ebook img

On semigroup rings with decreasing Hilbert function PDF

0.23 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On semigroup rings with decreasing Hilbert function

On semigroup rings with decreasing Hilbert function. AnnaOneto1, Grazia Tamone2. Dima-UniversityofGenova,viaDodecaneso35,I-16146Genova,Italy. E-mail:[email protected], [email protected] Abstract 6 1 InthispaperwestudytheHilbertfunctionHR ofone-dimensional semigroupringsR = k[[S]]. Forsomeclasses ofsemigroups,bymeansofthenotionofsupportoftheelementsinS,wegiveconditionsonthegeneratorsofS in 0 2 ordertohavedecreasingHR.Whentheembeddingdimensionvandthemultiplicityeverifyv+3≤e≤v+4,the decreaseofHRgivesexplicitdescriptionoftheApe´rysetofS.Inparticularfore=v+3,weclassifythesemigroups n withe=13andHRdecreasing,furtherweshowthatHRisnon-decreasingife<12. FinallywededucethatHRis a non-decreasingforeveryGorensteinsemigroupringwithe≤v+4. J 1 3 Keywords: Numericalsemigroup,Monomialcurve,Hilbertfunction,Ape´ryset. MathematicsSubjectClassification: Primary:14H20;Secondary:13H10. ] 0 Introduction. C A Givenalocalnoetherianring(R,m,k)andtheassociatedgradedringG = ⊕ mn/mn+1 ,aclassicalhardtopic . n≥0 h incommutativealgebraisthestudyoftheHilbertfunctionH ofG, definedasH(cid:0) (n) = di(cid:1)m mn/mn+1 : when R R k t a R is the local ring of a k-scheme X at a pointP, HR givesimportantgeometricinformation. If(cid:0)depth(G)(cid:1)is large m enough,thisfunctioncanbecomputedbymeansoftheHilbertfunctionofalowerdimensionalring,butingeneralG [ isnotCohen-Macaulay,evenifRhasthisproperty. ForaCohen-Macaulayone-dimensionallocalringR,itiswellknownthatHR isanondecreasingfunctionwhen 1 GisCohen-Macaulay,butwecanhavedepth(G)=0andinthiscaseH canbedecreasing,i.e.H (n)<H (n−1) v R R R forsomen(see,forexample[8], [10], [11]). ThisfactcannothappenifRverifieseitherv ≤ 3, or v ≤ e ≤ v+2, 7 2 where e and v denote respectively the multiplicity and the embedding dimension of R (see [6], [7], [16]). If 3 R = k[[S]]isa semigroupring,manyauthorsprovedthatH isnon-decreasinginseveralcases: •S isgenerated R 0 byanalmostarithmeticsequence(ifthesequenceisarithmetic,thenGisCohen-Macaulay)[17],[13] •S belongsto 0 particularsubclassesoffour-generatedsemigroups,whicharesymmetric [1],orwhichhaveBuchsbaumtangentcone . 2 [3] •S isbalanced [12], [3] •S isobtainedbytechniquesofgluingnumericalsemigroups [2], [9] •S satisfies 0 certainconditionsonparticularsubsetsofS(seebelow)[5,Theorem2.3,Corollary2.4,Corollary2.11]. Ife≥v+3, 6 thefunctionH canbedecreasing,asshowninseveralexamples:thefirstone(withe=v+3)isin[14](hererecalled 1 R : inExample1.6). WhenGisnotCohen-Macaulay,ausefulmethodtodescribeHRcanbefoundinsomerecentpapers v (see[12],[3],[5]):itisbasedonthestudyofcertainsubsetsofS,calledD andC , (k ∈N). i k k X TheaimofthispaperisthestudyofsemigroupringsR = k[[S]]withH decreasing. Tothisgoalweintroduce R r andusethenotionofsupportoftheelementsinS (1.3.4);bymeansofthistoolwefirstdevelopatechnicalanalysis a ofthesubsetsD , C inSection2. Throughthismachinery,undersuitableassumptionsontheApe´rysetofS,we k k prove(Section3)necessaryconditionsonS inordertohavedecreasingHilbertfunction,see(3.4),(3.6). InSection4weapplytheseresultstothesemigroupswithv ∈{e−3,e−4}. Forv =e−3weshowthatthedecreaseofH ischaracterisedbyaparticularstructureofthesetsC , D , C and R 2 2 3 thatH doesnotdecreasefore ≤ 12,see(4.2),(4.3);inparticular,fore = 13,weidentifypreciselythesemigroups R withH decreasing,see(4.6)andexamples(4.7). R Incasev =e−4weobtainanalogousinformationsonthestructureofC ,C ,D ,D ,see(4.9)and(4.10). 