ebook img

On some inequalities for submanifolds of Bochner Kaehler manifolds PDF

0.11 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On some inequalities for submanifolds of Bochner Kaehler manifolds

On some inequalities for submanifolds of Bochner Kaehler manifolds Mehraj AhmadLonea,∗,MohammedJamalib, MohammadHasan Shahidc aDepartmentofMathematics,CentralUniversityofJammu,Jammu-180011,India. bDepartmentofMathematics,Al-FalahUniversity,Haryana-121004,India. cDepartmentofMathematics,JamiaMilliaIslamia,NewDelhi-110025,India. 6 1 Abstract 0 2 B.Y.ChenestablishedsharpinequalitiesbetweencertainRiemannianinvariantsandthesquared r p mean curvature for submanifolds in real space form as well as in complex space form. In this A paperwe generalizeChen inequalitiesforsubmanifoldsof BochnerKaehler manifolds. More- 6 over,weconsiderCR-warpedproductsubmanifoldsofBochnerKaehlermanifoldandestablish 2 an inequalityforscalar curvature. ] G Keywords: Bochner Kaehlermanifold,CR-warped product,slantsubmanifolds,Einstein D manifold,Chen inequality. . h 2010MathematicsSubject Classification: 53C15,53C25, 53C40. t a m [ 1. Introduction 2 v 0 In [6], B. Y. Chen established sharp inequality for a submanifold in a real space form in- 3 1 volvingintrinsicinvariantsofthesubmanifoldsandsquaredmeancurvature,themainextrinsic 4 invariant and in [3], B. Y. Chen obtained the same inequality for complex space form. After 0 . 1 that many research articles [7, 8, 9] havebeen publishedby different authors for different sub- 0 manifoldsandambientspacesincomplexaswellasincontactversion. Inthisarticleweobtain 6 1 theseinequalitiesforsubmanifoldsinBochner Kaehlermanifold. : v In [2] Bishop and O’Neil initiated the thoery of warped product submanifold as a gener- i X alization of pseudo-Riemannian product manifold. In [5] Chen introduced the notion of CR- r a warped products. In This paper we study the CR-warped product submanifolds of Bochner Kaehlermanifolds. 2. Preliminaries LetW bean-dimensionalsubmanifoldofaBochnerKaehlermanifoldW ofdimension2m. Let (cid:209) and (cid:209) be the Levi-Civita connection on W and W respectively. Let J be the complex ∗Correspondingauthor Emailaddress:[email protected](MehrajAhmadLone) structureon W . Then theGaussand Weingartenformulasare givenrespectivelyby (cid:209) Y =(cid:209) Y +w (X,Y), (1) X X (cid:209) V =−B X+(cid:209) ⊥Y, (2) X V X for all X,Y tangent to W and vector field V normal to W . Where w , (cid:209) ⊥, B denotes the X V second fundamental form, normal connection and theshape operator respectively. The second fundamentalform andtheshapeoperatorarerelated by g(w (X,Y),V)=g(B X,Y). (3) V Let RbethecurvaturetensorofW ,Then theGaussequationisgivenby[6] R(X,Y,Z,W)=R(X,Y,Z,W)+g(w (X,W),w (Y,Z))−g(w (X,Z),w (Y,W)) foranyvectorfields X,Y,Z,W tangenttoW . ThecurvaturetensorofaBochner KaehlermanifoldW isgivenby[10] R(X,Y,Z,W) = L(Y,Z)g(X,W)−L(X,Z)g(Y,W)+L(X,W)g(Y,Z) −L(Y,W)g(X,Z)+M(X,W)g(JX,W)−M(X,Z)g(JY,W) +M(X,W)g(JY,Z)−M(Y,W)g(JX,Z) −2M(X,Y)g(JZ,W)−2M(Z,W)g(JX,Y) (4) where 