ebook img

On skew Heyting algebras - amc-journal.eu PDF

14 Pages·2016·0.24 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On skew Heyting algebras - amc-journal.eu

Alsoavailableathttp://amc-journal.eu ISSN1855-3966(printededn.),ISSN1855-3974(electronicedn.) ARSMATHEMATICACONTEMPORANEA12(2017)37–50 On skew Heyting algebras KarinCvetko-Vah UniversityofLjubljana,FacultyofMathematicsandPhysics, Jadranska19,Ljubljana,Slovenia Received29October2014,accepted8April2016,publishedonline21April2016 Abstract InthepresentpaperwegeneralizethenotionofaHeytingalgebratothenon-commuta- tivesettingandhenceintroducewhatwebelievetobethepropernotionoftheimplication in skew lattices. We list several examples of skew Heyting algebras, including Heyting algebras,dualskewBooleanalgebras,conormalskewchainsandalgebrasofpartialmaps withposetdomains. Keywords:Skewlattices,Heytingalgebras,non-commutativealgebra,intuitionisticlogic. Math.Subj.Class.:06F35,03G27 1 Introduction Non-commutativegeneralizationsoflatticeswereintroducedbyJordan[11]in1949. The current approach to such objects began with Leech’s 1989 paper on skew lattices [13]. Similarly, skew Boolean algebras are non-commutative generalizations of Boolean alge- bras. In1936StoneprovedthateachBooleanalgebracanbeembeddedintoafieldofsets [20]. Likewise, Leech showed in [14, 15] that each right-handed skew Boolean algebra canbeembeddedintoagenericskewBooleanalgebraofpartialfunctionsfromagivenset tothecodomain{0,1}. BignallandLeech[5]showedthatskewBooleanalgebrasplaya centralroleinthestudyofdiscriminatorvarieties. Though not using categorical language, Stone essentially proved in [20] that the cat- egory of Boolean algebras and homomorphisms is dual to the category of Boolean topo- logicalspacesandcontinuousmaps. Generalizationsofthisresultwithinthecommutative settingyieldPriestleyduality[16,17]betweenboundeddistributivelatticesandPriestley spaces, and Esakia duality [9] between Heyting algebras and Esakia spaces. (See [4] for details.)Inarecentpaper[10]onEsakia’swork,GehrkeshowedthatHeytingalgebrasmay be understood as those distributive lattices for which the embedding into their Booleani- sation has a right adjoint. A recent line of research generalized the results of Stone and E-mailaddress:[email protected](KarinCvetko-Vah) cbThisworkislicensedunderhttp://creativecommons.org/licenses/by/3.0/ 38 ArsMath.Contemp.12(2017)37–50 Priestley to the non-commutative setting. By results in [1] and [12], any skew Boolean algebra is dual to a sheaf of rectangular bands over a locally-compact Boolean space. A further generalization given in [2] showed that any strongly distributive skew lattice (as defined below) is dual to a sheaf (of rectangular bands) over a locally compact Priestley space. WhileBooleanalgebrasprovidealgebraicmodelsofclassicallogic, Heytingalgebras provide algebraic models of intuitionistic