smarandache[1–3]introducedNeutroAlgebra,whoseoperationsarepar- withregardtojurisdictionalclaimsin tiallywell-defined,partiallyindeterminate,andpartiallyouter-defined,andtheaxiomsare publishedmapsandinstitutionalaffil- partiallytrue,partiallyindeterminate,andpartiallyfalse. Manyresearchersworkedon iations. specialtypesofNeutroAlgebrasbyapplyingthemtodifferenttypesofalgebraicstructures suchasgroups,rings,BE-Algebras,BCK-Algebras,etc. Formoredetails,wereferto[4–10]. On the other hand, hyperstructure theory is a generalization of classical algebraic structuresandwasintroducedin1934attheeighthCongressofScandinavianMathemati- Copyright: © 2021 by the authors. cians by Marty [11]. Marty generalized the notion of groups by defining hypergroups. Licensee MDPI, Basel, Switzerland. Theclassofalgebraichyperstructuresislargerthanthatofalgebraicstructureswherethe This article is an open access article operationontwoelementsinthelatterisagainanelement,whereasthehyperoperationof distributed under the terms and twoelementsinthefirstclassisanon-voidset. Fordetailsabouthyperstructuretheoryand conditionsoftheCreativeCommons itsapplications,werefertothearticles[12–15]andthebooks[16–18]. Ageneralizationof Attribution(CCBY)license(https:// algebraichyperstructures,knownasweakhyperstructures(H -structures),wasintroduced creativecommons.org/licenses/by/ v 4.0/). Symmetry2021,13,535.https://doi.org/10.3390/sym13040535 https://www.mdpi.com/journal/symmetry Symmetry2021,13,535 2of12 in 1994 by Vougiouklis [19]. The axioms in the latter are weaker than that of algebraic hyperstructures. FordetailsaboutH -structures,wereferto[19–22]. v AsanaturalextensionofNeutroAlgebraicStructure,NeutroHyperstructurewasde- finedrecently[23,24]whereIbrahimandAgboola[23]definedNeutroHypergroupsand studiedaspecialtype. OurpaperisconcernedaboutsomeNeutroHyperstructuresandis organizedasfollows: Section2presentssomebasicpreliminariesrelatedtohyperstructure theory. Section3definesNeutroSemihypergroups,NeutroH -Semigroups,andsomere- v latednewconceptsandillustratesthesenewconceptsviaexamples. Moreover,westudy somepropertiesoftheirsubsetsunderNeutroStrongHomomorphism. 2. AlgebraicHyperstructures In this section, we present some definitions and examples about (weak) algebraic hyperstructuresthatareusedthroughoutthepaper. Formoredetailsabouthyperstructure theory,wereferto[16–20]. Definition1([16]). LetHbeanon-emptysetandP∗(H)bethefamilyofallnon-emptysubsets ofH. Then,amapping◦ : H×H → P∗(H)iscalledabinaryhyperoperationon H. Thecouple (H,◦)iscalledahypergroupoid. If AandBaretwonon-emptysubsetsofHandh ∈ H,thenwedefine: A◦B = (cid:83) a◦b, h◦A = {h}◦Aand A◦h = A◦{h}. a∈A b∈B Ahypergroupoid(H,◦)iscalledasemihypergroupiftheassociativeaxiomissatisfied. i.e.,foreveryx,y,z ∈ H,x◦(y◦z) = (x◦y)◦z. Inotherwords, (cid:83) x◦u = (cid:83) v◦z. u∈y◦z v∈x◦y Anelementhinahypergroupoid(H,◦)iscalledidempotentifh◦h = h. Example 1. Let H be any non-empty set and define “(cid:63)” on H as follows. For all x,y ∈ H, x(cid:63)y = {x,y}. Then(H,(cid:63))isasemihypergroup. Example2. LetH = {e,b,c}and(H ,+)bedefinedbythefollowingtable. 