1 r L(Y,Z)= Ric(Y,Z)− g(Y,Z), (5) 2n+4 2(2n+2)(2n+4) M(Y,Z)=−L(Y,JZ), (6) L(Y,Z)=L(Z,Y), L(Y,Z)=L(JY,JZ), L(Y,JZ)=−L(JY,Z), (7) Ricandr are theRicci tensorand scalarcurvatureofW . Letx∈W and{e ,...,e }beanorthonormalbasisofthetangentspaceT W and{e ,...,e } 1 n x n+1 2m betheorthonormalbasisofT⊥W . Wedenoteby H , themean curvaturevectorat x, that is H (x)= 1 (cid:229) n w (e,e), (8) i i n i=1 Also,weset w r =g(w (e,e ),e ), i, j∈{1,...,n}, r∈{n+1,...,2m} ij i j r 2 and n kw k2 = (cid:229) (w (e,e ),w (e,e )). (9) i j i j i,j=1 Foranyx∈W andX ∈T W ,weputJX =TX+FX,whereTX andFX arethetangentialand x normalcomponentsofJX,respectively. We denoteby n kTk2 = (cid:229) g2(Te,e ). i j i,j=1 Let W bea Riemannianmanifold. Denoteby K (p )thesectionalcurvatureofW oftheplane section p ⊂T W ,x∈W . The scalarcurvature r for an orthonormalbasis{e ,e ,...,e } of the x 1 2 n tangentspaceT W at x isdefined by x r (x)= (cid:229) K(e ∧e ). i j i<j Lemma 2.1. [6] Let n≥2 andx ,x ,...,x , b bereal numberssuchthat 1 2 n n n ((cid:229) x)2 =(n−1)((cid:229) x2+b) i i i=1 i=1 then2x x ≥b, with equalityholdsif andonlyif 1 2 x +x =x =...=x . 1 2 3 n In [1] A. Bejancu introduced the notion of CR-submanifolds, which is the generalization of invariant and anti-invariant submanifolds. In [4] B. Y. Chen introduced the notion of slant submanifoldsas ageneralizationofCR-submanifolds. Definition 2.1. A submanifold W of a Bochner Kaehler manifold W is said to be a slant submanifold if for any x∈W and X ∈T W , the angle between JX and T W is constant, i.e., x x theangledoesnotdepend onthechoiceofx∈W andX ∈T W . Theangleq ∈[0,p ]iscalled x 2 theslantangleofW inW . Invariantandanti-invariantsubmanifoldsaretheslantsubmanifoldswithslantangleq =0 and q = p respectively and when 0 < q < p , then slant submanifold is called proper slant 2 2 submanifold. Definition 2.2. Let (N ,g ) and (N ,g ) be two Riemannian manifolds and f, a positive dif- 1 1 2 2 ferentiable function on N . The warped product of N and N is the Riemannian manifold 1 1 2 M =N ×N =(N ×N ,g),whereg=g + f2g 1 2 1 2 1 2 Definition 2.3. A Riemannian manifold W is said to be Einstein manifold if the Ricci tensor isproportionaltothemetrictensor, thatis,Ric(X,Y)=l g(X,Y) forsomeconstantl . 3 3. B. Y.Chen inequalities In this section, we obtain B. Y. Chen inequalities for submanifolds of a Bochner Kaehler manifolds. First wehave, Theorem 3.1. Let W be a submanifold of a Bochner Kaehler manifold W . Then, for each pointx∈W and eachplanesectionp ⊂T W , we have x 5n2+31n+26+3kTk2 n2(n−2) 6 K (p )≥ r − kH k2− Ric(e,Je )g(e,Je ). i j i j 2(2n+2)(2n+4) 2(n−1) 2(2n+4) (cid:18) (cid:19) (10) Equality holds if and only if there exists an orthonormal basis {e ,e ,...,e } of T W and or- 1 2 n x thonormalbasis{e ,e ,...,e }ofT⊥W suchthattheshapeoperatorstakesthefollowing n+1 n+2 2m forms a 0 0 ··· 0 0 b 0 ··· 0   B = 0 0 x ··· 0 ,a +b =x (11) n+1   ... ... ... ... ...     