2 3 2 3 SuchmethodsallowtoconstructvariousexamplesofsemigroupringswithdecreasingH ,see,forexample(3.2), R (3.7)wheree−7≤v ≤e−3;inparticularexample(3.7.1)describesasemigroupwhoseHilbertfunctiondecreases attwodifferentlevels. TheexampleshavebeenperformedbyusingtheprogramCoCoAtogetherwithFreeMatand Excel. As a consequenceof some of the abovefacts, one can see thatthe semigroupsS with |C | = 3 and |C ∩Ape´ry 2 3 set| ≤ 1 cannot be symmetric. It follows that every Gorenstein ring k[[S]] with v ≥ e − 4 has non-decreasing Hilbertfunction(4.11). ThisresultisapartialanswertotheconjecturesettledbyM.E.Rossi[15,Problem4.9]thata Gorenstein1-dimensionallocalringhasnon-decreasingHilbertfunction. 1 1 Preliminaries. WebreaflyrecallthedefinitionoftheHilbertfunctionforlocalrings.Let(R,m,k)beanoetherianlocald-dimensional ring,theassociatedgradedringofRwithrespecttomisG:= mn/mn+1: theHilbertfunctionH :G−→N n≥0 R ofRisdefinedbyH (n) = dim (mn/mn+1). ThisfunctioniLscalled non-decreasing ifH (n−1) ≤ H (n)for R k R R eachn∈Nand decreasing ifthereexistsℓ∈NsuchthatH (ℓ−1)>H (ℓ), wesayH decreasingatlevelℓ. R R R 1.1 Let R be a one-dimensional Cohen-Macaulay local ring and assume k = R/m infinite. Then there exists a superficialelementx∈m,ofdegree1,(i.e.suchthatxmn =mn+1forn>>0). Itiswell-knownthat • GisCohen-Macaulay ⇐⇒ theimagex∗ ofxinGisanon-zerodivisor. • IfGisCohen-Macaulay,thenH isnon-decreasing. R Webeginbysettingthenotationofthepaperandbyrecallingsomeknownusefulfacts. Setting1.2 InthispaperRdenotesa1-dimensionalnumericalsemigroupring,i.e. R=k[[S]],wherekisaninfinite fieldandS ={ a n , a ,n ∈N}isanumericalsemigroup ofmultiplicityeandembeddingdimensionvminimally i i i i generatedby{eP:= n1,n2,...,nv},with0 < n1 < ··· < nv, GCD(n1,...,nv) = 1. ThenRisthecompletionof thelocalring k[x ,...,x ] ofthemonomialcurveC parametrizedbyx := tni (1 ≤ i ≤ v). Themaximal 1 v (x1,...,xv) i idealofRism=(tn1,··· ,tnv)andx =teisasuperficialelementofdegree1.Letv:k((t))−→Z∪{∞}denote 1 theusualvaluation. 1. M :=S\{0}=v(m), hM =v(mh), foreachh≥1 andtheHilbertfunctionH verifies R H (0)=1, H (h)=|hM \(h+1)M|, foreachh≥1. R R 2. Letg ∈S,the order ofgisdefinedas ord(g):=max{h|g ∈hM}. 3. Ap=Ape´ry(S):= {s ∈ S|s−e ∈/ S}is theApe´ry setofS withrespecttothe multiplicitye , |Ap| = e and e+f isthegreatestelementinAp,wheref :=max{x∈IN\S}istheFrobeniusnumberofS. Letd:=max{ord(σ)| σ ∈Ap}. DenotebyAp :={s∈Ap|ord(s)=k}, k ∈[1,d]thesubsetoftheelementsoforderkinApe´ry. k 4. LetR′ := R/teR,theHilbertfunctionofR′ is HR′ = [1,a1,...,ad]withak = |Apk| foreachk ∈ [1,d], see,forexample,[12,Lemma1.3]. 5. AsemigroupS iscalledsymmetricifforeachs∈S s∈Ap⇐⇒e+f −s∈Ap. By(1.2.1)and(1.1),iford(s+e)=ord(s)+1foreachs∈S,thenGisCohen-MacaulayandH isnon-decreasing. R Thereforein order to focus on the possible decreasing Hilbert functions, it is useful to define the following subsets D ,C ⊆S,wealsointroducethenotionofsupport forabetterunderstandingofthesesets. k k Setting1.3 1. D :={s∈S|ord(s)=k−1andord(s+e)>k}. D =D =∅, ∀k ≥r[12,Lemma1.5.2] . k 1 k (cid:0) (cid:1) Dt :={s∈D suchthat ord(s+e)=t} andlet k :=min{k suchthat D 6=∅}. k k 0 k 2. C :={s∈S|ord(s)=k and s−e∈/ (k−1)M}, i.e.,C =Ap ∪ (Dk+e), with 2≤h≤k−1 . k k k h h S (cid:8) (cid:9) C ={n ,··· ,n }, C =Ap , C =(D3+e)∪Ap and C =∅, ∀k ≥r+1 [12,Lemma1.8.1], [3]. 