0 0 + e b c e e {e,b} {e,c} b e {e,b} {e,c} c e {e,b} {e,c} Then(H ,+)isasemihypergroupandeisanidempotentelementinH . 0 0 Asageneralizationofalgebraichyperstructures,Vougiouklis[19,20]introduced H - v structures. Weakaxiomsin H -structuresreplacesomeaxiomsofclassicalalgebraichyper- v structures. Definition2([19,20]). Ahypergroupoid(H,◦)iscalledanH -semigroupiftheweakassociative v axiomissatisfied. i.e.,(x◦(y◦z))∩((x◦y)◦z) (cid:54)= ∅forallx,y,z ∈ H. Example3. Let H = {0,1,2,3} and“+”bethehyperoperationon H definedbythefollow- 1 1 ingtable. + 0 1 2 3 0 0 1 {0,2} 3 1 1 2 3 0 2 2 3 0 1 3 3 0 1 2 Symmetry2021,13,535 3of12 Then(H ,+)isanH -semigroup. 1 v Remark1. EverysemigroupisasemihypergroupandeverysemihypergroupisanH -semigroup. v Definition3([17]). Let(H,◦)beasemihypergroup(H -semigroup)and M (cid:54)= ∅ ⊆ H. Then M v isa 1. subsemihypergroup(H -subsemigroup)ofHif(M,◦)isasemihypergroup(H -semigroup). v v 2. lefthyperidealofHif Misasubsemihypergroup(H -subsemigroup)ofHandh◦a ⊆ Mfor v allh ∈ H. 3. righthyperidealofHif Misasubsemihypergroup(H -subsemigroup)ofHanda◦h ⊆ Mfor v allh ∈ H. 4. hyperidealofHif Misboth: alefthyperidealofHandarighthyperidealofH. Remark2. Let(H,◦)beasemihypergroup(H -semigroup)and M (cid:54)= ∅ ⊆ H. Toprovethat M v issubsemihypergroup(H -subsemigroup)ofH,itsufficestoshowthata◦b ⊆ Mforalla,b ∈ M. v 3. NeutroHyperstructures Inthissection,wedefineNeutroSemihypergroupsandNeutroH -Semigroups,present v some illustrative examples, and study several properties of some important subsets of NeutroSemihypergroupsandNeutroH -Semigroups. v Definition4. Let Abeanynon-emptysetand“·”beahyperoperationon A. Then“·”iscalled a NeutroHyperoperation on A if some (or all) of the following conditions hold in a way that (T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. Thereexistx,y ∈ Awithx·y ⊆ A. (Thisconditioniscalleddegreeoftruth,“T”). 2. Thereexistx,y ∈ Awithx·y(cid:42) A. (Thisconditioniscalleddegreeoffalsity,“F”). 3. There exist x,y ∈ A with x·y is indeterminate in A. (This condition is called degree of indeterminacy,“I”). Definition5. Let Abeanynon-emptysetand“·”beahyperoperationon A. Then“·”iscalledan AntiHyperoperationon Aifx·y(cid:42) Aforallx,y ∈ A. Definition6. Let Abeanynon-emptysetand“·”beahyperoperationon A. Then“·”iscalled NeutroAssociative on A if there exist x,y,z,a,b,c,e, f,g ∈ A satisfying some (or all) of the followingconditionsinawaythat(T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. x·(y·z) = (x·y)·z;(Thisconditioniscalleddegreeoftruth,“T”). 2. a·(b·c) (cid:54)= (a·b)·c;(Thisconditioniscalleddegreeoffalsity,“F”). 3. e·(f ·g) is indeterminate or (e· f)·g is indeterminate or we cannot find if e·(f ·g) and (e· f)·gareequal. (Thisconditioniscalleddegreeofindeterminacy,“I”). Definition7. Let Abeanynon-emptysetand“·”beahyperoperationon A. Then“·”iscalled AntiAssociativeon Aifa·(b·c) (cid:54)= (a·b)·cforalla,b,c ∈ A. Definition8. Let Abeanynon-emptysetand“·”beahyperoperationon A. Then“·”iscalleda NeutroWeakAssociativeon Aifthereexistx,y,z,a,b,c,e, f,g ∈ Asatisfyingsome(orall)ofthe followingconditionsinawaythat(T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. [x·(y·z)]∩[(x·y)·z] (cid:54)= ∅;(Thisconditioniscalleddegreeoftruth,“T”). 