0 0 0 ··· x      and w r w r 0 ··· 0 11 12 w r −w r 0 ··· 0  12 11  B = 0 0 0 ··· 0 ,r=n+2,...,2m. (12) r  ... ... ... ... ...      0 0 0 ··· 0     Proof. UsingGaussequation,theRiemanniancurvaturetensorofW isgivenby R(X,Y,Z,W) = L(Y,Z)g(X,W)−L(X,Z)g(Y,W)+L(X,W)g(Y,Z) −L(Y,W)g(X,Z)+M(Y,Z)g(JX,W)−M(X,Z)g(JY,W) −M(X,W)g(JY,Z)−M(Y,W)g(JX,Z)−2M(X,Y)(JZ,W) −2M(Z,W)g(JX,Y)+g(w (X,W),w (Y,Z))−g(w (X,Z),w (Y,W)) foranyX, Y, Z, W∈TW . (cid:229) R(e,e ,e ,e) = L(e ,e )g(e,e)−L(e ,e )g(e ,e)+L(e,e)g(e ,e ) i j j i j j i i i j j i i i j j i,j −L(e ,e)g(e,e )+M(e ,e )g(Je,e)−M(e,e )g(Je ,e) j i i j j j i i i j j i −M(e,e)g(Je ,e )−M(e ,e)g(Je,e )−2M(e,e )(Je ,e) i i j j j i i j i j j i −2M(e ,e)g(Je,e )+g(w (e,e),w (e ,e ))−g(w (e,e ),w (e ,e)) j i i j i i j j i j j i 4 = L(e ,e )g(e,e)−L(e,e )g(e ,e)+L(e ,e)g(e ,e ) j j i i i j j i i i j j −L(e ,e)g(e,e )−L(e ,Je )g(Je,e)+L(e,Je )g(Je ,e) j i i j j j i i i j j i +L(e ,Je)g(Je ,e )+L(e ,Je)g(Je,e )+2L(e,Je )(Je ,e) i i j j j i i j i j j i +2L(e ,Je)g(Je,e )+g(w (e,e),w (e ,e ))−g(w (e,e ),w (e ,e)). j i i j i i j j i j j i (13) Using(7), (8)and (9)in(13), wehave (cid:229) R(e,e ,e ,e) = 2nL(e,e)−2L(e,e )g(e,e )+6L(e,Je )g(e,Je ) i j j i i i i j i j i j i j i,j +n2kH k2−kw k2. Which simplifiesto, 2r = 2(n−1)L(e,e)+6L(e,Je )g(e,Je )+n2kH k2−kw k2. (14) i i i j i j Combining(5)and (14), wehave 2(n−1) 2(n−1)r 2r = Ric(e,e)− g(e,e) i i i i 2n+4 2(2n+2)(2n+4) 6 6r + Ric(e,Je )g(e,Je )− g(e,Je )g(e,Je ) i j i j i j i j 2n+4 2(2n+2)(2n+4) +n2kH k2−kw k2. or 6n2+2n−8−6kTk2 6 2r = r + Ric(e,Je )g(e,Je ) i j i j 2(2n+2)(2n+4) 2n+4 +n2kH k2−kw k2. or 6n2+2n−8−6kTk2 6 (2− )r = Ric(e,Je )g(e,Je )+n2kH k2−kw k2. i j i j 2(2n+2)(2n+4) 2n+4 Denotingby 6n2+2n−8−6kTk2 n2(n−2) 6 e =(2− )r − kH k2− Ric(e,Je )g(e,Je ), i j i j 2(2n+2)(2n+4) n−1 2n+4 weobtain n2(n−2) e =n2kH k2−kw k2− kH k2. n−1 or n2kH k2 =(n−1)(e +kw k2). (15) 5 Forchosen orthonormalbasis,theaboveequationtakestheform n n 2m n ((cid:229) w n+1)2 =(n−1) (cid:229) (w n+1)2+(cid:229) (w n+1)2+ (cid:229) (cid:229) (w )2+e . (16) ii ii ij ij i=1 "i=1 i6=j r=n+1i,j=1 # Usinglemma1 in(16), wehave 2m n 2w n+1w n+1 ≥ (cid:229) (w n+1)2+ (cid:229) (cid:229) (w r)2+e . (17) 11 22 ij ij i6=j r=n+1i,j=1 On theotherhand, fromGauss equationweobtain K (p )=L(e ,e )+L(e ,e )+g(w (e ,e ),w (e ,e )−g(w (e ,e ),w (e ,e )). (18) 2 2 1 1 1 1 2 2 1 2 2 1 Combing(5)and (18), we derive K (p )= 4n+3 r +w n+1w n+1+ (cid:229)2m w r w r − (cid:229)2m (w r )2. (19) (2n+2)(2n+4) 11 22 11 22 12 r=n+2 r=n+1 Incorporating(17)in (19), wearriveat theinequality K (p ) ≥ 1 (cid:229) (w n+1)2+1 (cid:229)2m (cid:229) n (w r)2+1e 2 ij 2 ij 2 i6=j r=n+1i,j=1 + 4n+3 r + (cid:229)2m w r w r − (cid:229)2m (w r )2. (2n+2)(2n+4) 11 22 12 r=n+2 r=n+1 Which impliesthat 4n+3 1 K (p )≥ r + e . (2n+2)(2n+4) 2 or 5n2+31n+26+3kTk2 n2(n−2) 6 K (p )≥( )r − kH k2− Ric(e,Je )g(e,Je ). i j i j 2(2n+2)(2n+4) 2(n−1) 2(2n+4) (20) Iftheequalityin (10)at a point p holds,then theinequality(20)becomeequality. In thiscase, wehave w n+1 =w n+1 =w n+1 =0, i6= j>2, 1j 2j ij w r =0,∀i6= j, i, j=3,...,2m, r=n+1,...,2m, ij   w r +w r =0,∀r=n+2,...,2m,  11 22 w n+2+w n+1 =...