logic. In the present paper we introduce the notionofaskewHeytingalgebra. Inpassingtothenon-commutativesettingoneneedsto sacrificeeitherthetoporthebottomofthealgebrainordernottoendupinthecommutative setting.Inthepreviouspapers[1],[12]and[2]algebraswithbottomswereconsidered,and hencethenotionofdistributivitywasgeneralizedtothenotionofso-calledstrongdistribu- tivity. Ifonetriedtodefineanimplicationoperationinthesettingofstronglydistributive skewlatticeswithabottomasarightadjointtoconjunction,thatwouldforcetheskewlat- ticetoalsopossessatopandhencebecommutative,resultinginausualHeytingalgebra. In order to define implication in the skew lattice setting we consider the ∨−∧ duals of stronglydistributiveskewlatticeswithabottom,namely,theco-stronglydistributiveskew latticeswithatop. Thatisnotsurprisingasatopplaysacrucialroleinlogic. Thecategory ofco-stronglydistributiveskewlatticeswithatopis,ofcourse,isomorphictothecategory of strongly distributive skew lattices with a bottom. In choosing co-strongly distributive skew lattices with a top we follow the path paved by Bignall and Spinks in [6], and by SpinksandVeroffin[19]wheredualskewBooleanalgebraswereintroduced. Forfurther readingonimplicationsinskewBooleanalgebrasandtheiralgebraicduals,see[7]. After reviewing some preliminary definitions and concepts in Section 2, in the next sectionweintroducethenotionofaskewHeytingalgebra,provethatsuchalgebrasforma varietyandshowthatthemaximallatticeimageofaskewHeytingalgebraisageneralized Heytingalgebra(possiblywithoutabottom).Indeed,aco-stronglydistributiveskewlattice withatopisthereductofaskewHeytingalgebra,ifandonlyifitsmaximallatticeimage formsageneralizedHeytingalgebra. (SeeTheorem3.5.) Thisleadstoanumberofuseful corollaries and examples. We finish with Section 4 where we explore the consequences of our results to duality theory, and describe how skew Heyting algebras correspond to sheavesoverlocalEsakiaspaces. 2 Preliminaries A skew lattice is an algebra S = (S;∧,∨) of type (2,2) such that ∧ and ∨ are both idempotentandassociativeandtheysatisfythefollowingabsorptionlaws: x∧(x∨y)=x=x∨(x∧y)and(x∧y)∨y =y =(x∨y)∧y. Theseidentitiesarecollectivelyequivalenttothepairofequivalences:x∧y =x⇔x∨y = yandx∧y =y ⇔x∨y =x. OnaskewlatticeSonecandefinethenaturalpartialorderbystatingthatx≤yifand onlyifx∨y = y = y∨x,orequivalentelyx∧y = z = y∧x,andthenaturalpreorder byx(cid:22)yifandonlyify∨x∨y =y,orequivalentelyx∧y∧x=x. Green’sequivalence relationDisthendefinedby xDyifandonlyifx(cid:22)yandy (cid:22)x. (2.1) K.Cvetko-Vah:OnskewHeytingalgebras 39 Lemma 2.1. ([8]). For elements x and y elements of a skew lattice S the following are equivalent: (i) x≤y, (ii) x∨y∨x=y, (iii) y∧x∧y =x. Leech’s First Decomposition Theorem for skew lattices states that the relation D is a congruenceonaskewlatticeS,S/D isthemaximallatticeimageofS,andeachcongru- ence class is a maximal rectangular