2. [a·(b·c)]∩[(a·b)·c] = ∅;(Thisconditioniscalleddegreeoffalsity,“F”). 3. e·(f ·g) is indeterminate or (e· f)·g is indeterminate or we cannot find if e·(f ·g) and (e· f)·ghavecommonelements. (Thisconditioniscalleddegreeofindeterminacy,“I”). Definition9. Let Abeanon-emptysetand“·”beahyperoperationon A. Then(A,·)iscalleda 1. NeutroHypergroupoidif“·”isaNeutroHyperoperation. 2. NeutroSemihypergroupif“·”isNeutroAssociativebutnotanAntiHyperoperation. Symmetry2021,13,535 4of12 3. NeutroH -Semigroupif“·”isNeutroWeakAssociativebutnotanAntiHyperoperation. v Example4. Let A = {0,1}and(A,+)bedefinedbythefollowingtable. + 0 1 0 {0,1} 0 1 1 0 Then(A,+)isaNeutroSemihypergroupandNeutroH -Semigroup. Thisisclearas v 0+(0+0) = {0,1} = (0+0)+0and(1+1)+1=0(cid:54)=1=1+(1+1). Example5. LetRbethesetofrealnumbersanddefine“(cid:63)”onRasfollows.  [[yx,,xy]] iiffyx<<xy;; x(cid:63)y = 01 iiffxx == yy =(cid:54)=00;. x Then(R,(cid:63))isaNeutroSemihypergroup. Thisisclearas(1(cid:63)1)(cid:63)1 = 1 = 1(cid:63)(1(cid:63)1)and (1(cid:63)2)(cid:63)2= {1}∪[1,2] (cid:54)= [1,1] =1(cid:63)(2(cid:63)2). 2 2 Example6. Let M = {m,a,d}and(M,·)bedefinedbythefollowingtable. · m a d m m m m a m {m,a} d d m d d Then(M,·)isaNeutroSemihypergroup. Thisisclearasm·(m·m) = m = (m·m)·mand a·(a·d) = d (cid:54)= {m,d} = (a·a)·d. Remark3. Itiswellknowninclassicalalgebraichyperstructuresthateverysemihypergroupis a hypergroupoid. This may fail to occur in NeutroHyperstructures. In Example 6, (M,·) is a NeutroSemihypergroupthatisnotaNeutroHypergroupoid. Proposition1. Every H -semigroupthatisnotasemihypergroupandhasanidempotentelement v isaNeutroSemihypergroup. Proof. Let(H,◦)beanH -semigroupwithh2 = hforsomeh ∈ H. Thenh◦(h◦h) = h = v (h◦h)◦h. Since(H,◦)isnotasemihypergroup,itfollowsthatthereexistx,y,z ∈ Hwith x◦(y◦z) (cid:54)= (x◦y)◦z. Therefore,(H,◦)isaNeutroSemihypergroup. Example7. Let M = {m,a,d}and(M,(cid:5))bedefinedbythefollowingtable. (cid:5) m a d m m {a,d} d a {a,d} d m d d m a Then (M,(cid:5)) is an H -semigroup having m as an idempotent element and hence, it is a v NeutroSemihypergroup. Symmetry2021,13,535 5of12 Remark 4. It is well known in algebraic hyperstructures that every semihypergroup is an H - v semigroup. ThismaynotholdinNeutroHyperstructures. i.e.,ANeutroSemihypergroupmaynot beaNeutroH -Semigroup. v The H -semigroup(M,(cid:5))inExample7isaNeutroSemihypergroupthatisnotNeutroH - v v Semigroup. Example8. LetZbethesetofintegersanddefine“⊕”onZ2asfollows. Forallm,n,p,q ∈Z, (m,0)⊕(0,0) = (0,0)⊕(m,0) = {(0,0),(m,0)}, (0,n)⊕(0,0) = (0,0)⊕(0,n) = {(0,0),(0,n)}, andif(n,p,q) (cid:54)= (0,0,0),(m,p,q) (cid:54)= (0,0,0) (m,n)⊕(p,q) = (p,q)⊕(m,n) = (m+p,n+q). Then(Z2,⊕)isaNeutroSemihypergroup. Thisisclearas [(1,2)⊕(1,3)]⊕(1,4) = (3,9) = (1,2)⊕[(1,3)⊕(1,4)] and [(1,0)⊕(1,0)]⊕(0,0) = {(2,0),(0,0)} (cid:54)= {(2,0),(1,0),(0,0)} = (1,0)⊕[(1,0)⊕(0,0)]. Example9. LetZbethesetofintegersanddefine“(cid:12)”onZ2asfollows. Forallm,n,p,q ∈Z,  (mp,nq) if(m,n) (cid:54)= (1,1)and(p,q) (cid:54)= (1,1);  (m,n)(cid:12)(p,q) = {(p,q),(1,1)} if(m,n) = (1,1); {(m,n),(1,1)} if(p,q) = (1,1). Then(Z2,(cid:12))isaNeutroSemihypergroup. Thisisclearas [(1,2)(cid:12)(1,3)](cid:12)(1,4) = (1,24) = (1,2)(cid:12)[(1,3)(cid:12)(1,4)] and (1,1)(cid:12)[(2,2)(cid:12)(3,3)] = {(1,1),(6,6)} (cid:54)= {(1,1),(3,3),(6,6)} = [(1,1)(cid:12)(2,2)](cid:12)(3,3). Z (cid:1) Z Example10. Let bethesetofintegersunderadditionmodulo6anddefine“ ”on asfollows. 6 6 x(cid:1)y = (x+y) mod 6forall(x,y) ∈/ {(0,3),(0,5)}, 0(cid:1)3= {0,3}, and0(cid:1)5= {0,5}. Then(Z ,(cid:1))isaNeutroSemihypergroup. Thisisclearas0(cid:1)(0(cid:1)0) = 0 = (0(cid:1)0)(cid:1)0 6 and0(cid:1)(1(cid:1)2) = {0,3} (cid:54)=3= (0(cid:1)1)(cid:1)2. Example11. Let M = {m,a,d}and(M,•)bedefinedbythefollowingtable. • m a d m a a d a {m,a} m d d d d m Then(M,•)isaNeutroH -Semigroup. Thisisclearas v [m•(m•m)]∩[(m•m)•m] = {a}∩{m,a} (cid:54)= ∅ Symmetry2021,13,535 6of12 and [m•(d•d)]∩[(m•d)•d] = {a}∩{m} = ∅. Moreover,(M,•)isaNeutroSemihypergroupasd•(d•d) = (d•d)•d. Remark5. EveryNeutroSemigroupisboth:aNeutroSemihypergroupandaNeutroH -Semigroup. v So,theresultsrelatedtoNeutroSemihypergroups(NeutroH -Semigroups)aremoregeneralthan v thatrelatedtoNeutroSemigroupsandasaresult,wecandealwithNeutroSemigroupsasaspecial caseofNeutroSemihypergroups(NeutroH -Semigroups). v Example12. LetS = {s,a,m}and(S ,· )bedefinedbythefollowingtable. 1 1 1 · s a m 1 s s m s a m a m m m m m In[6],Al-Tahanetal. provedthat (S ,· ) isaNeutroSemigroup. Thus, (S ,· )isaNeu- 1 1 1 1 troSemihypergroup. Theorem1. Let(H,◦)beaNeutroSemihypergroup(NeutroH -Semigroup)and“(cid:63)”bedefined v on H as x(cid:63)y = y◦x for all x,y ∈ H. Then (H,(cid:63)) is a NeutroSemihypergroup (NeutroH - v Semigroup). Proof. Theproofisstraightforward. Example13. LetM = {m,a,d}and(M,•)betheNeutroSemihypergroupdefinedinExample11. ByapplyingTheorem1,wegetthat(M,(cid:126))definedinthefollowingtableisaNeutroSemihypergroup andaNeutroH -Semigroup. v (cid:126) m a d m a {m,a} d a a m d d d d m Definition10. Let(H,◦)beaNeutroSemihypergroup(NeutroH -Semigroup)andS (cid:54)= ∅ ⊆ H. v ThenSisaNeutroSubsemihypergroup(NeutroH -Subsemigroup)of Hif(S,◦)isaNeutroSemi- v hypergroup(NeutroH -Semigroup). v Remark 6. Let (H,◦) be a NeutroSemihypergroup (NeutroH -Semigroup) and S (cid:54)= ∅ ⊆ H. v Unlikethecaseinalgebraichyperstructures(Remark2),provingthata◦b ⊆ Sforalla,b ∈ Sdoes notimplythatSisaNeutroSubsemihypergroup(NeutroH -Subsemigroup)ofH. v As an illustration of Remark 6, 0(cid:63)0 = {0} ⊆ {0} in Example 5 but {0} is not a R NeutroSubsemihypergroupof . Definition11. Let(H,◦)beaNeutroSemihypergroup(NeutroH -Semigroup)andS (cid:54)= ∅ ⊆ H v beaNeutroSubsemihypergroup(NeutroH -Subsemigroup). Then v (1) SisaNeutroLeftHyperidealofHifthereexistsx ∈ Ssuchthatr◦x ⊆ Sforallr ∈ H. (2) SisaNeutroRightHyperidealofSifthereexistsx ∈ Ssuchthatx◦r ⊆ Sforallr ∈ H. (3) S isaNeutroHyperidealof H ifthereexists x ∈ S suchthatr◦x ⊆ S and x◦r ⊆ S for allr ∈ H. ANeutroSemihypergroup(NeutroH -Semigroup)iscalledsimpleifithasnoproper v NeutroSubsemihypergroups(NeutroH -Subsemigroups). v Symmetry2021,13,535 7of12 Example14. Let(A,+)betheNeutroSemihypergroupdefinedinExample4. Then Aissimple. Thisisclearas{0}and{1}aretheonlyoptionsforanypossibleproperNeutroSubsemihypergroup and({0},+)and({1},+)areAntiHypergroupoids. Example15. Let(M,•)betheNeutroSemihypergroupdefinedinExample11. Then{m,a}isa NeutroSubsemihypergroupof M. Example16. Let(Z2,⊕)betheNeutroSemihypergroupdefinedinExample8, M = {(x,0) : 1 x ∈Z},and M = {(0,x) : x ∈Z}. Then M ,M areNeutroSubsemihypergroupsofZ2. 2 1 2 Remark7. TheintersectionofNeutroSubsemihypergroupsmayfailtobeaNeutroSubsemihypergroup. ThisisclearfromExample16as{(0,0)} = M ∩M isnotaNeutroSubsemihypergroupofZ2. 1 2 Lemma 1. Let (H,◦) be a NeutroSemihypergroup (NeutroH -Semigroup) and A,B be hyper- v groupoids. If A,BareNeutroSubsemihypergroups(NeutroH -Subsemigroups)ofHthen A∪Bis v aNeutroSubsemihypergroup(NeutroH -Subsemigroup)ofH. v Proof. Let A,B be NeutroSubsemihypergroups. Since A and B are hypergroupoids, it followsthat“◦”isNeutroAssociativeonbothofAandB. Thelatterimpliesthatthereexist x,y,z,a,b,c,e, f,g ∈ A ⊆ A∪Bsatisfyingsome(orall)ofthefollowingconditionsina waythat(T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. T: x◦(y◦z) = (x◦y)◦z; 2. F: a◦(b◦c) (cid:54)= (a◦b)◦c; 3. I: e◦(f ◦g)isindeterminateor(e◦ f)◦gisindeterminateorwecannotfindife◦(f ◦g) and(e◦ f)◦gareequal. Therefore, A∪B is a NeutroSubsemihypergroup of H. The proof of (NeutroH - v Subsemigroupisdonesimilarly. Example17. Let(Z2,(cid:12))betheNeutroSemihypergroupdefinedinExample9, N = {(x,y) ∈ 1 Z2 : x,y ≥ 1}∪{(0,0)}, and N = {(x,y) ∈ Z2 : x,y ≤ 1}∪{(0,0)}. Then N ,N are 2 1 2 NeutroHyperideals of Z2. We show that N is a NeutroHyperideal of Z2 and N may be done 1 2 similarly. Since [(1,2)(cid:12)(1,3)](cid:12)(1,4) = (1,24) = (1,2)(cid:12)[(1,3)(cid:12)(1,4)] and (1,1)(cid:12)[(2,2)(cid:12)(3,3)] = {(1,1),(6,6)} (cid:54)= {(1,1),(3,3),(6,6)} = [(1,1)(cid:12)(2,2)](cid:12)(3,3), itfollowsthatN isaNeutroSubsemihypergroupofZ2. Having(0,0) ∈ N andforall(r,s) ∈Z2, 1 1 (cid:40) (0,0) if(r,s) (cid:54)= (1,1); (r,s)(cid:12)(0,0) = (0,0)(cid:12)(r,s) = ⊆ N 1 {(0,0),(1,1)} otherwise. impliesthatN isaNeutroHyperidealofZ2. 1 Remark8. TheintersectionofNeutroHyperidealsmayfailtobeaNeutroHyperideal. Thisisclear fromExample17as{(0,0),(1,1)} = N ∩N isnotaNeutroHyperidealofZ2. 1 2 Lemma 2. Let (H,◦) be a NeutroSemihypergroup (NeutroH -Semigroup) and A,B be hyper- v groupoids. If A,BareNeutroLeftHyperideals(NeutroRightHyperidealsorNeutroHyperideals)of H. Then A∪BisaNeutroLeftHyperideal(NeutroRightHyperidealorNeutroHyperideal)ofH. Proof. Let A,BbeNeutroLeftHyperidealsofH. Lemma1assertsthat A∪BisaNeutro- Subsemihypergroup(NeutroH -Subsemigroup)ofH. Since AisaNeutroLeftHyperideal v Symmetry2021,13,535 8of12 of H, it follows that there exists a ∈ A such that r◦a ⊆ A for all r ∈ H. The latter impliesthatthereexistsa ∈ A∪Bsuchthatr◦a ⊆ A∪Bforallr ∈ H. Thus, A∪Bisa NeutroLeftHyperidealofH. Definition12. Let(H,◦),(H(cid:48),(cid:63))beNeutroSemihypergroups(NeutroH -Semigroups)andφ : v H → H(cid:48) beafunction. Then (1) φiscalledNeutroHomomorphismifφ(x◦y) = φ(x)(cid:63)φ(y)forsomex,y ∈ A. (2) φiscalledNeutroIsomomorphismifφisabijectiveNeutroHomomorphism. (3) φiscalledNeutroStrongHomomorphismifforallx,y ∈ A,φ(x◦y) = φ(x)(cid:63)φ(y)when x◦y ⊆ H, φ(x)(cid:63)φ(y) (cid:42) H(cid:48) when x◦y (cid:42) H, and φ(x)(cid:63)φ(y) is indeterminate when x◦yisindeterminate. (4) φiscalledNeutroStrongIsomomorphismifφisabijectiveNeutroOrderedStrongHomomor- phism. Inthiscasewesaythat(H,◦) ∼= (H(cid:48),(cid:63)). SI Example 18. Let (M,•) and (M,(cid:126)) be the NeutroSemihypergroups defined in Examples 11 and 13, respectively. Then (M,•) ∼= (M,(cid:126)) as φ : (M,•) → (M,(cid:126)) is a SI NeutroStongIsomorphism. Here, φ(m) = a,φ(a) = m, andφ(d) = d. ∼ Theorem2. Therelation“= ”isanequivalencerelationonthesetofNeutroSemihypergroups SI (NeutroH -Semigroups). v ∼ Proof. Bytakingtheidentitymap,wecaneasilyprovethat“= ”isareflexiverelation. SI Let A ∼= B. Then there exists a NeutroStrongIsomorphism φ : (A,(cid:63)) → (B,(cid:126)). We SI provethattheinversefunctionφ−1 : B → AofφisaNeutroStrongIsomorphism. Forall b ,b ∈ B,thereexista ,a ∈ Awithφ(a ) = b andφ(a ) = b . Wehave 1 2 1 2 1 1 2 2 φ−1(b (cid:126)b ) = φ−1(φ(a )(cid:126)φ(a )) 1 2 1 2 Weconsiderthefollowingcasesforφ(a )(cid:126)φ(a ). 1 2 Caseφ(a )(cid:126)φ(a ) ⊆ B. HavingφaNeutroStrongIsomorphismandφ(a )(cid:126)φ(a ) ⊆ 1 2 1 2 Bimplythata (cid:63)a ⊆ Aandhence, 1 2 φ−1(b (cid:126)b ) = φ−1(φ(a )(cid:126)φ(a )) = φ−1(φ(a (cid:63)a )) = a (cid:63)a = φ−1(b )(cid:63)φ−1(b ). 1 2 1 2 1 2 1 2 1 2 Caseφ(a )(cid:126)φ(a )(cid:42) B.Suppose,togetcontradiction,thatφ−1(φ(a ))(cid:63)φ−1(φ(a )) = 1 2 1 2 a (cid:63)a ⊆ Aorindeterminate. ThenbyusingourhypothesisthatφisNeutroStrongIsomor- 1 2 phism,wegetthatφ(a )(cid:126)φ(a ) ⊆ Borindeterminate. 1 2 Caseφ(a )(cid:126)φ(a )isindeterminate. Suppose,togetcontradiction,thatφ−1(φ(a ))(cid:63) 1 2 1 φ−1(φ(a )) = a (cid:63)a ⊆ A or a (cid:63)a (cid:42) A. Then by using our hypothesis that φ is Neu- 2 1 2 1 2 troStrongIsomorphism,wegetthatφ(a )(cid:126)φ(a ) ⊆ Borφ(a )(cid:126)φ(a )(cid:42) B. 1 2 1 2 ∼ ∼ ∼ ∼ Thus, B = Aandhence,“= ”isasymmetricrelation. Let A = BandB = C. SI SI SI SI ThenthereexistNeutroStrongIsomorphismsφ : A → Bandψ : B →C. Onecaneasilysee thatthecompositionfunctionψ◦φ : A → CofψandφisaNeutroStrongIsomorphism. ∼ ∼ Thus, A = Candhence,“= ”isatransitiverelation. SI SI Lemma 3. Let (H,◦), (H(cid:48),(cid:63)) be NeutroSemihypergroups (NeutroH -Semigroups) and φ : v H → H(cid:48) be an injective NeutroStrongHomomorphism. If M ⊂ H is a NeutroSubsemihyper- group (NeutroH -Subsemigroup) of H then φ(M) is a NeutroSubsemihypergroup (NeutroH - v v Subsemigroup)ofH(cid:48). Proof. Let MbeaNeutroSubsemihypergroupof H. If“◦”isNeutroHyperoperationon Mthenitisclearthat“(cid:63)”isNeutroHyperoperationonφ(M). If“◦”isNeutroAssociative Symmetry2021,13,535 9of12 thenthereexistx,y,z,a,b,c,d,e, f ∈ Msatisfyingsome(orall)ofthefollowingconditions inawaythat(T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. T: x◦(y◦z) = (x◦y)◦z; 2. F: a◦(b◦c) (cid:54)= (a◦b)◦c; 3. I: e◦(f ◦g)isindeterminateor(e◦ f)◦gisindeterminateorwecannotfindife◦(f ◦g) and(e◦ f)◦gareequal. ThelatterandhavingφaninjectiveNeutroStrongHomomorphismimplythatsome (orall)ofthefollowingconditionsaresatisfiedinawaythat(T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. T: φ(x)(cid:63)(φ(y)(cid:63)φ(z)) = (φ(x)(cid:63)φ(y))(cid:63)φ(z); 2. F: φ(a)(cid:63)(φ(b)(cid:63)φ(c)) (cid:54)= (φ(a)(cid:63)φ(b))(cid:63)φ(c); 3. I: φ(e)(cid:63)(φ(f)(cid:63)φ(g))isindeterminateor(φ(e)(cid:63)φ(f))(cid:63)φ(g)isindeterminateorwe cannotfindifφ(e)(cid:63)(φ(f)(cid:63)φ(g))and(φ(e)(cid:63)φ(f))(cid:63)φ(g)areequal. Thus, φ(M) is a NeutroSubsemihypergroup. The proof that φ(M) is a NeutroH - v SubsemigroupofH(cid:48) isdonesimilarly. Example 19. Let (M,•) and (M,(cid:126)) be the NeutroSemihypergroups defined in Examples 11 and 13, respectively. Example 15 asserts that {m,a} is a NeutroSubsemihyper- group of (M,•). Using Example 18 and Lemma 3, we get that {a,m} = {φ(m),φ(a)} is a NeutroSubsemihypergroupof(M,(cid:126)). Lemma4. Let(H,◦),(H(cid:48),(cid:63))beNeutroSemihypergroups(NeutroH -Semigroups)andφ : H → v H(cid:48) be a NeutroStrongIsomomorphism. If N ⊆ H(cid:48) is a NeutroSubsemihypergroup (NeutroH - v Subsemigroup) of H(cid:48) then φ−1(N) is a NeutroSubsemihypergroup (NeutroH -Subsemigroup) v ofH. Proof. Let N ⊂ H(cid:48) be a NeutroSubsemihypergroup of H(cid:48). If “(cid:63)” is NeutroHyperop- eration on N then it is clear that “◦” is NeutroHyperoperation on φ−1(N). Let “(cid:63)” be NeutroAssociative. HavingφisanontoNeutroStrongHomomorphismimpliesthatthere exist φ(x),φ(y),φ(z),φ(a),φ(b),φ(c),φ(d),φ(e),φ(f) ∈ N satisfyingsome(orall)ofthe followingconditionsinawaythat(T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. T: φ(x)(cid:63)(φ(y)(cid:63)φ(z)) = (φ(x)(cid:63)φ(y))(cid:63)φ(z); 2. F: φ(a)(cid:63)(φ(b)(cid:63)φ(c)) (cid:54)= (φ(a)(cid:63)φ(b))(cid:63)φ(c); 3. I: φ(e)(cid:63)(φ(f)(cid:63)φ(g))isindeterminateor(φ(e)(cid:63)φ(f))(cid:63)φ(g)isindeterminateorwe cannotfindifφ(e)(cid:63)(φ(f)(cid:63)φ(g))and(φ(e)(cid:63)φ(f))(cid:63)φ(g)areequal. HavingφbeaninjectiveNeutroStrongHomomorphismimpliesthatthereexistx,y,z,a, b,c,d,e,f ∈ φ−1(N) satisfying some (or all) of the following conditions in a way that (T,I,F) ∈/ {(1,0,0),(0,0,1)}. 1. T: x◦(y◦z) = (x◦y)◦z; 2. F: a◦(b◦c) (cid:54)= (a◦b)◦c; 3. I: e◦(f ◦g)isindeterminateor(e◦ f)◦gisindeterminateorwecannotfindife◦(f ◦g) and(e◦ f)◦gareequal. Thus, φ−1(N) is a NeutroSubsemihypergroup of H. The proof that φ−1(N) is a NeutroH -SubsemigroupofHmaybedonesimilarly. v Theorem3. Let(H,◦),(H(cid:48),(cid:63))beNeutroSemihypergroups(NeutroH -Semigroups)andφ : H → v H(cid:48) be a NeutroStrongIsomorphism. Then M ⊆ H is a NeutroSubsemihypergroup (NeutroH - v Subsemigroup)ofHifandonlyifφ(M)isaNeutroSubsemihypergroup(NeutroH -Subsemigroup) v ofH(cid:48). Proof. TheprooffollowsfromTheorem2andLemmas3and 4. Corollary 1. Let (H,◦), (H(cid:48),(cid:63)) be NeutroSemihypergroups (NeutroH -Semigroups) and φ : v H → H(cid:48) beaNeutroStrongIsomorphism. ThenHissimpleifandonlyifH(cid:48) issimple. Symmetry2021,13,535 10of12 