Alsoavailableathttp://amc-journal.eu ISSN1855-3966(printededn.),ISSN1855-3974(electronicedn.) ARSMATHEMATICACONTEMPORANEA12(2017)37–50 On skew Heyting algebras KarinCvetko-Vah UniversityofLjubljana,FacultyofMathematicsandPhysics, Jadranska19,Ljubljana,Slovenia Received29October2014,accepted8April2016,publishedonline21April2016 Abstract InthepresentpaperwegeneralizethenotionofaHeytingalgebratothenon-commuta- tivesettingandhenceintroducewhatwebelievetobethepropernotionoftheimplication in skew lattices. We list several examples of skew Heyting algebras, including Heyting algebras,dualskewBooleanalgebras,conormalskewchainsandalgebrasofpartialmaps withposetdomains. Keywords:Skewlattices,Heytingalgebras,non-commutativealgebra,intuitionisticlogic. Math.Subj.Class.:06F35,03G27 1 Introduction Non-commutativegeneralizationsoflatticeswereintroducedbyJordan[11]in1949. The current approach to such objects began with Leech’s 1989 paper on skew lattices [13]. Similarly, skew Boolean algebras are non-commutative generalizations of Boolean alge- bras. In1936StoneprovedthateachBooleanalgebracanbeembeddedintoafieldofsets [20]. Likewise, Leech showed in [14, 15] that each right-handed skew Boolean algebra canbeembeddedintoagenericskewBooleanalgebraofpartialfunctionsfromagivenset tothecodomain{0,1}. BignallandLeech[5]showedthatskewBooleanalgebrasplaya centralroleinthestudyofdiscriminatorvarieties. Though not using categorical language, Stone essentially proved in [20] that the cat- egory of Boolean algebras and homomorphisms is dual to the category of Boolean topo- logicalspacesandcontinuousmaps. Generalizationsofthisresultwithinthecommutative settingyieldPriestleyduality[16,17]betweenboundeddistributivelatticesandPriestley spaces, and Esakia duality [9] between Heyting algebras and Esakia spaces. (See [4] for details.)Inarecentpaper[10]onEsakia’swork,GehrkeshowedthatHeytingalgebrasmay be understood as those distributive lattices for which the embedding into their Booleani- sation has a right adjoint. A recent line of research generalized the results of Stone and E-mailaddress:[email protected](KarinCvetko-Vah) cbThisworkislicensedunderhttp://creativecommons.org/licenses/by/3.0/ 38 ArsMath.Contemp.12(2017)37–50 Priestley to the non-commutative setting. By results in [1] and [12], any skew Boolean algebra is dual to a sheaf of rectangular bands over a locally-compact Boolean space. A further generalization given in [2] showed that any strongly distributive skew lattice (as defined below) is dual to a sheaf (of rectangular bands) over a locally compact Priestley space. WhileBooleanalgebrasprovidealgebraicmodelsofclassicallogic, Heytingalgebras provide algebraic models of intuitionistic logic. In the present paper we introduce the notionofaskewHeytingalgebra. Inpassingtothenon-commutativesettingoneneedsto