1 2 v 2 2 3 2 3 k 3. Amaximalrepresentationofs∈S isanyexpressions= v a n ,a ∈IN,with v a =ord(s) j=1 j j i j=1 j P P andinthiscasewedefinesupport ofsas Supp(s):={n ∈Ap |a 6=0}. Recall: i 1 i Supp(s)dependsonthechoiceofamaximalrepresentationofs. Furtherfors∈S,wedefine: |Supp(s)|:=max |Supp( a n )|, suchthats= a n isamaximalrepresentationofs . i i i i i i (cid:8) P P (cid:9) 4. ForasubsetH ⊆S, Supp(H):= Supp(s ),s ∈H . i i S(cid:8) (cid:9) 2 5. Wecallinducedbys= v a n (maximalrepresentation)anelement j=1 j j s′ = v b n ,with P0≤b ≤a . Recall: ord(s′)= b by[12,Lemma1.11]. j=0 j j j j j P P Thefollowingtwopropositionsarecrucialinthesequel. Proposition1.4 LetS beasinSetting1.2andlets∈C , k ≥2. Then k 1. Foreachs= a n ∈C (maximalrepresentation,with a =k),wehave: j≥1 j j k j≥1 j P P (a) Everyelements′ = b n inducedbys,with b =h, belongstoC . j≥1 j j j≥1 j h (b) Supp(C )⊆Supp(PC )⊆...⊆Supp(C ). P k k−1 2 2. Ifs=g+ewithg ∈D , (h≤k−1),anymaximalrepresentations= a n hasa =0. h j≥1 j j 1 P Proof.(1.a).See[12,Lemma1.11]. (2).Ifa >0,theng =(a −1)e+ a n hasord=k−1,by(1.a),contradiction. ⋄ 1 1 j≥2 j j P Proposition1.5 LetS beasinSetting1.2,letk beasin(1.3.1)andlet k ≥2. 0 1. H (k)−H (k−1)=|C |−|D | [12,Proposition1.9.3],[3,Remark4.1] R R k k 2. GisCohenMacaulay ⇐⇒D =∅ foreachk ≥2. [12,Theorem1.6]. k 3. If|D |≤k+1foreveryk≥2,thenH isnon-decreasing [5,Theorem3.3,Corollary3.4]. k R 4. If|D |≥k+1,then |C |≥h+1 forall h∈[2,k] [5,proofofProposition3.9]. k h 5. Inparticular(recall: k =min{k|D 6=∅})[5, Corollary3.11]: 0 k (a) IfH isdecreasingatlevelk,then|D |≥max{1+|C |, k+2}, R k k (b) IfH isdecreasing,then|Ap |≥k +1, R k0 0 (c) IfH isdecreasing,then|Ap |≥3. R 2 WeshowasemigroupS withH decreasing,whichisthefirstexampleinthesensethate =v+3 =13, |Ap | =3 R 2 areminimalinordertohavedecreasingHilbertfunction,see(4.2),(4.3). Example1.6 [14,Section2] Let S =<13,19,24,44,49,54,55,59,60,66>,withe=13, v =10, Ap={ 0 19, 24, 38, 43, 44, 48, 49, 54, 55, 59, 60, 66 }. M \2M 13 19 24 44 49 54 55 59 60 66 dim = 10 2M \3M 26 32 37 38 43 48 68 73 79 dim = 9 3M \4M 39 45 50 51 56 57 61 62 67 72 92 dim = 11 4M \5M 52 58 63 64 69 70 74 75 80 81 85 86 dim = 12 5M \6M 65 71 76 77 82 83 87 88 93 94 98 99 105 dim = 13 ThenHR =[1,10,9,11,12,13→], HR′ =[1,9,3].FurtherSupp(D2+e)=SuppC2 ={19,24}: D2 = {44,49,54,59} C2 ={38,43,48}={19·2,19+24,24·2}=Ap2 D +e = {57,62,67,72} 57=3·19, 62=2·19+24, 67=19+2·24, 72=3·24 2 D = {68,73} C ={57,62,67,72}=D +e 3 3 2 D +e = {81,86} 81=3·19+24, 86=2·19+2·24 3 D = {92} C ={81,86}=D +e 4 4 3 D +e = {105} 105=3·19+2·24 4 D = {∅} C ={105}=D +e. 5 5 4 3 2 Technical analysis of C and D via supports and Ape´ry subsets. k k Lemma2.1 Letx= v a n ∈C ,witha ≥1,foreachi, v a =ord(x) =kand|Supp(x)|=q. i=2 i i k i i=2 i P P (a) |C |≥hp+1≥q, if q ≥h+1, p≥1 Let 2≤h<k, then h (cid:20) (b) |Ch|≥q, if q ≤h. Proof.Firstrecallthat,by(1.4.1a),everyelementoforderhinducedbythegivenmaximalrepresentationofx,belongs toC . WedenoteforsimplicitySupp(x)={m <m <··· .<m },distinctminimalgenerators,withm 6=eby h 1 2 q i (1.4.2). (a). Ifq ≥h+1. Thenwecanconstructthe(h+1)+h(q−h−1)distinctinducedelementsinC : h i=1,··· ,h+1, for η =1, σ =( η+hm )−m , η =1,··· ,q−h, . (cid:26) η,i j=η j i (cid:20) i=η,··· ,h+η−1, for 2≤η ≤q−h, (cid:27) P (b). If1≤q ≤h,thereexists(a′,··· ,a′)suchthata ≥a′ ≥1, ∀i=1,··· ,q, a′ =h+1. ThenC contains 1 q i i i i h theqdistinctelements σj = q1a′imi−mj, j =1,··· ,q. ⋄ P P Proposition2.2 Letk =min{k∈N|D 6=∅}, d=max{ord(σ), σ ∈Ap}. 0 k 1. Letg ∈D , g+e= a n ,with a =k+p, p≥1(maximalrepresentation): k j j j j j P P (a) Lety ∈C , h<k+p,beinducedbyg+e;if h≤max{p+1,k }, then y belongstoAp. h 0 (b) p≤d−1. (c) |Supp(g+e)|≤|Ap |. p+1 2. If Ap =∅, then D +e=C foreachk ≥2. 3 k k+1 Proof.1.(a) Let h≤k andletz ∈C \Ap; thenz−e∈S, with ord(z−e)≤h−2,hencez−e∈D , r <k , 0 h r 0 impossible. Further,ify = b n andy ∈/ Ap,with h= b ≤p+1,theny =e+σ,with 0<σ ∈S. Then: j j j g =σ+ (aj −bj)nj =⇒oPrd(g)≥1+k+p−(p+1)=Pk, contradiction. P 1.(b) Letg+e = a n (maximalrepresentation),if a ≥ k+d,thend+1 ≤ a −k+1andsoevery j j j j j j j inducedelement∈PCd+1belongstoApby(1),impossibleP,since(d+1)M ⊆M +e;hePnceord(g+e)=k+1. 1.(c)Let|Supp(g+e)|=qandleth :=p+1< p+k,by(2.1)thereareatleastqelementsinC . Theseelements h areinAp,by1.(a).Henceq ≤|Ap |. p+1 2. Ifthereexistsg ∈D suchthatord(g+e)≥k+2,thenp≥2;by1.(a)wewouldhavey ∈Ap foreveryy ∈C k 3 3 inducedbyg+e. ⋄ Remark2.3 1. (2.2.1a)cannotbeimproved,forexamplein(1.6)ifs = 92 : ord(s) = 3, 92+e = 105 = 3·19+2·24=⇒92∈D , p=1 and2·19+24=62=49+e∈C \Ap (here3=p+2). 4 3 3 2. Letx ,x ∈D , x 6=x suchthatSupp(x +e)=Supp(x +e), x +e= α n , 1 2 k 1 2 1 2 1 i i x2+e= βini. Thenthereexist i,j suchthatαi >βi, αj <βj. P Proof. IfxP6= x andα ≥ β foreachi,thenx +e = x +e+σ,ord(σ) ≥ 1,henceord(x ) > ord(x ), 1 2 i i 1 2 1 2 impossible. 3. Letx ∈ D , ord(x+e) ≥ k+2. Ify ∈ D andord(y+e) = h ≤ k+1. Theny+ecannotbeinducedby k k x+e. Proof.Ifx+e=y+e+s,withord(s)≥1thenx=y+s,ord(x) >ord(y),impossible,sincebyassumption ord(x)=ord(y)=k−1. GiventhesetsC ,C ,withh < k,weestimatelowerboundsforthecardinalityofC ,byenumeratingtheelements h k h inducedbyC . Wefirstconsidertheelementsinducedbythesubset{x∈C suchthat|Supp(x)|≤2}. k k Lemma2.4 Forx ∈C ,(k ≥3), let x =a n +b n , a +b =kandlet r ∈[2,k−1]. r k r r i r j r r 4 1. Letx ∈C ;thenumberofdistinctelementsofC inducedbyx is 1 k h 1 1+min{b ,h}, if a ≥h 1 1 β1 =1+min{a1,b1,h,k−h}= 1+a1 if a1 <h≤b1 1+k−h if a ,b <h 1 1  withβ ≥1 andβ =1⇐⇒ a b =0. 1 1 1 1 2. Letx ,x bedistinctelementsinC suchthat Supp(x )∪Supp(x )={n ,n }. 1 2 k 1 2 i j x =a n +b n , 1 1 i 1 j Wecanassumethat x2 =a2ni+b2nj,  a +b =k, 0≤a <a , =⇒ 0≤b <b . i i 1 2 2 1 ThenumberofdistinctelementsofC inducedby{x ,x }is h 1 2 (a) 1+min{b ,h}≥2 (=2⇐⇒b =1,b =0) if h≤a <a 1 1 2 1 2  (b) 2+min{a ,k−h}+min{h−a −1,b }≥3 if 0≤a <h≤a β = 1 1 2 1 2 2 (c) 2+min{a ,k−h}+min{a −a −1,k−h}≥2 if 0≤a <a <h  1 2 1 1 2  β =2⇐⇒a =0,a =1  2 1 2 x =a n +b n 1 1 i 1 j 3. If C ⊇{x ,x ,x }, let x2 =a2ni+b2nj, , k 1 2 3  x3 =a3ni+b3nj, a +b =k, 0≤a <a <a , b >b >b ≥0 i i 1 2 3 1 2 3 ThenumberofdistinctelementsofC inducedby{x ,x ,x }is h 1 2 3 (a) 1+min{b ,h}≥3 if h≤a <a <a 1 1 2 3 (b) 2+min{a ,k−h}+min{h−a −1,b}≥3 if a <h≤a <a 1 1 2 1 2 3  further β ≥4, except the cases:  3  (i) h=2, a ∈{0,1}  1  (ii) k =h+1, a =h−1, b =2  1 1  (iii) a =0, b =1  1 2 β = 3 (c) 3+min{a ,k−h}+min{a −a −1,k−h}+min{h−a −1,b } if a <a <h≤a  1 2 1 2 3 1 2 3   further β ≥4, except the cases:  3  (c ) a =a −1=min{h−2,b }=0  1 1 2 3  (d) 3+min{a ,k−h}+ min{a −a −1,k−h} if a <a <a <h  1 i=1,2 i+1 i 1 2 3   further β =3⇐⇒aP=0,a =1, a =2  3 1 2 3  Proof.1. Puta =a,b =bforsimplicity.Ifa≥h,theinduceddistinctelementsinC are: 1 1 h {hn , (h−1)n +n ,··· ,hn },ifh≤b, i i j j {hn , (h−1)n +n ,··· ,bn },ifh>b. i i j j Thenβ =1+min{b,h}=i+min{a,b,h,a+b−h}. 