skew lattice in S [13]. Rectangular skew lattices are characterizedbyx∧y∧z = x∧z, orequivalentelyx∨y∨z = x∨z. Wedenotethe D-classcontaininganelementxbyD . x Itwasprovedin[13]thataskewlatticealwaysformsaregularband foreitherofthe operations∧,∨,i.e. itsatisfiestheidentities x∧u∧x∧v∧x=x∧u∧v∧xandx∨u∨x∨v∨x=x∨u∨v∨x. Askewlatticewithtopisanalgebra(S;∧,∨,1)oftype(2,2,0)suchthat(S;∧,∨)is askewlatticeand x∨1 = 1 = 1∨x, orequivalently x∧1 = x = 1∧x, holdsforall x ∈ S. Askewlatticewithbottomisdefinedduallyandthebottom,ifitexists,isusually denotedby0. Furthermore, a skew lattice is called strongly distributive if it satisfies the following identities: x∧(y∨z)=(x∧y)∨(x∧z)and(x∨y)∧z =(x∧z)∨(y∧z); anditiscalledco-stronglydistributiveifitsatisfiestheidentities: x∨(y∧z)=(x∨y)∧(x∨z)and(x∧y)∨z =(x∨z)∧(y∨z). If a skew lattice S is either strongly distributive or co-strongly distributive then S is distributiveinthatitsatisfiestheidentities x∧(y∨z)∧x=(x∧y∧x)∨(x∧z∧x)andx∨(y∧z)∨x=(x∨y∨x)∧(x∨z∨x). A skew lattice S that is jointly strongly distributive and co-strongly distributive is bi- normal, i.e. S factors as a direct product of a lattice L and a rectangular skew lattice B, S∼=L×B,withLinthiscasebeingdistributive. (See[15]and[18].) ApplyingdualitytoaresultofLeech[15],itfollowsthataskewlatticeSisco-strongly distributiveifandonlyifSisjointly: • quasi-distributive: themaximallatticeimageS/Disadistributivelattice, • symmetric: x∧y =y∧xifandonlyifx∨y =y∨x,and • conormal: x∨y∨z∨w =x∨z∨y∨w. Ifaskewlatticeisconormalthengivenanyu∈S theset u↑={u∨x∨u|x∈S}={x∈S|u≤x} formsa(commutative)latticefortheinducedoperations∧and∨,cf. [15]. Thefollowinglemmaisthedualofawellknownresultinskewlatticetheory. 40 ArsMath.Contemp.12(2017)37–50 Lemma 2.2. Let S be a conormal skew lattice and let A and B be D-classes such that B ≤AholdsinthelatticeS/D. Givenb∈Bthereexistsauniquea∈Asuchthatb≤a. Proof. Firsttheuniqueness. Ifaanda(cid:48) bothsatisfythedesiredpropertythenbyLemma 2.1 we have a = b∨a∨b and likewise a(cid:48) = b∨a(cid:48) ∨b. Now, using idempotency of ∨, conormalityandthefactthataDa(cid:48)weobtain: a=b∨a∨b=b∨a∨a(cid:48)∨a∨b= b∨a∨a(cid:48)∨b=b∨a(cid:48)∨a∨a(cid:48)∨b=b∨a(cid:48)∨b=a(cid:48). Toprovetheexistenceofatakeanyx ∈ Aandseta = b∨x∨b. Thena ∈ Aandusing theidempotencyof∨weget: b∨a∨b=b∨(b∨x∨b)∨b=b∨x∨b=a whichimpliesb≤a. Animportantclassofstronglydistributiveskewlatticesthathaveabottomistheclass of skew Boolean algebras where by a skew Boolean algebra we mean an algebra S = (S;∧,∨,\,0)where(S;∧,∨,0)isastronglydistributiveskewlatticewithbottom0,and \isabinaryoperationonSsuchthatboth(x∧y∧x)∨(x\y)=x=(x\y)∨(x∧y∧x) and(x∧y∧x)∧(x\y) = 0 = (x\y)∧(x∧y∧x). Givenanyelementuofaskew BooleanalgebraStheset u↓={u∧x∧u|x∈S}={x∈S|x≤u} isaBooleanalgebrawithtopuandwithu\xbeingthecomplementofu∧x∧uinu↓. RecallthataHeytingalgebraisanalgebraH=(H;∧,∨,→,1,0)suchthat(H,∧,∨, 