Proof. TheprooffollowsfromTheorem3. Lemma5. Let(H,◦),(H(cid:48),(cid:63))beNeutroSemihypergroups(NeutroH -Semigroups)andφ : H → v H(cid:48) beaNeutroStrongIsomorphism. If M ⊆ HisaNeutroLeftHyperideal(NeutroRightHyperideal or NeutroHyperideal) of H then φ(M) is a NeutroLeftHyperideal (NeutroRightHyperideal or NeutroHyperideal)ofH(cid:48). Proof. Let M ⊆ H be a NeutroLeftHyperideal of H. Lemma 3 asserts that φ(M) is a NeutroSubsemihypergroup(NeutroH -Subsemigroup)of H(cid:48). Having MaNeutroLeftHy- v peridealofHimpliesthatthereexistsx ∈ Msuchthatr◦x ⊆ Mforallr ∈ H. Havingφan ontoNeutroStrongHomomorphismimpliesthatφ(r)(cid:63)φ(x) ⊆ φ(M)foralls = φ(r) ∈ H(cid:48). Thus,φ(M)isaNeutroLeftHyperidealof H(cid:48). TheproofsofNeutroRightHyperidealand NeutroHyperidealaredonesimilarly. Lemma6. Let(H,◦),(H(cid:48),(cid:63))beNeutroSemihypergroups(NeutroH -Semigroups)andφ : H → v H(cid:48) beaNeutroStrongIsomorphism. IfN ⊆ H(cid:48) isaNeutroLeftHyperideal(NeutroRightHyperideal orNeutroHyperideal)ofH(cid:48) thenφ−1(N)isaNeutroLeftHyperideal(NeutroRightHyperidealor NeutroHyperideal)ofH. Proof. Let N ⊆ H(cid:48) beaNeutroLeftHyperidealof H. Lemma3assertsthat φ−1(N) isa NeutroSubsemihypergroup(NeutroH -Subsemigroup)ofH. HavingNaNeutroLeftHy- v perideal of H(cid:48) implies that there exists y ∈ N such that s(cid:63)y ⊆ N for all s ∈ H(cid:48). Since φ is an NeutroStrongHomomorphism, it follows that φ(r◦x) ⊆ N for all r ∈ H where y = φ(x). Thelatterimpliesthatthereexistsx ∈ φ−1(N)withr◦x ⊆ φ−1(N)forallr ∈ H. Thus,φ−1(N)isaNeutroLeftHyperidealofH. TheproofsofNeutroRightHyperidealand NeutroHyperidealaredonesimilarly. Theorem 4. Let (H,◦), (H(cid:48),(cid:63)) be NeutroSemihypergroups (NeutroH -Semigroups) and φ : v H → H(cid:48) be a NeutroStrongIsomorphism. Then M ⊆ H is a NeutroLeftHyperideal (Neu- troRightHyperideal or NeutroHyperideal) of H if and only if φ(M) is a NeutroLeftHyperideal (NeutroRightHyperidealorNeutroHyperideal)ofH(cid:48). Proof. TheprooffollowsfromTheorem2,Lemmas5and 6. Let H beanynon-emptysetforallα ∈ Γand“· ”beahyperoperationon H . We α α α define“◦”on∏α∈ΓHα asfollows: Forall(xα),(yα) ∈ ∏α∈ΓHα,(xα)◦(yα) = {(tα) : tα ∈ x · y }. α α α Theorem5. Let(H ,◦ )and(H ,◦ )behypergroupoids. Then(H ×H ,◦)isaNeutroSemi- 1 1 2 2 1 2 hypergroup (NeutroH -Semigroup) if and only if either (H ,◦ ) is a NeutroSemihypergroup v 1 1 (NeutroH -Semigroup)or(H ,◦ )isaNeutroSemihypergroup(NeutroH -Semigroup)orbothare v 2 2 v NeutroSemihypergroups(NeutroH -Semigroups). v Proof. Theproofisstraightforward. Example20. Let(R,(cid:62))bethesemihypergroupdefinedas: x(cid:62)y = {x,y}forallx,y ∈ Rand (M,·)betheNeutroSemihypergroupdefinedinExample6. Thenthefollowingaretrue. 1. (R×M,◦)isaNeutroSemihypergroup, 2. (M×R,◦)isaNeutroSemihypergroup,and 3. (M×M,◦)isaNeutroSemihypergroup. Inwhatfollows,wepresentawaytoconstructanewNeutroSemihypergroup(NeutroH - v Semigroup)fromanexistingone. Thistoolisofgreatimportancetoprovethatforanypos- itiveintegern ≥2,thereexistsatleastoneNeutroSemihypergroup(NeutroH -Semigroup) v ofordern.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.