1 If a < h ≤ b, then {hn , (h−1)n +n ,··· ,(h−a)n +an } are indueced distinct elements of C . Hence i i j i j h β =a+1wherea=min{a,b,h,a+b−h}sincea≤a=b−h<b. 1 Ifa,b<h, thentheinduceddistinctelementsare:an +(h−a)n , (a−1)n +(h−a+1)n ,··· ,(h−b)n +bn , i j i j i j then β = a+b−h+1 = k−h+1, furtherβ = 1+min{a,b,h,a+b−h} = a+b−h(= k−h), since 1 1 a+b−h<a<h, a+b−h<b. If a,b ≥ h, then β = 1+h and the induced distinct elements are {hn , (h−1)n +n ,··· ,hn }. In this case 1 i i j j |C |=h+1ismaximal. Then,ifa≥h,β =1+min{b ,h}. h 1 1 2(a). Theinduceddistinctelements∈C are {(h−i)n +in , 0≤i≤min{b ,h} }. h i j 1 2(b). Wehave1+min{a ,k−h}elements∈C inducedbyx , by(1): 1 h 1 (a −i)n +(h−a +i)n , 0≤i≤min{a ,k−h} 1 i 1 j 1 Moreover fromx wecanextractthefollowingdistinctadditionalelements 2 5 (h−p)n +pn , p≥0, h−p≥a +1, p≤b hencewith 0≤p≤min{h−a −1,b }. i j 1 2 1 2 (cid:0) (cid:1) 2(c). First, x induces the same elements of C considered in (2.b); moreover from x one gets other M distinct 1 h 2 elements (a −p)n +(h−a +p)n ,withp≥0, a −p≥a +1, h−a +p≤b 2 i 2 j 2 1 2 2 (hence0≤p≤min{a −a −1,k−h}),where 2 1 eitherM =(a −a ), if h−a −1≤b (elements(a −p)n +(h−a +p)n ,with0≤p≤a −a −1); 2 1 1 2 2 i 2 j 2 1 or M =k−h+1, if h−a −1>b (elements a n +(h−a )n ,··· ,(h−b )n +b n ). 1 2 2 i 2 j 2 i 2 j 3. Itcomesdirectlybyusingthesameideasoftheproofofstatement(2). ⋄ Thislemmaallowstoprovethemoregeneral Proposition2.5 Assumek ≥3, 2≤h≤k−1and C ⊇{x ,x ,··· ,x }, p≤k+1, with k 1 2 p x =a n +b n , 1≤i≤p, a +b =k i i i i j i i (cid:26) 0≤a1 <a2 <···<ap ≤k (=⇒k ≥b1 >b2 >···>bp ≥0) and let β be the number of distinct elements of C induced by {x , i = 1,··· ,p}. Then β ≥ min{h+1,p}, p h i p precisely: 1+min{b ,h} if h≤a <···<a 1 1 p  i+1+min{a1,k−h}+···+min{ai−ai−1−1,k−h}+min{h−ai−1,bi+1} if <ai <h≤ai+1 < (i≤p−1)   p+min{a1,k−h}+···+min{ap−ap−1−1,k−h} if <ap <h  Lemma2.6 Letx ,x bedistinctelementsinD suchthatSupp(x +e)={n ,n }, Supp(x +e)={n ,n }, {n ,n }∩ 1 2 k 1 i j 2 t u i j y =x +e=an +bn 1 1 i j {nt,nu}=∅. Let y2 =x2+e=cnt+dnu .  abcd6=0, a+b=k+r , c+d=k+r 1 2 Let r := min{r ,r }, and let 2 ≤ h ≤ k + r. Consider the induced elements z = pn + (h − p)n , z = 1 2 1 i j 2 qn +(h−q)n ∈C . t u h Then z 6= z for every p,q,h and |C | ≥ β + β where β ,β are defined in (2.4.1) (called β ). 1 2 h ab cd ab cd 1 Consequently |C |≥4, if h<k+r, |C |≥3, if h=k+r, r 6=r , |C |≥2, if h=k+r, r =r . h h 1 2 h 1 2 Proof.Assumez =z ,thenbysubstitutingweget 1 2 y =(a−p)n +(b+p−h)n +z =(a−p)n +(b+p−h)n +qn +(h−q)n 1 i j 1 i j t u . (cid:20) y2 =(c−q)nt+(d+q−h)nu+z1 =pni+(h−p)nj +(c−q)nt+(d+q−h)nu Firstnotethatbytheassumption,wehavez 6=z if: p=q =0,orp=q−h=0,orq =h−p=0,orh=p=q; 1 2 moreoverifthreecoefficientsare6=0,then|Supp(y )|=3,againsttheassumption.Thisargumentallowstocomplete i theproofintheremainingcaseswhicharethefollowing: (a−p)n (b+p−h)n qn (h−q)n | pn (h−p)n (c−q)n (d+q−h)n i j t u i j t u  6=0 0 0 6=0 | 6=0 b c d−h 6=0 0 6=0 0 | 6=0 b c−h d   0 6=0 0 6=0 | 6=0 6=0 c d−h   0 6=0 6=0 0 | 6=0 6=0 c−h d ⋄  Lemma2.7 Letk≥3andletx ,x bedistinctelementsinD suchthat|Supp(x +e)|=|Supp(x +e)|=2, 1 2 k 1 2 x +e=an +bn 1 i j , a,b,c,d>0with n ,n ,n distinctelementsinAp . (cid:26) x2+e=cnt+dnj i j t 1 Forh<k,considertheinducedelementsinC : z =pn +(h−p)n , z′ =qn +(h−q)n . Then h i j t j (cid:8) (cid:9) (i) pq =0 and p+q >0  (ii) a<h and q ≥max{1,h−d} 1. z 6=z′inthefollowingcases or   c<h and p≥max{1,h−b}  6 x +e=n +bn 2. Inthecases 1 i j wehave|C |≥3, intheremainingcases|C |≥4. (cid:26) x2+e=nt+dnj h h Proof.1. (i)isimmediatebytheassumptions. (ii). Itisenoughtoconsiderp>0by(i);ifz =z′,then x +e=pn +(d+q−p)n +(c−q)n ,whered+q−p≥h−p≥1,sincep≤a<h. Then: 2 i j t |Supp(x +e)|≥3 if c−q >0 2 , contradictioninanycase. (cid:20) Supp(x2+e)=Supp(x1+e) if c−q =0 2. Wecanassume0<a≤c. Thefollowingz belongtoC andaredistinct. i h (ii) 1≤a,c<h: z =an +(h−a)n (i) a=c=1: z =n +(h−1)n 1 i j 1 i j (ac≥2) z =(a−1)n +(h−a+1)n z =h n 2 i j 2 j z =cn +(h−c)n z =n +(h−1)n 3 t j 3 t j z =(c−1)n +(h−c+1)n 4 t j (iii) a<h=c: z =an +(h−a)n 1 i j (iv) a<h<c: z =an +(h−a)n z2 =(a−1)ni+(h−a+1)nj 