=w m +w m =0.  11 22 11 22  Now, if we choose e ,e such that w n+1= 0 and we denote by a = w r ,b = w r , x =  1 2 12 11 22 w n+1 = ... = w r . Therefore by choosing the suitable orthonormal basis the shape operators 33 33 takethedesiredforms. 6 We concludethefollowingcorollaryfrom thistheorem. Corollary 3.2. Let W be a submanifold of a Bochner Kaehler manifold W which is Einstein. Then, foreach pointx∈W andeach planesectionp ⊂T W , wehave x 5n2+31n+26+3kTk2 n2(n−2) 6l K (p )≥( )r − kH k2− kTk2. 2(2n+2)(2n+4) 2(n−1) 2(2n+4) Theequalityatapointx∈W holdsiffthereexistsanorthonormalbasis{e ,e ,...,e }ofT W 1 2 n x and orthonormal basis {e ,e ,...,e } of T⊥W such that shape operators of W in W at n+1 n+2 2m xhavetheforms(11)and(12). Similarly, in case if W is a slant submanifoldof a Bochner Kaehler manifoldW . We have thefollowingtheorem Theorem 3.3. Let W be a slant submanifold of a Bochner Kaehler manifold W . Then, for each pointx∈W andeach planesectionp ⊂T W , wehave x 5n2+31n+26+3cos2q n2(n−2) 6 K (p )≥( )r − kH k2− Ric(e,Je )cosq . i j 2(2n+2)(2n+4) 2(n−1) 2(2n+4) Equality holds if and only if there exists an orthonormal basis {e ,e ,...,e } of T W and or- 1 2 n x thonormalbasis{e ,e ,...,e }ofT⊥W suchthattheshapeoperatortakesthefollowing n+1 n+2 2m forms a 0 0 ··· 0 0 b 0 ··· 0   B = 0 0 x ··· 0 ,a +b =x (21) n+1   ... ... ... ... ...     0 0 0 ··· x      and w r w r 0 ··· 0 11 12 w r −w r 0 ··· 0  12 11  B = 0 0 0 ··· 0 ,r=n+2,...,2m. (22) r    ... ... ... ... ...      0 0 0 ··· 0     From thistheorem,followingcorollaries can beeasilydeduced. Corollary 3.4. Let W be a slant submanifold of a Bochner Kaehler manifold W , which is Einstein. Then, for eachpointx∈W and eachplanesectionp ⊂T W , we have x 5n2+31n+26+3cos2q n2(n−2) 6l K (p )≥( )r − kH k2− cos2q . 2(2n+2)(2n+4) 2(n−1) 2(2n+4) 7 Theequalityholdsatapointx∈W ifandonlyifthereexistsanorthonormalbasis{e ,e ,...,e } 1 2 n of T W and orthonormal basis {e ,e ,...,e } of T⊥W such that shape operators of W x n+1 n+2 2m inW atx havetheforms(21)and (22). Corollary 3.5. Let W be a invariant submanifold of a Bochner Kaehler manifold W . Then, foreach pointx∈W andeach planesectionp ⊂T W , wehave x 5n2+31n+26+3 n2(n−2) 6 K (p )≥( )r − kH k2− Ric(e,Je ). i j 2(2n+2)(2n+4) 2(n−1) 2(2n+4) Theequalityatapointx∈W holdsiffthereexistsanorthonormalbasis{e ,e ,...,e }ofT W 1 2 n x and orthonormal basis {e ,e ,...,e } of T⊥W such that shape operators of W in W at n+1 n+2 2m xhavetheforms(21)and(22). Corollary 3.6. Let W be a anti-invariant submanifold of a Bochner Kaehler manifold W . Then, foreach pointx∈W andeach planesectionp ⊂T W , wehave x 5n2+31n+26 n2(n−2) K (p )≥( )r − kH k2. 2(2n+2)(2n+4) 2(n−1) Theequalityatapointx∈W holdsiffthereexistsanorthonormalbasis{e ,e ,...,e }ofT W 1 2 n x and orthonormal basis {e ,e ,...,e } of T⊥W such that shape operators of W in W at n+1 n+2 2m xhavetheforms(21)and(22). 4. Warpedproduct ofCR-submanifolds ofBochner Kaehlermanifolds LetW =W × W bethewarpedproductCR-submanifoldsofBochnerKaehlermanifold T f ⊥ W suchthattheinvariantdistributionisD=TW andanti-invariantdistributionisD⊥=TW , T ⊥ where f :W −→R. Then themetricg onW isgivenby [5] T g(X,Y)=hp X,p Yi+(f ◦p )2hs X,s Yi ∗ ∗ ∗ ∗ wherep and s are theprojectionmapsfromW ontoW and W respectively. T ⊥ It iseasy to seethat TW =D⊕D⊥ and T⊥W =JD⊥⊕n , (23) wheren is theorthogonaldistributionto JD⊥ inthenormalbundleT⊥W . From (23), wecan write w (X,Y)=w JD⊥(X,Y)+w n (X,Y) Alsoforwarped product submanifoldW ofW ,wehave[5] X(f) (cid:209) Z =X(logf)Z= Z (24) X f 8 foranyvectorfields X ∈D and Z ∈D⊥. Further, we can decompose((cid:209) J)Y intothetangentialand normalcomponentsasunder X ((cid:209) J)Y =P Y +Q Y (25) X X X whereP Y and Q Y denotes thetangentialand normalcomponentsof((cid:209) J)Y X X X First weprovethefollowinglemma Lemma 4.1. Let W =W × W beaCR-warped productsubmanifoldofa BochnerKaehler T f ⊥ manifoldW . Then wehave w (JX,Z)=JP JX+X(logf)JZ JD⊥ Z g(P JX,W)=g(Q X,JW) Z Z and g(w (JX,Z),Jw (X,Z))−kw n (X,Z)k2=g(QZX,Jw n (X,Z)) forX ∈D andZ ∈D⊥. Proof. From Gaussequation,wehave (cid:209) JX+w (JX,Z)−J((cid:209) X)−Jw (X,Z)=P X+Q X Z Z Z Z Using(24), weinfer w (JX,Z)=P X+Q X+J[X(logf)Z]+Jw (X,Z)−JX(logf)Z. Z Z Replace X byJX,we get −w (X,Z)=P JX+Q JX+JX(logf)JZ+Jw (JX,Z)+X(logf)Z. Z Z Wecan writetheaboveequationas −w (X,Z)=PZJX+QZJX+JX(logf)JZ+Jw JD⊥(JX,Z)+Jw n (JX,Z)+X(logf)Z. (26) On comparingthetangentialcomponents,we obtain P JX+Jw (JX,Z)+X(logf)Z=0, Z JD⊥ or Jw (JX,Z)=−P JX−X(logf)Z JD⊥ Z whichshowsthat w (JX,Z)=JP JX+X(logf)JZ, (27) JD⊥ Z forX ∈D and Z ∈D⊥. 9 Againon comparingthenormal componentsin(26), wehave −w (X,Z)=QZJX+JX(logf)JZ+Jw n (JX,Z) from whichweconcludethat w (JX,Z)=QZX+X(logf)JZ+Jw n (X,Z) or w (JX,Z)−Jw n (X,Z)=QZX+X(logf)JZ (28) By takingtheinnerproduct (28) withJW, weget g(w (JX,Z),JW)=g(Q X,JW)+X(logf)g(JZ,JW) (29) JD⊥ Z Furtherusing(27)in(29), wehave g(P JX,W)+X(logf)g(Z,W)=g(Q X,JW)+X(logf)g(Z,W) Z Z from whichweconcludethat g(P JX,W)=g(Q X,JW) (30) Z Z Also,by takingtheinnerproductof(28)withJw (X,Z),wefind g(w (JX,Z),Jw (X,Z))−kw n (X,Z)k2=g(QZX,Jw n (X,Z)). Theorem 4.2. LetW =W × W beawarpedproductCR-submanifoldsofBochnerKaehler T f ⊥ manifold W with P D∈D, then the squared norm of second fundamental form of W in W D⊥ satisfiesthefollowinginequality kw k2 ≥kP Dk2+qkgrad (logf)k2. D⊥ D Proof. Let{X ,...,X ,X =JX ,...,X =JX }bealocalorthonormalframeofvectorfields 1 p p+1 1 2p p on N and {Z ,...,Z } be a local orthonormalframe of vectorfields on N , where 2p+q=n. T 1 q ⊥ Then wehave 2p q 2p kw k2 = (cid:229) g(w (Xi,Xj),w (Xi,Xj))+ (cid:229) (cid:229) g(w (Xi,Za ),w (Xi,Za )) i,j=1 a =1j=1 q + (cid:229) g(w (Za ,Zb ),w (Za ,Zb )) a ,b =1 from aboveequationwecan saythat 2p q kw k2 ≥ (cid:229) (cid:229) g(w (Xi,Za ),w (Xi,Za )) j=1a =1 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.