sacrificeeitherthetoporthebottomofthealgebrainordernottoendupinthecommutative setting.Inthepreviouspapers[1],[12]and[2]algebraswithbottomswereconsidered,and hencethenotionofdistributivitywasgeneralizedtothenotionofso-calledstrongdistribu- tivity. Ifonetriedtodefineanimplicationoperationinthesettingofstronglydistributive skewlatticeswithabottomasarightadjointtoconjunction,thatwouldforcetheskewlat- ticetoalsopossessatopandhencebecommutative,resultinginausualHeytingalgebra. In order to define implication in the skew lattice setting we consider the ∨−∧ duals of stronglydistributiveskewlatticeswithabottom,namely,theco-stronglydistributiveskew latticeswithatop. Thatisnotsurprisingasatopplaysacrucialroleinlogic. Thecategory ofco-stronglydistributiveskewlatticeswithatopis,ofcourse,isomorphictothecategory of strongly distributive skew lattices with a bottom. In choosing co-strongly distributive skew lattices with a top we follow the path paved by Bignall and Spinks in [6], and by SpinksandVeroffin[19]wheredualskewBooleanalgebraswereintroduced. Forfurther readingonimplicationsinskewBooleanalgebrasandtheiralgebraicduals,see[7]. After reviewing some preliminary definitions and concepts in Section 2, in the next sectionweintroducethenotionofaskewHeytingalgebra,provethatsuchalgebrasforma varietyandshowthatthemaximallatticeimageofaskewHeytingalgebraisageneralized Heytingalgebra(possiblywithoutabottom).Indeed,aco-stronglydistributiveskewlattice withatopisthereductofaskewHeytingalgebra,ifandonlyifitsmaximallatticeimage formsageneralizedHeytingalgebra. (SeeTheorem3.5.) Thisleadstoanumberofuseful corollaries and examples. We finish with Section 4 where we explore the consequences of our results to duality theory, and describe how skew Heyting algebras correspond to sheavesoverlocalEsakiaspaces. 2 Preliminaries A skew lattice is an algebra S = (S;∧,∨) of type (2,2) such that ∧ and ∨ are both idempotentandassociativeandtheysatisfythefollowingabsorptionlaws: x∧(x∨y)=x=x∨(x∧y)and(x∧y)∨y =y =(x∨y)∧y. Theseidentitiesarecollectivelyequivalenttothepairofequivalences:x∧y =x⇔x∨y = yandx∧y =y ⇔x∨y =x. OnaskewlatticeSonecandefinethenaturalpartialorderbystatingthatx≤yifand onlyifx∨y = y = y∨x,orequivalentelyx∧y = z = y∧x,andthenaturalpreorder byx(cid:22)yifandonlyify∨x∨y =y,orequivalentelyx∧y∧x=x. Green’sequivalence relationDisthendefinedby xDyifandonlyifx(cid:22)yandy (cid:22)x. (2.1) K.Cvetko-Vah:OnskewHeytingalgebras 39 Lemma 2.1. ([8]). For elements x and y elements of a skew lattice S the following are equivalent: (i) x≤y, (ii) x∨y∨x=y, (iii) y∧x∧y =x. Leech’s First Decomposition Theorem for skew lattices states that the relation D is a congruenceonaskewlatticeS,S/D isthemaximallatticeimageofS,andeachcongru- ence class is a maximal rectangular skew lattice in S [13]. Rectangular skew lattices are characterizedbyx∧y∧z = x∧z, orequivalentelyx∨y∨z = x∨z. Wedenotethe D-classcontaininganelementxbyD . x Itwasprovedin[13]thataskewlatticealwaysformsaregularband foreitherofthe operations∧,∨,i.e. itsatisfiestheidentities x∧u∧x∧v∧x=x∧u∧v∧xandx∨u∨x∨v∨x=x∨u∨v∨x. Askewlatticewithtopisanalgebra(S;∧,∨,1)oftype(2,2,0)suchthat(S;∧,∨)is askewlatticeand x∨1 = 1 = 1∨x, orequivalently x∧1 = x = 1∧x, holdsforall x ∈ S. Askewlatticewithbottomisdefinedduallyandthebottom,ifitexists,isusually denotedby0. Furthermore, a skew lattice is called strongly distributive if it satisfies the following identities: x∧(y∨z)=(x∧y)∨(x∧z)and(x∨y)∧z =(x∧z)∨(y∧z); anditiscalledco-stronglydistributiveifitsatisfiestheidentities: x∨(y∧z)=(x∨y)∧(x∨z)and(x∧y)∨z =(x∨z)∧(y∨z). If a skew lattice S is either strongly distributive or co-strongly distributive then S is distributiveinthatitsatisfiestheidentities x∧(y∨z)∧x=(x∧y∧x)∨(x∧z∧x)andx∨(y∧z)∨x=(x∨y∨x)∧(x∨z∨x). A skew lattice S that is jointly strongly distributive and co-strongly distributive is bi- normal, i.e. S factors as a direct product of a lattice L and a rectangular skew lattice B, S∼=L×B,withLinthiscasebeingdistributive. (See[15]and[18].) ApplyingdualitytoaresultofLeech[15],itfollowsthataskewlatticeSisco-strongly distributiveifandonlyifSisjointly: • quasi-distributive: themaximallatticeimageS/Disadistributivelattice, • symmetric: x∧y =y∧xifandonlyifx∨y =y∨x,and • conormal: x∨y∨z∨w =x∨z∨y∨w. Ifaskewlatticeisconormalthengivenanyu∈S theset u↑={u∨x∨u|x∈S}={x∈S|u≤x} formsa(commutative)latticefortheinducedoperations∧and∨,cf. [15]. Thefollowinglemmaisthedualofawellknownresultinskewlatticetheory. 40 ArsMath.Contemp.12(2017)37–50 Lemma 2.2. Let S be a conormal skew lattice and let A and B be D-classes such that B ≤AholdsinthelatticeS/D. Givenb∈Bthereexistsauniquea∈Asuchthatb≤a. Proof. Firsttheuniqueness. Ifaanda(cid:48) bothsatisfythedesiredpropertythenbyLemma 2.1 we have a = b∨a∨b and likewise a(cid:48) = b∨a(cid:48) ∨b. Now, using idempotency of ∨, conormalityandthefactthataDa(cid:48)weobtain: a=b∨a∨b=b∨a∨a(cid:48)∨a∨b= b∨a∨a(cid:48)∨b=b∨a(cid:48)∨a∨a(cid:48)∨b=b∨a(cid:48)∨b=a(cid:48). Toprovetheexistenceofatakeanyx ∈ Aandseta = b∨x∨b. Thena ∈ Aandusing theidempotencyof∨weget: b∨a∨b=b∨(b∨x∨b)∨b=b∨x∨b=a whichimpliesb≤a. Animportantclassofstronglydistributiveskewlatticesthathaveabottomistheclass of skew Boolean algebras where by a skew Boolean algebra we mean an algebra S = (S;∧,∨,\,0)where(S;∧,∨,0)isastronglydistributiveskewlatticewithbottom0,and \isabinaryoperationonSsuchthatboth(x∧y∧x)∨(x\y)=x=(x\y)∨(x∧y∧x) and(x∧y∧x)∧(x\y) = 0 = (x\y)∧(x∧y∧x). Givenanyelementuofaskew BooleanalgebraStheset u↓={u∧x∧u|x∈S}={x∈S|x≤u} isaBooleanalgebrawithtopuandwithu\xbeingthecomplementofu∧x∧uinu↓. RecallthataHeytingalgebraisanalgebraH=(H;∧,∨,→,1,0)suchthat(H,∧,∨, 1,0)isaboundeddistributivelatticethatsatisfiesthecondition: (HA) x∧y ≤ziffx≤y →z. Stated otherwise, ∀y,z ∈ H the sublattice {x ∈ H|x∧y ≤ z} is nonempty and con- tains a top element to be denoted by y → z. Thus, given a bounded distributive lattice (H;∧,∨,1,0),ifabinaryoperation→existsthatmakes(H;∧,∨,→,1,0)aHeytingal- gebra,thenitisuniquebecauseitisalreadythereimplicitly. Indeed,giventwoisomorphic lattices,ifeitheristhelatticereductofaHeytingalgebrathensoistheother,andbothare isomorphicasHeytingalgebras. Equivalently,(HA)canbereplacedbythefollowingsetofidentities: (H1) (x→x)=1, (H2) x∧(x→y)=x∧y, (H3) y∧(x→y)=y, (H4) x→(y∧z)=(x→y)∧(x→z). Lemma2.3. InanyHeytingalgebra,x→y =(x∨y)→y. AgeneralizedHeytingalgebraisanalgebraA = (A;∧,∨,→,1)suchthatthereduct (A,∧,∨,1) is a distributive lattice with top 1, and condition (HA) holds. If it also has a bottom, it is a Heyting algebra. In general, each upset u↑ forms a Heyting algebra. The identitiesabovealsocharacterizethismoregeneralclassofalgebras,whichareoftencalled Brouwerianalgebras. K.Cvetko-Vah:OnskewHeytingalgebras 41 3 SkewHeytingalgebras AskewHeytinglatticeisanalgebraS=(S;∧,∨,1)oftype(2,2,0)suchthat: • (S;∧,∨,1)isaco-stronglydistributiveskewlatticewithtop1. Eachupsetusupis thusaboundeddistributivelattice. • foranyu ∈ S anoperation→ canbedefinedonu↑suchthat(u↑;∧,∨,→ ,1,u) u u isaHeytingalgebrawithtop1andbottomu. GivenaskewHeytinglatticeS,define→onS bysetting x→y =(y∨x∨y)→ y. y A skew Heyting algebra is an algebra S = (S;∧,∨,→,1) of type (2,2,2,0) such that (S;∧,∨,1) is a skew Heyting lattice and → is the implication thus induced. A sense of globalcoherencefor→onS isgivenby: Lemma3.1. LetSbeaskewHeytinglatticewith→asdefinedaboveandletx,y,u ∈ S besuchthatbothx,y ∈u↑hold. Thenx→y =x→ y. u Proof. As x and y both lie in u↑, they commute. By the definition of →, x → y = (x∨y) → y ≥ y by (H3). On the other hand, since → is the Heyting implication in y u the Heyting algebra u↑ it follows that x → y = (x∨y) → y ≥ y. Thus y, x∨y, u u (x∨y) → y and(x∨y) → y alllieiintheHeytingalgebray↑. Themaximalelement y u characterizationofboth(x∨y)→ yand(x∨y)→ yforcesbothtoagree. y u WewillusetheaxiomsofHeytingalgebrastoderiveanaxiomatizationofskewHeyting algebras. ThereadershouldfindmostoftheaxiomsofTheorem3.2belowtobeintuitively cleargeneralizationstothenon-commutativecase. However,twoaxiomsshouldbegiven furtherexplanation. Firstly,theuinaxiom(SH4)belowappearssinceuponpassingtothe non-commutative case, an element that is both below x and y with respect to the partial order≤nolongerneedexist.