1 i j z =(a−1)n +(h−a+1)n z3 =c nt 2 i j z =h n z4 =(c−1)nt+nj 3 t z =(h−1)n +n 4 t j (v) h≤a≤c: z =hn 1 i z =(h−1)n +n 2 i j z =h n 3 t z =(h−1)n +n 4 t j Thenontrivialsubcasesof(i),··· ,(iv)comedirectlyfrompart1. Case(v).z =z =⇒ eitherSupp(x +e)=Supp(x +e)(ifa=h),or|Supp(x +e)| =3,(ifa >h),against 1 4 1 2 1 theassumptions. z = z =⇒ either Supp(x +e) = Supp(x +e)( if c = h), or |Supp(x +e)| = 3,( if c > h), against the 2 3 2 1 2 assumptions. ⋄ Nextpropositionshowsthatfork=2,statement(1.5.4)holdsalsoatstepk+1. Proposition2.8 AssumeH decreasingatlevel h. Then R 1. Thereexistx ,x ∈D suchthat|Supp(x +e)|≥2, for r =1,2. 1 2 h r 2. |C |≥4. 3 Proof. 1. AssumeH decreasingatlevelh: weknowthatm =|C |≤|D |−1. If|Supp(x +e)| = 1 ∀x ∈D , R h h r r h thenx +e=α m , α ≥h+1,m ∈Ap ,withm 6=m , if r6=s. Hencetheelements{hm }wouldbedistinct r r r r r 1 r s r elements∈C and|C |>m. h h Henceletx ∈D ,|Supp(x +e)|≥2,withamaximalrepresentation x +e= β m ,withβ ≥ 1,m ∈Ap 1 h 1 1 i i i i 1 distinctelements.Oneinducedelement∈Chis c1 =mi+mj+sforsomesofordPerh−2. Ifeachxi ∈Dh,i>1 has maximalrepresentationof the type x +e = α n , then hm ,··· ,hm ∈ C are distinct elements; further i i i j m+1 h hm 6= c for each i (otherwise x +e = c +(α −h)m and so |Supp(x +e)| ≥ 2). Then |C | ≥ m+1, i 1 i 1 i i i h contradiction. 2. By(1.5.3and4)weknowthatifh > 2then|C |≥ j+1forall2 ≤ j ≤ h. Itremainstoprovethestatementfor j h=2, and |D |≥4by[5,prop.2.4]. 2 SinceC =Ap ∪(D3+e),thefactistrueiford(x+e)=3 ∀x∈D . Henceweassumethereexistsx∈D such 3 3 2 2 2 thatord(x+e)≥4. Inthisproof,forsimplicity,wedenotetheelementsofSupp(x)withm ,m ,m ··· andassumem <m <m . 1 2 3 1 2 3 If|Supp(x+e)|≥4:x+e=m +m +m +m +s,withm <m <m <m ,then|C |≥4by(2.1.a). 1 2 3 4 1 2 3 4 3 If|Supp(x+e)|=3, x+e=β m +β m +β m withβ ≥1, β ≥5),wefind4inducedelementsin C as 1 1 2 2 3 3 i i 3 follows: P whenβ ≥2,β ≥2:{m +m +m ,2m +m ,2m +m ,2m +m }; 1 2 1 2 3 1 2 1 3 2 3 7 whenβ ≥2,β ≥2:{m +m +m ,2m +m ,2m +m ,m +2m }; 1 3 1 2 3 1 2 1 3 2 3 whenβ ,β ≥2,β ≥2:{m +m +m ,2m +m ,m +2m ,m +2m }; 1 2 3 1 2 3 2 3 1 2 2 3 whenβ ≥3:{m +m +m ,2m +m ,2m +m ,3m }. 1 1 2 3 1 2 1 3 1 If|Supp(x+e)|=3, x+e=β m +β m +β m withβ ≥1, β =4,thenx+einducesinC threedistinct 1 1 2 2 3 3 i i 3 elementsc1,c2,c3(seethefollowingtable).TogetthefourthelemenPt,wetakey ∈D2,y 6=x,|Supp(y+e)|≥2(by 1). IfSupp(x+e) 6= Supp(y+e)andeachelementinducedbyy+einC isalsoinducedbyx+e,then wecan 3 alwaysreducetothecaseSupp(x+e)⊇Supp(y+e),bysuitablesubstitutions(inoneormoresteps). Hence we can assume Supp(x+e) ⊇ Supp(y +e); we study in the next table one of the possible subcases, the remainingaresimilar. Let x+e=m +2m +m 1 2 3 (cid:26) y+e=β1′m1+β2′m2+β3′m3, βi′ ≥3 If β′ =3,theny+e6=zforeachz ∈C inducedbyx+e,otherwisePord(x)>ord(y). Henceassume β′ >3; i 3 i P c1 =m1+2m2 P  c2 =m1+m2+m3 c =2m +m 3 2 3   and, according to the values ofthe β′,  i  c =2m +m if β′ =2,β′ ≥1 thenC ⊇ 4 1 2 1 2 3  c5 =m2+2m3 if β1′ ≤1,1≤β2′ ≤2,β3′ =2  c =3m if β′ ≥3  6 3 3  c7 =3m1 if β1′ ≥3  c8 =3m2, or 2m1+m2, or m2+2m3 if β2′ ≥3  c =2m +m if β′ =2,β′ =0,β′ ≥1  9 1 3 1 2 3 Clearlytheelementsc , i = 4,··· ,7aredistinctfromc ,c ,c . Incaseβ′ ≥ 3wehaveeithery+e = 3m +m , i 1 2 3 2 2 i (i = 1 or3) or y+e = 3m . Inthe first case if 3m = m +m +m , then2m = m +m =⇒y+e = 2 2 1 2 3 2 1 3 2m +m +m , or y+e=m +m +2m andwecanaddc resp. c . 1 2 3 1 2 3 4 5 In case y +e = 3m , we get3m ∈/ {c ,c ,c }, otherwise 2m = m +m =⇒y +e = m +m +m , i.e., 2 2 1 2 3 2 1 3 1 2 3 x=y+m ,impossiblesinceord(x) =ord(y). 