1,0)isaboundeddistributivelatticethatsatisfiesthecondition: (HA) x∧y ≤ziffx≤y →z. Stated otherwise, ∀y,z ∈ H the sublattice {x ∈ H|x∧y ≤ z} is nonempty and con- tains a top element to be denoted by y → z. Thus, given a bounded distributive lattice (H;∧,∨,1,0),ifabinaryoperation→existsthatmakes(H;∧,∨,→,1,0)aHeytingal- gebra,thenitisuniquebecauseitisalreadythereimplicitly. Indeed,giventwoisomorphic lattices,ifeitheristhelatticereductofaHeytingalgebrathensoistheother,andbothare isomorphicasHeytingalgebras. Equivalently,(HA)canbereplacedbythefollowingsetofidentities: (H1) (x→x)=1, (H2) x∧(x→y)=x∧y, (H3) y∧(x→y)=y, (H4) x→(y∧z)=(x→y)∧(x→z). Lemma2.3. InanyHeytingalgebra,x→y =(x∨y)→y. AgeneralizedHeytingalgebraisanalgebraA = (A;∧,∨,→,1)suchthatthereduct (A,∧,∨,1) is a distributive lattice with top 1, and condition (HA) holds. If it also has a bottom, it is a Heyting algebra. In general, each upset u↑ forms a Heyting algebra. The identitiesabovealsocharacterizethismoregeneralclassofalgebras,whichareoftencalled Brouwerianalgebras. K.Cvetko-Vah:OnskewHeytingalgebras 41 3 SkewHeytingalgebras AskewHeytinglatticeisanalgebraS=(S;∧,∨,1)oftype(2,2,0)suchthat: • (S;∧,∨,1)isaco-stronglydistributiveskewlatticewithtop1. Eachupsetusupis thusaboundeddistributivelattice. • foranyu ∈ S anoperation→ canbedefinedonu↑suchthat(u↑;∧,∨,→ ,1,u) u u isaHeytingalgebrawithtop1andbottomu. GivenaskewHeytinglatticeS,define→onS bysetting x→y =(y∨x∨y)→ y. y A skew Heyting algebra is an algebra S = (S;∧,∨,→,1) of type (2,2,2,0) such that (S;∧,∨,1) is a skew Heyting lattice and → is the implication thus induced. A sense of globalcoherencefor→onS isgivenby: Lemma3.1. LetSbeaskewHeytinglatticewith→asdefinedaboveandletx,y,u ∈ S besuchthatbothx,y ∈u↑hold. Thenx→y =x→ y. u Proof. As x and y both lie in u↑, they commute. By the definition of →, x → y = (x∨y) → y ≥ y by (H3). On the other hand, since → is the Heyting implication in y u the Heyting algebra u↑ it follows that x → y = (x∨y) → y ≥ y. Thus y, x∨y, u u (x∨y) → y and(x∨y) → y alllieiintheHeytingalgebray↑. Themaximalelement y u characterizationofboth(x∨y)→ yand(x∨y)→ yforcesbothtoagree. y u WewillusetheaxiomsofHeytingalgebrastoderiveanaxiomatizationofskewHeyting algebras. ThereadershouldfindmostoftheaxiomsofTheorem3.2belowtobeintuitively cleargeneralizationstothenon-commutativecase. However,twoaxiomsshouldbegiven furtherexplanation. Firstly,theuinaxiom(SH4)belowappearssinceuponpassingtothe non-commutative case, an element that is both below x and y with respect to the partial order≤nolongerneedexist.(Wecanhavex∧y∧x≤xbutnotx∧y∧x≤yingeneral.) Similarly, axiom(SH0)isneededsinceinthenon-commutativecaseitnolongerfollows fromtheotheraxioms,thereasonbeingthatingeneralx≤y∨x∨yneednothold. Theorem 3.2. Let (S;∧,∨,→,1) be analgebra of type (2,2,2,0) such that (S;∧,∨,1) isaco-stronglydistributiveskewlatticewithtop1. Then(S;∧,∨,→,1)isaskewHeyting algebraifandonlyifitsatisfiesthefollowingaxioms: (SH0) x→y =(y∨x∨y)→y. (SH1) x→x=1, (SH2) x∧(x→y)∧x=x∧y∧x, (SH3) y∧(x→y)=yand(x→y)∧y =y, (SH4) x→(u∨(y∧z)∨u)=(x→(u∨y∨u))∧(x→(u∨z∨u)). Proof. AssumethatSisaskewHeytingalgebra. (SH0). Bothx → yand(y∨x∨y) → yaredefinedas(y∨x∨y) → y. Thusthey y areequal. (SH1). Thisistruebecause1∧x=xistrueinx↑. 42 ArsMath.Contemp.12(2017)37–50 (SH2). Iny↑(H2)implies(y∨x∨y)∧((y∨x∨y) → y) = (y∨x∨y)∧y = y. y Hence x∧(y∨x∨y)∧(x→y)∧x=x∧y∧x. Ontheotherhand, x∧(y∨x∨y)∧(x→y)∧x=x∧(y∨x∨y)∧x∧(x→y)∧x=x∧(x→y)∧x, wherewehaveusedtheregularityof∧andthefactthatx(cid:22)y∨x∨y. (SH3). Both identities hold because y ∧ (y ∨ x ∨ y) = y in y↑. Thus x → y = (y∨x∨y)→y ≥y. (SH4). Firstnotethat(SH4)isequivalentto (SH4’)(u∨x∨u)→(u∨(y∧z)∨u)=((u∨x∨u)→(u∨y∨u))∧((u∨x∨u)→ (u∨z∨u)). Indeed,(SH0)andtheconormalityof∨giveboth (u∨x∨u)→(u∨w∨u)=(u∨x∨w∨u)→(u∨w∨u) and x→(u∨w∨u)=(u∨x∨w∨u)→(u∨w∨u) sothat x→(u∨w∨u)=(u∨x∨u)→(u∨w∨u). Henceitsufficestoprovethat(SH4’)holds. Observethatdistributivityimplies (u∨y∨u)∧(u∨z∨u)=u∨(y∧z)∨u. (3.1) Since u∨x∨u, u∨y ∨u, u∨z ∨u and u∨(y ∧z)∨u all lie in u↑ we can simply computeinu↑. Using(3.1)andaxiom(H4)forHeytingalgebrasweobtain:(u∨x∨u)→ (u∨(y ∧z)∨u) = (u∨x∨u) → ((u∨y ∨u)∧(u∨z ∨u)) = ((u∨x∨u) → (u∨y∨u))∧((u∨x∨u)→(u∨z∨u)). To prove the converse assume that (SH0)–(SH4) hold. Given arbitrary u ∈ S and x,y,z ∈u↑setx→ y =x→y. Axiom(SH3)impliesthatx→y ∈y↑⊆u↑. Thusthe u restriction→ of→tou↑iswelldefined. Sinceu↑iscommutativewithbottomu,axioms u (SH1)–(SH4)for→respectivelysimplifyto(H1)–(H4)for→ , making→ theHeyting u u implication on u↑. Axiom (SH0) assures that → is indeed the skew Heyting implication satisfyinga→b=(b∨a∨b)→ b,foranya,b∈S. b Corollary3.3. SkewHeytingalgebrasformavariety. In the remainder of the paper, given a skew Heyting algebra we shall simplify the notation→ to→whenreferringtotheHeytingimplicationinu↑. Remarksmadeabout u HeytingalgebrasinSection2applyherealso. Givenaco-stronglydistributiveskewlattice (S;∧,∨,1)withatop1,ifabinaryoperation→existsthatmakes(S;∧,∨,→,1)askew Heyting algebra, then it is unique since it is already there implicitly. Hence, given two isomorphic skew lattices, if either is the reduct of a skew Heyting algebra, then so is the otherandbothareisomorphicasskewHeytingalgebras. Proposition 3.4. The relation D defined in (2.1) is a congruence on any skew Heyting algebra. K.Cvetko-Vah:OnskewHeytingalgebras 43 Proof. Let (S;∧,∨,→,1) be a skew Heyting algebra. Since D is a congruence for co- stronglydistributiveskewlatticeswithatop, weonlyneed toprove(a → b)D(c → d) holdsforanya,b,c,d ∈ S satisfyingaDcandbDd. Withoutlossofgeneralitywemay assumeb≤aandd≤c. (Otherwisereplaceabyb∨a∨bandcbyd∨c∨d.) To begin, define a map ϕ : b↑ → d↑ by setting ϕ(x) = d∨x∨d. We claim that ϕ isalatticeisomorphismof(b↑;∧,∨)with(d↑;∧,∨),withinverseψ : d↑ → b↑givenby ψ(y) = b∨y∨b. Itiseasilyseenthatϕandψ areinversesofeachother. Forinstance, ψ(ϕ(x)) = b∨d∨x∨d∨bequals(b∨d∨b)∨x∨(b∨d∨b)bytheregularityof∨. Butthelatterreducestob∨x∨bbecausebDd,andsincex∈b↑itreducesfurthertoxby Lemma2.1,givingψ(ϕ(x))=x. ϕmustpreserve∧and∨. Indeeddistributivitygives: ϕ(x∧x(cid:48))=d∨(x∧x(cid:48))∨d=(d∨x∨d)∧(d∨x(cid:48)∨d)=ϕ(x)∧ϕ(x(cid:48)). Andtheregularitygives: ϕ(x∨x(cid:48))=d∨(x∨x(cid:48))∨d=(d∨x∨d)∨(d∨x(cid:48)∨d)=ϕ(x)∨ϕ(x(cid:48)). Thusϕ(andψ)isalatticeisomorphismofb↑withd↑. Butthenϕandψ arealsoisomor- phismsofHeytingalgebras. Thatis,e.g.,ϕ(x→y)=ϕ(x)→ϕ(y). Next,observethatxDϕ(x)forallx∈b↑. Indeed,regularitygives: ϕ(x)∨x∨ϕ(x)=(d∨x∨d)∨x∨(d∨x∨d)=d∨x∨d=ϕ(x) and likewise x ∨ ϕ(x) ∨ x = ψ(ϕ(x)) ∨ ϕ(x) ∨ ψ(ϕ(x)) = ψ(ϕ(x)) = x. There is more: a is the unique element in its D-class belonging to b↑ and c is the unique element inthesameD-classbelongingtod↑(sinceeachupsetu↑intersectsanyD-classinatmost one element). But ϕ(a) in d↑ behaves in the manner just like c, and so ϕ(a) = c. Since bD d, ϕ(b) = d∨b∨d = d and ϕ(a → b) = ϕ(a) → ϕ(b) = c → d, thus giving a→bDc→d. Following[5]acommutativesubsetofasymmetricskewlatticeisanon-emptysubset whoseelementsbothjoinandmeetcommute. Theorem3.5. Givenaco-stronglydistributiveskewlattice(S;∧,∨,1)withtop1,anop- eration→canbedefinedonSmaking(S;∧,∨,→,1)askewHeytingalgebraifandonlyif theoperation→canbedefinedonS/Dmaking(S/D;∧,∨,→,D )ageneralizedHeyting 1 algebra. Proof. Tobegin,foranyuinS,theupsetu↑isaD-classtransversaloftheprincipalfilter S ∨ u ∨ S. Secondly, the induced homomorphism ϕ : S → S/D is bijective on any commutativesubsetofS sincedistinctcommutingelementsofS lieindistinctD-classes. ItfollowsthatforeachuinS,ϕrestrictstoanisomorphismofupsets,ϕ : u↑ ∼= ϕ(u)↑. u Thuseachupsetu↑inSformsaHeytingalgebraifandonlyifeachupsetv↑inS/D,being someϕ(u)↑,mustformaHeytingalgebra. Thetheoremfollows. Comment. Thisresultisanear-dualoftheimportantfactthatastronglydistributiveskew latticeSwithbottom0isthe(necessarilyunique)reductofaskewBooleanalgebraifand only if its lattice image S/D is the reduct of a (necessarily unique) generalized Boolean algebra. ([15],3.8.) 44 ArsMath.Contemp.12(2017)37–50 Wenextconsiderconsequencesoftheabovetheorem. Thefirstisonthe”skewlattice side”ofthingsandthenextismoreonthe”Heytingside”. Butfirstrecallthedefinitionsof Green’srelationsLandRonaskewlattice: xLy ⇔(x∧y =x&y∧x=y, orequivalentlyx∨y =y&y∨x=x), xRy ⇔(x∧y =y&y∧x=x, orequivalentlyx∨y =x&y∨x=y). Relations L and R are contained in the Green’s relation D defined above and L◦R = R◦L=Dholds. Askewlatticeiscalledright-handediftherelationListrivial,inwhich caseD = R,anditiscalledleft-handediftherelationRistrivial,inwhichcaseD = L. By Leech’s Second Decomposition Theorem [13] the relations L and R are congruences onanyskewlatticeS,S/Risleft-handed,S/Lisright-handedandthefollowingdiagram isapullback: (cid:47)(cid:47) S S/R (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) S/L S/D Corollary 3.6. If S = (S;∧,∨,1) be a co-strongly distributive skew lattice with top 1, thenthefollowingareequivalent: 1. SisthereductofaskewHeytingalgebra(S;∧,∨,→,1). 2. S/ListhereductofaskewHeytingalgebra(S/L;∧,∨,→,1). 3. S/RisthereductofaskewHeytingalgebra(S/R;∧,∨,→,1). Moreover,bothLandRarecongruencesonanyskewHeytingalgebra. Proof. Theequivalenceof(i)–(iii)isduetotheprecedingtheoremplusthefactthatS/D, (S/L)/D and(S/R)/D areisomorphic. Next,theinducedmapρ : S → S/Lis S/L S/R atleastahomomorphismofco-stronglydistributiveskewlattices. Bytheargumentofthe precedingtheorem,itinducesisomorphismsbetweencorrespondingpairsofupsets,u↑in SandL ↑inS/L. Thusgivenx→y =(y∨x∨y)→ yandu→v =(v∨u∨v)→ v u y v withx;,L;,uandy;,L;,vinS,both(y∨x∨y)→ yand(v∨u∨v)→ varemapped y v to the common L → L , making x → y;,L;,y → v in S. A similar argument y∨x∨y Ly y appliestotheinducedmapλ:S→S/R. AnalternativetothecharacterizationofTheorem3.2isgivenby: Corollary3.7. EveryskewHeytingalgebrasatisfies: (SHA) x(cid:22)y →zifandonlyifx∧y (cid:22)z. Inparticular,x→y =1iffx(cid:22)y. Ingeneral,analgebraS=(S;∧,∨,→,1)oftype(2,2,2,0)isaskewHeytingalgebra ifthefollowingconditionshold: 1. Thereduct(S;∧,∨,1)isaco-stronglydistributiveskewlatticewithtop1. 2. y ≤x→yholdsforallx,y ∈S. K.Cvetko-Vah:OnskewHeytingalgebras 45 3. Ssatisfiesaxiom(SHA). Proof. GiventhatS isaskewHeytingalgebra, sincetheinducedepimorphismϕ : S → S/DisahomomorphismofskewHeytingalgebraswehave x(cid:22)y →ziffϕ(x)≤ϕ(y)→ϕ(z)iffϕ(x)∧ϕ(y)≤ϕ(z)iffx∧y (cid:22)z. Conversely, let S = (S;∧,∨,→,1) be an algebra of type (2,2,2,0) satisfying (1)–(3). Supposethatx,y,z lieinacommonupsetu ↑. Since(cid:22)isjust≤inu ↑nady → z lies in u ↑ by (2) we have x ≤ y → z iff x ∧ y ≤ z in u ↑. (S;∧,∨,1) is thus at least a skew Heyting lattice. Now consider the derived implication →∗ given by x →∗ y = (y∨x∨y)→ y. Bothy →z andy →∗ z satisfy(SHA)andthusareD-equivalent. But y sincebothlieinthesublatticez↑,theymustbeequal. We have seen that each skew Heyting algebra is basically a co-strongly distributive skewlatticeSwithtop, say1, forwhichS/D isageneralizedHeytingalgebra, inwhich case the Heyting structure on each upset u↑ of S is obtained from that of the isomorphic upsetD ↑inS/D. ThissuggeststhatallstandardclassesofgeneralizedHeytingalgebras u yieldclassesofskewHeytingalgebraswhosemaximalcommutativeimagesbelongtothe particularclass. Weconsiderseveralcases. Case1. Finitedistributivelatticespossessawell-definedHeytingalgebrastructure. Thus anyfiniteco-stronglydistributiveskewlatticewithatop,ormoregenerallyanyco-strongly distributive skew lattice with a top and a finite maximal lattice image is the reduct of a uniqueskewHeytingalgebra. Case2. Allchainspossessingatop1formHeytingalgebras. Herethingsaresimple: (cid:26) 1; ifx≤y. x→y = y; otherwise. Thusallco-stronglydistributiveskewchainswithatopareskewHeytingalgebrareducts, whereaskewchainisanyskewlatticeSwhereS/D isachain,i.e.,(cid:22)isatotalpreorder onS. Here,givenx,yinacommonu↑onehas: (cid:26) 1; ifx(cid:22)y. x→y = y; otherwise. Case3. DualgeneralizedBooleanalgebras. ThesearealgebrasS=(S;∧,∨,\\,1)where (S;∧,∨,1) is a distributive lattice with top 1 and \\ is a binary operation on S such that (y∨x)∨(y\\x)=1and(y∨x)∧(y\\x)=yforallx,yinS. Aswith\forgeneralized Boolean algebras, \\ is uniquely determined. Moreover, in this case, x → y = y \\x. Adual-skewBooleanalgebraS = (S;∧,∨,\\,1)isanalgebrasuchthat(S;∧,∨,1)isa co-stronglydistributiveskewlatticewithtop1andbinaryoperation\\suchthat: (y∨x∨y)∨(y\\x)=1=(y\\x)∨(y∨x∨y); (y∨x∨y)∧(y\\x)=y =(y\\x)∧(y∨x∨y). 46 ArsMath.Contemp.12(2017)37–50 Therelevantdiagramis: 1 y∨x∨y y\\x y Thesedualalgebrasare,ofcourse,preciselytheco-stronglydistributiveskewlatticeswith a top whose maximal lattice images are the lattice reducts of dual-generalized Boolean algebras. Once again we follow the commutative case: x → y = y \\x which now is y\\(y∨x∨y)iny↑. Wethushave: Corollary 3.8. A co-strongly distributive skew lattice with a top S = (S;∧,∨,1) is the reduct of a uniquely determined skew Heyting algebra (S;∧,∨,\\,1) if any one of the followingconditionsholds: 1. S/Disfinite. 2. Sisaskewchain. 3. SisthereductofadualgeneralizedBooleanalgebra,S=(S;∧,∨,\\,1). ImplicitinCase3isabasicdualitythatoccursforskewlattices. Givenaskewlattice S = (S;∧,∨), its (vertical) dual is the skew lattice S(cid:108) = (S;∧(cid:108),∨(cid:108)), where as binary functions, ∧(cid:108) = ∨ and ∨(cid:108) = ∧. Clearly S(cid:108)(cid:108) = S and any homomorphism f : S → T of skew lattices ia also a homomorphism from S(cid:108) to T(cid:108); moreover a skew lattice S is distributive(orsymmetric)iffS(cid:108)isthus. EitherSorS(cid:108)isstronglydistributiveifftheother is co-strongly distributive; more generally, S or S(cid:108) is normal iff the other is co-normal. Also,onehasabottomelementifftheotherhasatopelement,bothbeingthesameelement inS. Expanding the signature, (S;∧,∨,\,0) is a skew Boolean algebra if and only if its dual (S;∧(cid:108),∨(cid:108),\\,1) is a dual skew Boolean algebra where \ and 0 are replaced by \\ and 1. Thus any skew Boolean algebra (S;∧,∨,\,0) induces a skew Heyting algebra (S;∧(cid:108),∨(cid:108),→,1) where x → y = y \ x and 1 = old0. Standard examples of skew Booleanalgebrasthusgiveus: Example 3.9. Given sets X and Y, the skew Heyting operations derived from the skew BooleanoperationsonthesetP(X,Y)ofallpartialfunctionsfromX toY areasfollows. skewHeytingoperation description skewBooleanoperation f ∧g f ∪(g| ) f ∨g domg−domf f ∨g g| f ∧g domg∩domf f →g g| g\f domg−domf 1 ∅ 0

Description:
with a top is the reduct of a skew Heyting algebra, if and only if its maximal lattice image forms a generalized Heyting algebra. (See Theorem 3.5.)
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.