(Wecanhavex∧y∧x≤xbutnotx∧y∧x≤yingeneral.) Similarly, axiom(SH0)isneededsinceinthenon-commutativecaseitnolongerfollows fromtheotheraxioms,thereasonbeingthatingeneralx≤y∨x∨yneednothold. Theorem 3.2. Let (S;∧,∨,→,1) be analgebra of type (2,2,2,0) such that (S;∧,∨,1) isaco-stronglydistributiveskewlatticewithtop1. Then(S;∧,∨,→,1)isaskewHeyting algebraifandonlyifitsatisfiesthefollowingaxioms: (SH0) x→y =(y∨x∨y)→y. (SH1) x→x=1, (SH2) x∧(x→y)∧x=x∧y∧x, (SH3) y∧(x→y)=yand(x→y)∧y =y, (SH4) x→(u∨(y∧z)∨u)=(x→(u∨y∨u))∧(x→(u∨z∨u)). Proof. AssumethatSisaskewHeytingalgebra. (SH0). Bothx → yand(y∨x∨y) → yaredefinedas(y∨x∨y) → y. Thusthey y areequal. (SH1). Thisistruebecause1∧x=xistrueinx↑. 42 ArsMath.Contemp.12(2017)37–50 (SH2). Iny↑(H2)implies(y∨x∨y)∧((y∨x∨y) → y) = (y∨x∨y)∧y = y. y Hence x∧(y∨x∨y)∧(x→y)∧x=x∧y∧x. Ontheotherhand, x∧(y∨x∨y)∧(x→y)∧x=x∧(y∨x∨y)∧x∧(x→y)∧x=x∧(x→y)∧x, wherewehaveusedtheregularityof∧andthefactthatx(cid:22)y∨x∨y. (SH3). Both identities hold because y ∧ (y ∨ x ∨ y) = y in y↑. Thus x → y = (y∨x∨y)→y ≥y. (SH4). Firstnotethat(SH4)isequivalentto (SH4’)(u∨x∨u)→(u∨(y∧z)∨u)=((u∨x∨u)→(u∨y∨u))∧((u∨x∨u)→ (u∨z∨u)). Indeed,(SH0)andtheconormalityof∨giveboth (u∨x∨u)→(u∨w∨u)=(u∨x∨w∨u)→(u∨w∨u) and x→(u∨w∨u)=(u∨x∨w∨u)→(u∨w∨u) sothat x→(u∨w∨u)=(u∨x∨u)→(u∨w∨u). Henceitsufficestoprovethat(SH4’)holds. Observethatdistributivityimplies (u∨y∨u)∧(u∨z∨u)=u∨(y∧z)∨u. (3.1) Since u∨x∨u, u∨y ∨u, u∨z ∨u and u∨(y ∧z)∨u all lie in u↑ we can simply computeinu↑. Using(3.1)andaxiom(H4)forHeytingalgebrasweobtain:(u∨x∨u)→ (u∨(y ∧z)∨u) = (u∨x∨u) → ((u∨y ∨u)∧(u∨z ∨u)) = ((u∨x∨u) → (u∨y∨u))∧((u∨x∨u)→(u∨z∨u)). To prove the converse assume that (SH0)–(SH4) hold. Given arbitrary u ∈ S and x,y,z ∈u↑setx→ y =x→y. Axiom(SH3)impliesthatx→y ∈y↑⊆u↑. Thusthe u restriction→ of→tou↑iswelldefined. Sinceu↑iscommutativewithbottomu,axioms u (SH1)–(SH4)for→respectivelysimplifyto(H1)–(H4)for→ , making→ theHeyting u u implication on u↑. Axiom (SH0) assures that → is indeed the skew Heyting implication satisfyinga→b=(b∨a∨b)→ b,foranya,b∈S. b Corollary3.3. SkewHeytingalgebrasformavariety. In the remainder of the paper, given a skew Heyting algebra we shall simplify the notation→ to→whenreferringtotheHeytingimplicationinu↑. Remarksmadeabout u HeytingalgebrasinSection2applyherealso. Givenaco-stronglydistributiveskewlattice (S;∧,∨,1)withatop1,ifabinaryoperation→existsthatmakes(S;∧,∨,→,1)askew Heyting algebra, then it is unique since it is already there implicitly. Hence, given two isomorphic skew lattices, if either is the reduct of a skew Heyting algebra, then so is the otherandbothareisomorphicasskewHeytingalgebras. Proposition 3.4. The relation D defined in (2.1) is a congruence on any skew Heyting algebra. K.Cvetko-Vah:OnskewHeytingalgebras 43 Proof. Let (S;∧,∨,→,1) be a skew Heyting algebra. Since D is a congruence for co- stronglydistributiveskewlatticeswithatop, weonlyneed toprove(a → b)D(c → d) holdsforanya,b,c,d ∈ S satisfyingaDcandbDd. Withoutlossofgeneralitywemay assumeb≤aandd≤c. (Otherwisereplaceabyb∨a∨bandcbyd∨c∨d.) To begin, define a map ϕ : b↑ → d↑ by setting ϕ(x) = d∨x∨d. We claim that ϕ isalatticeisomorphismof(b↑;∧,∨)with(d↑;∧,∨),withinverseψ : d↑ → b↑givenby ψ(y) = b∨y∨b. Itiseasilyseenthatϕandψ areinversesofeachother. Forinstance, ψ(ϕ(x)) = b∨d∨x∨d∨bequals(b∨d∨b)∨x∨(b∨d∨b)bytheregularityof∨. Butthelatterreducestob∨x∨bbecausebDd,andsincex∈b↑itreducesfurthertoxby Lemma2.1,givingψ(ϕ(x))=x. ϕmustpreserve∧and∨. Indeeddistributivitygives: ϕ(x∧x(cid:48))=d∨(x∧x(cid:48))∨d=(d∨x∨d)∧(d∨x(cid:48)∨d)=ϕ(x)∧ϕ(x(cid:48)). Andtheregularitygives: ϕ(x∨x(cid:48))=d∨(x∨x(cid:48))∨d=(d∨x∨d)∨(d∨x(cid:48)∨d)=ϕ(x)∨ϕ(x(cid:48)). Thusϕ(andψ)isalatticeisomorphismofb↑withd↑. Butthenϕandψ arealsoisomor- phismsofHeytingalgebras. Thatis,e.g.,ϕ(x→y)=ϕ(x)→ϕ(y). Next,observethatxDϕ(x)forallx∈b↑. Indeed,regularitygives: ϕ(x)∨x∨ϕ(x)=(d∨x∨d)∨x∨(d∨x∨d)=d∨x∨d=ϕ(x) and likewise x ∨ ϕ(x) ∨ x = ψ(ϕ(x)) ∨ ϕ(x) ∨ ψ(ϕ(x)) = ψ(ϕ(x)) = x. There is more: a is the unique element in its D-class belonging to b↑ and c is the unique element inthesameD-classbelongingtod↑(sinceeachupsetu↑intersectsanyD-classinatmost one element). But ϕ(a) in d↑ behaves in the manner just like c, and so ϕ(a) = c. Since bD d, ϕ(b) = d∨b∨d = d and ϕ(a → b) = ϕ(a) → ϕ(b) = c → d, thus giving a→bDc→d. Following[5]acommutativesubsetofasymmetricskewlatticeisanon-emptysubset whoseelementsbothjoinandmeetcommute. Theorem3.5. Givenaco-stronglydistributiveskewlattice(S;∧,∨,1)withtop1,anop- eration→canbedefinedonSmaking(S;∧,∨,→,1)askewHeytingalgebraifandonlyif theoperation→canbedefinedonS/Dmaking(S/D;∧,∨,→,D )ageneralizedHeyting 1 algebra. Proof. Tobegin,foranyuinS,theupsetu↑isaD-classtransversaloftheprincipalfilter S ∨ u ∨ S. Secondly, the induced homomorphism ϕ : S → S/D is bijective on any commutativesubsetofS sincedistinctcommutingelementsofS lieindistinctD-classes. ItfollowsthatforeachuinS,ϕrestrictstoanisomorphismofupsets,ϕ : u↑ ∼= ϕ(u)↑. u Thuseachupsetu↑inSformsaHeytingalgebraifandonlyifeachupsetv↑inS/D,being someϕ(u)↑,mustformaHeytingalgebra. Thetheoremfollows. Comment. Thisresultisanear-dualoftheimportantfactthatastronglydistributiveskew latticeSwithbottom0isthe(necessarilyunique)reductofaskewBooleanalgebraifand only if its lattice image S/D is the reduct of a (necessarily unique) generalized Boolean algebra. ([15],3.8.) 44 ArsMath.Contemp.12(2017)37–50 Wenextconsiderconsequencesoftheabovetheorem. Thefirstisonthe”skewlattice side”ofthingsandthenextismoreonthe”Heytingside”. Butfirstrecallthedefinitionsof Green’srelationsLandRonaskewlattice: xLy ⇔(x∧y =x&y∧x=y, orequivalentlyx∨y =y&y∨x=x), xRy ⇔(x∧y =y&y∧x=x, orequivalentlyx∨y =x&y∨x=y). Relations L and R are contained in the Green’s relation D defined above and L◦R = R◦L=Dholds. Askewlatticeiscalledright-handediftherelationListrivial,inwhich caseD = R,anditiscalledleft-handediftherelationRistrivial,inwhichcaseD = L. By Leech’s Second Decomposition Theorem [13] the relations L and R are congruences onanyskewlatticeS,S/Risleft-handed,S/Lisright-handedandthefollowingdiagram isapullback: (cid:47)(cid:47) S S/R (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) S/L S/D Corollary 3.6. If S = (S;∧,∨,1) be a co-strongly distributive skew lattice with top 1, thenthefollowingareequivalent: 1. SisthereductofaskewHeytingalgebra(S;∧,∨,→,1). 