2 Ifβ′ =2,β′ =0,β′ ≥1,thenc ∈/ {c ,c ,c }otherwise2m +m =m +2m =⇒m +m =2m =⇒x−y = 1 2 3 9 1 2 3 1 3 1 2 1 3 2 (2−α)m ,impossibleinanycase. 3 Finallyweassume: |Supp(x+e)| = |Supp(y+e)| = 2, ord(x+e) ≥ 4. Bylemmas(2.6)and(2.7),itremainsto analysethecases x+e=m +bm x +e=am +bm 1 2 1 1 2 x+e=am +bm a+b=3 (I) by≥+e3,=dm≥32+dm2 (II) xa2++be≥=4,cmc+1+dd≥m32 (III)(cid:26) y+e=cm31+dm42 c+d≥4 (I). Theinduceddistinctelementsarec1 =m1+2m2 c2 =3m2 c3 =2m2+m3 . Byassumption,thereexisttwootherelem(cid:8)entsz1,z2 ∈D2;bytheabovetoolsandby(2.3),w(cid:9)ecanrestricttothecases (i) z +e=αm +βm α6=1 α+β ≥3 1 1 2 b≥3, d≥2: (ii) z1+e=αm3+βm2 α6=1 α+β ≥3 . (iii) z +e=αm +βm α+β ≥3 1 1 3  In the first two cases, if α > 0, then α ≥ 2 (by 2.3.2), thereforeif β > 0 we obtain |C | ≥ 4 by applying(2.7.2) 3 to thepair of elements{z +e, y +e} (resp{x+e, z +e}). Incase (iii), again, from(2.7.2), bysubstitutingin 1 1 {x+e, z +e}m′ =m ,m′ =m ,m′ =m ,wededuce|C |≥4, if αβ >0. Theremainingpossibilitiesare 1 1 2 2 1 3 3 3 (i′) z +e=βm β ≥3 1 2 (ii′) z +e=αm α≥3 . 1 1 (iii′) z +e=αm α≥4 1 3 Incase(i′)wecanassumetheelementz ∈D ,verifiesz +e=αm , α≥3 (orz +e=αm ). 2 2 2 1 2 3 If3m = 2m +m , then, either|Supp(z +e)| = 3 andwe aredone, or z +e = 2m +m , impossiblesince 1 2 3 2 2 2 3 y+e=m +dm . 3 2 Similarlywecansolvecase(ii′). Incase(iii′),if3m =m +2m , then z +e=m +2m +(α−3)m .Thecaseα≥5hasalreadybeenproved 3 1 2 1 1 2 3 above.Ifα=4,weconsiderm +m +m ∈C which,inthissituation,isdistinctfromc ,c ,c . 1 2 3 3 1 2 3 8 (II). If we have 4 elementswith support ⊆ {m ,m }, then we are doneby (2.5). The othercases can be studied 1 2 amongtheonesofshape(I)or(III). (III). By 2.6, it remains to consider elements z + e = αm + βm , with α + β = 3. In this case, C ⊇ i 1 2 3 {x+e,z +e,}∪{y ,y , inducedbyy+e}. ⋄ 1 1 2 3 Structure of C . 3 Theorem3.1 Assume |Ap |=3. Then 2 1. If|C |≥2, then|Supp(x)|≤2, foreachx∈C . 3 3 2. If|C |≥4, then 3 (a) Thereexistx ,x ∈C suchthat|Supp(x )|=2. 1 2 3 i 3n 2n i (b) Thereexistni,nj ∈Ap1suchthatC2(=Ap2)= n2nii+nj, C3 = 2nnii++2nnjj . j 3n j   Proof.1. Ifx∈C ,then|Supp(x)|≤3. Firstweshowthatifx ,x ∈C ,then|Supp(x )|≤2fori=1,2.Assume 3 1 2 3 i thatx =n +n +n , n <n <n . Then,by(1.4.1a)andtheassumption,wededucethat 1 i j k i j k Ap ={n +n ,n +n ,n +n } (∗) 2 i j i k j k Hence2n ,2n ∈/ Ap, 2n ∈Ap⇐⇒n +n =2n . Ifx ∈C ,x 6=x therearethreecases: i k j i k j 2 3 2 1 n +n i j (a) If |Supp(x2)|=1,hencex2 =3nt,then2nt ∈C2,by(1.4.1a).Henceby(∗)2nt = ni+nk n +n j k  Ineverycaseweseethat|Supp(x )|≥2,acontradiction. 2 (b) If |Supp(x )|=2,x =2n +n ,t6=v,then2n ∈C ,by(1.4.1a). 2 2 t v t 2 n +n =⇒x =n +n +n =⇒n ∈{n ,n } i j 2 i j v v i j  nv =ni=⇒x2 =2ni+nj =⇒2ni ∈Ap2 Henceby(∗)2n = n =n =⇒x =n +2n =⇒n +n =2n ∈Ap =⇒2n ∈Ap t  v j 2 i j i k j 2 i 2  ni+nk (similar)   nj +nk (similar)  everycasecontradictsequality(∗). (c) If |Supp(x )| = 3, x = n +n +n , n < n < n , by (∗)wemusthave: n +n = n +n ,hence 2 2 t v w t v w t v i j x =n +n +n . Thisequalityimpliesthat 2 i j w n 6=n (sincex 6=x ) w k 2 1  nw 6=nj (otherwise x2 =ni+2nj =2ni+nk, see(∗)) .  n +n ∈Ap =⇒n +n =n +n i w 2 i w j k Hencex =2n +n =n +2n ,contradiction. 2 j k i k 2(a). Let x ∈ C ,1 ≤ i ≤ 4, distinct elements such that 1 ≤ |Supp(x )| ≤ 2 (by 1). If |Supp(x )| = 1, for i 3 i i x = 3n 1 a i=1,2,3, x2 = 3ni ,thenby(1.4.1a)C2 =Ap2 ={2na,2ni,2nc}. Since|Ap2|=3,by(1)and(1.4.1a),we  x = 3n 3 c have|Supp(x )|=2:wecanassumex =2n +n ,n +n =2n . Hencex =n +n +n ,withn 6=n and 4 4 a d a d i 2 a d i a d so|Supp(x )|≥2,againsttheassumption. 2 x =2n +n , n 6=n 2(b). Let{x ,x ,x ,x }⊆C ;by2(a),wecanassumethat 1 i j i j . 1 2 3 4 3 (cid:26) x2 =2nh+nk nh 6=nk Weprovethat|Ap |=3=⇒n =n ,n =n , i.e. Supp(x )=Supp(x ),x =n +2n . 2 i k j h 1 2 2 i j Notethat|Ap | = 3=⇒|{n ,n ,n ,n }| ≤ 3,otherwise,{2n ,2n ,n +n ,n +n } ⊆ Ap =⇒|Ap | ≥ 4. In 2 i j h k i h i j h k 2 2 factif2n = n +n =⇒|Supp(x +e)| ≥ 3(theothercasesaresimilar). Hencetherearethreepossibledistinct i h k 1 9 situations: x =2n +n , n 6=n , 1 i j i j x =2n +n , n 6=n x =2n +n , n 6=n (b1) x =2n +n nni 6=6=nnh , (b2)(cid:26) x21 =2nhi +nji nhj 6=nii , (b3)(cid:26) x12 =2nii+njk nik 6=njj . 2 h j h j (b ).WehaveAp ⊇{2n ,n +n ,2n ,n +n },hence|Ap |=3=⇒ 1 2 i i j h h j 2 either n +n =2n =⇒x =n +2n (thesis) i j h 2 i j (cid:20) or 2ni =nh+nj (analogous). (b ). Wehave Ap ⊇{2n ,n +n ,n +n ,2n }=⇒2n =n +n =⇒ eitherx =x 2 2 i i j h i h h i j 2 1 (againsttheassumption),or n =n (=⇒x =2n +n ). h j 2 j i (b ). Thiscasecannothappen.InfactwehaveAp ={2n ,n +n ,n +n }. Bysimilarargumentsasaboveonecan 3 2 i i j i k seethatforanyotherelementx∈C , x6=x ,x ,themaximalrepresentationofxmustbewrittenasx=3n . Infact 3 1 2 i theotherpossiblerepresentationsareincompatible;forinstance,x=3n ,with2n =n +n =⇒x=n +n +n , j j k i i j k impossibleby(2).Thiswouldmeanthat|C |≤3,againsttheassumption. 3 AccordingtotheabovefactswededucethatC ={3n ,2n +n ,n +2n ,3n }. ⋄ 3 i i j i j j Example3.2 Accordingtothenotationof(3.1),weshowseveralexamplesofsemigroupswhichverifytheassump- tionsof (3.1): Ap = {2n ,n +n ,2n }. The first exampleshowsthatthe conditions(3.1.2b)are, in general, not 2 i i j j sufficienttohaveH decreasing. R 1. Let S =< 19,21,24,47,49,50,51,52,53,54,55,56,58,60 > and let n = 21,n = 24. Then: Ap = i j 2 {42,45,48}, Ap ={63},Ap ={84}, v =e−5, H =[1,14,14,14,16,18,19→]isnon-decreasing. 3 4 R 2. LetS =<19,21,24,65,68,70,71,73,74,75,77,79>withn =21,n =24. Then: i j ℓ = 2,Ap = {42,45,48}, Ap = {3n ,2n +n ,n +2n ,3n }, v = e−7, D +e = {4n ,3n + 2 3 i i j i j j 2 i i n ,...,n +3n }, D ={65,68,71,74,77} H decreasesatlevel2, H =[1,12,10,11,15,18,19→]. j i j 2 R R 3. LetS =<19,21,24,46,49,51,52,54,55,56,58,60>withn =21,n =24. Then: i j ℓ=3, |Ap |=4, v =e−7, H decreasingatlevel3,H =[1,12,15,14,16,18,19→]. 3 R R 4. S =<30,33,37,64,68,71,73,75,76,78,79,80,82→89,91,92,95>withn =33,n =37. Then: i j Ap = {2n ,n +n ,2n }, Ap = {3n ,n +2n ,3n }, Ap = {132= 4n }, v = e−7, H decreasesat 2 i i j j 3 i i j j 4 i R level4:H =[1,23,25,25,24,27,28,29,30→]. R Lemma3.3 Let d = max{ord(σ)| σ ∈ Ap}. Assume there exists 3 ≤ r ≤ d such that |Ap | = 1. Let r := r 0 min{j | |Ap |=1} (r ≥3), then: j 0 1. Ifr <d,thereexistsn ∈Ap suchthatAp ={kn } for r ≤k ≤d(and kn ∈Ap , fork <r ). 0 i 1 k i 0 i k 0 2. Ifthereexistsg ∈D , (k ≥ 2)suchthatord(g+e) =k+p, withp ≥ r −1,then Ap = dn (n ∈Ap ), k 0 d i i 1 and g+e=(k+p)n >dn ; furthersuchelement g isunique. i i Proof.1.BytheAdmissibilityTheoremofMacaulayforHR′,weknowthat|Apk|=1,forr0 ≤k ≤d. Nowsuppose r < d, and|Supp(σ)| ≥ 2, σ ∈ Ap . Ifn ,n ∈ Supp(σ),then,by(1.4),theelementsσ−n , σ−n wouldbe 0 d i j i j distinctelementsinAp , contradiction. d−1 2. By the assumption and (2.2.1c), we have r ≤ p + 1 ≤ d and |Supp(g + e)| ≤ |Ap | = 1. Therefore 0 p+1 g+e = (k +p)n , with n ∈ Ap . Then forr ≤ j ≤ p+1, the inducedelementjn ∈ C belongsto Ap , by i i 1 0 i j j (2.2.1a). ThenAp = {jn } forr ≤ j ≤ d. Hencek+p > d. Foreach k, if such g exists, then it is uniqueby j i 0 (2.3.2). ⋄ Proposition3.4 Assume|Ap | = 3,|Ap | = 1andH decreasing. Letℓ = min{h|H decreasesatlevelh}and 2 3 R R letd=max{ord(σ)| σ ∈Ap}. Wehave: 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.