2. S/ListhereductofaskewHeytingalgebra(S/L;∧,∨,→,1). 3. S/RisthereductofaskewHeytingalgebra(S/R;∧,∨,→,1). Moreover,bothLandRarecongruencesonanyskewHeytingalgebra. Proof. Theequivalenceof(i)–(iii)isduetotheprecedingtheoremplusthefactthatS/D, (S/L)/D and(S/R)/D areisomorphic. Next,theinducedmapρ : S → S/Lis S/L S/R atleastahomomorphismofco-stronglydistributiveskewlattices. Bytheargumentofthe precedingtheorem,itinducesisomorphismsbetweencorrespondingpairsofupsets,u↑in SandL ↑inS/L. Thusgivenx→y =(y∨x∨y)→ yandu→v =(v∨u∨v)→ v u y v withx;,L;,uandy;,L;,vinS,both(y∨x∨y)→ yand(v∨u∨v)→ varemapped y v to the common L → L , making x → y;,L;,y → v in S. A similar argument y∨x∨y Ly y appliestotheinducedmapλ:S→S/R. AnalternativetothecharacterizationofTheorem3.2isgivenby: Corollary3.7. EveryskewHeytingalgebrasatisfies: (SHA) x(cid:22)y →zifandonlyifx∧y (cid:22)z. Inparticular,x→y =1iffx(cid:22)y. Ingeneral,analgebraS=(S;∧,∨,→,1)oftype(2,2,2,0)isaskewHeytingalgebra ifthefollowingconditionshold: 1. Thereduct(S;∧,∨,1)isaco-stronglydistributiveskewlatticewithtop1. 2. y ≤x→yholdsforallx,y ∈S. K.Cvetko-Vah:OnskewHeytingalgebras 45 3. Ssatisfiesaxiom(SHA). Proof. GiventhatS isaskewHeytingalgebra, sincetheinducedepimorphismϕ : S → S/DisahomomorphismofskewHeytingalgebraswehave x(cid:22)y →ziffϕ(x)≤ϕ(y)→ϕ(z)iffϕ(x)∧ϕ(y)≤ϕ(z)iffx∧y (cid:22)z. Conversely, let S = (S;∧,∨,→,1) be an algebra of type (2,2,2,0) satisfying (1)–(3). Supposethatx,y,z lieinacommonupsetu ↑. Since(cid:22)isjust≤inu ↑nady → z lies in u ↑ by (2) we have x ≤ y → z iff x ∧ y ≤ z in u ↑. (S;∧,∨,1) is thus at least a skew Heyting lattice. Now consider the derived implication →∗ given by x →∗ y = (y∨x∨y)→ y. Bothy →z andy →∗ z satisfy(SHA)andthusareD-equivalent. But y sincebothlieinthesublatticez↑,theymustbeequal. We have seen that each skew Heyting algebra is basically a co-strongly distributive skewlatticeSwithtop, say1, forwhichS/D isageneralizedHeytingalgebra, inwhich case the Heyting structure on each upset u↑ of S is obtained from that of the isomorphic upsetD ↑inS/D. ThissuggeststhatallstandardclassesofgeneralizedHeytingalgebras u yieldclassesofskewHeytingalgebraswhosemaximalcommutativeimagesbelongtothe particularclass. Weconsiderseveralcases. Case1. Finitedistributivelatticespossessawell-definedHeytingalgebrastructure. Thus anyfiniteco-stronglydistributiveskewlatticewithatop,ormoregenerallyanyco-strongly distributive skew lattice with a top and a finite maximal lattice image is the reduct of a uniqueskewHeytingalgebra. Case2. Allchainspossessingatop1formHeytingalgebras. Herethingsaresimple: (cid:26) 1; ifx≤y. x→y = y; otherwise. Thusallco-stronglydistributiveskewchainswithatopareskewHeytingalgebrareducts, whereaskewchainisanyskewlatticeSwhereS/D isachain,i.e.,(cid:22)isatotalpreorder onS. Here,givenx,yinacommonu↑onehas: (cid:26) 1; ifx(cid:22)y. x→y = y; otherwise. Case3. DualgeneralizedBooleanalgebras. ThesearealgebrasS=(S;∧,∨,\\,1)where (S;∧,∨,1) is a distributive lattice with top 1 and \\ is a binary operation on S such that (y∨x)∨(y\\x)=1and(y∨x)∧(y\\x)=yforallx,yinS. Aswith\forgeneralized Boolean algebras, \\ is uniquely determined. Moreover, in this case, x → y = y \\x. Adual-skewBooleanalgebraS = (S;∧,∨,\\,1)isanalgebrasuchthat(S;∧,∨,1)isa co-stronglydistributiveskewlatticewithtop1andbinaryoperation\\suchthat: (y∨x∨y)∨(y\\x)=1=(y\\x)∨(y∨x∨y); (y∨x∨y)∧(y\\x)=y =(y\\x)∧(y∨x∨y). 46 ArsMath.Contemp.12(2017)37–50 Therelevantdiagramis: 1 y∨x∨y y\\x y Thesedualalgebrasare,ofcourse,preciselytheco-stronglydistributiveskewlatticeswith a top whose maximal lattice images are the lattice reducts of dual-generalized Boolean algebras. Once again we follow the commutative case: x → y = y \\x which now is y\\(y∨x∨y)iny↑. Wethushave: Corollary 3.8. A co-strongly distributive skew lattice with a top S = (S;∧,∨,1) is the reduct of a uniquely determined skew Heyting algebra (S;∧,∨,\\,1) if any one of the followingconditionsholds: 1. S/Disfinite. 2. Sisaskewchain. 3. SisthereductofadualgeneralizedBooleanalgebra,S=(S;∧,∨,\\,1). ImplicitinCase3isabasicdualitythatoccursforskewlattices. Givenaskewlattice S = (S;∧,∨), its (vertical) dual is the skew lattice S(cid:108) = (S;∧(cid:108),∨(cid:108)), where as binary functions, ∧(cid:108) = ∨ and ∨(cid:108) = ∧. Clearly S(cid:108)(cid:108) = S and any homomorphism f : S → T of skew lattices ia also a homomorphism from S(cid:108) to T(cid:108); moreover a skew lattice S is distributive(orsymmetric)iffS(cid:108)isthus. EitherSorS(cid:108)isstronglydistributiveifftheother is co-strongly distributive; more generally, S or S(cid:108) is normal iff the other is co-normal. Also,onehasabottomelementifftheotherhasatopelement,bothbeingthesameelement inS. Expanding the signature, (S;∧,∨,\,0) is a skew Boolean algebra if and only if its dual (S;∧(cid:108),∨(cid:108),\\,1) is a dual skew Boolean algebra where \ and 0 are replaced by \\ and 1. Thus any skew Boolean algebra (S;∧,∨,\,0) induces a skew Heyting algebra (S;∧(cid:108),∨(cid:108),→,1) where x → y = y \ x and 1 = old0. Standard examples of skew Booleanalgebrasthusgiveus: Example 3.9. Given sets X and Y, the skew Heyting operations derived from the skew BooleanoperationsonthesetP(X,Y)ofallpartialfunctionsfromX toY areasfollows. skewHeytingoperation description skewBooleanoperation f ∧g f ∪(g| ) f ∨g domg−domf f ∨g g| f ∧g domg∩domf f →g g| g\f domg−domf 1 ∅ 0
Description: