On semigroup rings with decreasing Hilbert function. AnnaOneto1, Grazia Tamone2. Dima-UniversityofGenova,viaDodecaneso35,I-16146Genova,Italy. E-mail:[email protected], [email protected] Abstract 6 1 InthispaperwestudytheHilbertfunctionHR ofone-dimensional semigroupringsR = k[[S]]. Forsomeclasses ofsemigroups,bymeansofthenotionofsupportoftheelementsinS,wegiveconditionsonthegeneratorsofS in 0 2 ordertohavedecreasingHR.Whentheembeddingdimensionvandthemultiplicityeverifyv+3≤e≤v+4,the decreaseofHRgivesexplicitdescriptionoftheApe´rysetofS.Inparticularfore=v+3,weclassifythesemigroups n withe=13andHRdecreasing,furtherweshowthatHRisnon-decreasingife<12. FinallywededucethatHRis a non-decreasingforeveryGorensteinsemigroupringwithe≤v+4. J 1 3 Keywords: Numericalsemigroup,Monomialcurve,Hilbertfunction,Ape´ryset. MathematicsSubjectClassification: Primary:14H20;Secondary:13H10. ] 0 Introduction. C A Givenalocalnoetherianring(R,m,k)andtheassociatedgradedringG = ⊕ mn/mn+1 ,aclassicalhardtopic . n≥0 h incommutativealgebraisthestudyoftheHilbertfunctionH ofG, definedasH(cid:0) (n) = di(cid:1)m mn/mn+1 : when R R k t a R is the local ring of a k-scheme X at a pointP, HR givesimportantgeometricinformation. If(cid:0)depth(G)(cid:1)is large m enough,thisfunctioncanbecomputedbymeansoftheHilbertfunctionofalowerdimensionalring,butingeneralG [ isnotCohen-Macaulay,evenifRhasthisproperty. ForaCohen-Macaulayone-dimensionallocalringR,itiswellknownthatHR isanondecreasingfunctionwhen 1 GisCohen-Macaulay,butwecanhavedepth(G)=0andinthiscaseH canbedecreasing,i.e.H (n)<H (n−1) v R R R forsomen(see,forexample[8], [10], [11]). ThisfactcannothappenifRverifieseitherv ≤ 3, or v ≤ e ≤ v+2, 7 2 where e and v denote respectively the multiplicity and the embedding dimension of R (see [6], [7], [16]). If 3 R = k[[S]]isa semigroupring,manyauthorsprovedthatH isnon-decreasinginseveralcases: •S isgenerated R 0 byanalmostarithmeticsequence(ifthesequenceisarithmetic,thenGisCohen-Macaulay)[17],[13] •S belongsto 0 particularsubclassesoffour-generatedsemigroups,whicharesymmetric [1],orwhichhaveBuchsbaumtangentcone . 2 [3] •S isbalanced [12], [3] •S isobtainedbytechniquesofgluingnumericalsemigroups [2], [9] •S satisfies 0 certainconditionsonparticularsubsetsofS(seebelow)[5,Theorem2.3,Corollary2.4,Corollary2.11]. Ife≥v+3, 6 thefunctionH canbedecreasing,asshowninseveralexamples:thefirstone(withe=v+3)isin[14](hererecalled 1 R : inExample1.6). WhenGisnotCohen-Macaulay,ausefulmethodtodescribeHRcanbefoundinsomerecentpapers v (see[12],[3],[5]):itisbasedonthestudyofcertainsubsetsofS,calledD andC , (k ∈N). i k k X TheaimofthispaperisthestudyofsemigroupringsR = k[[S]]withH decreasing. Tothisgoalweintroduce R r andusethenotionofsupportoftheelementsinS (1.3.4);bymeansofthistoolwefirstdevelopatechnicalanalysis a ofthesubsetsD , C inSection2. Throughthismachinery,undersuitableassumptionsontheApe´rysetofS,we k k prove(Section3)necessaryconditionsonS inordertohavedecreasingHilbertfunction,see(3.4),(3.6). InSection4weapplytheseresultstothesemigroupswithv ∈{e−3,e−4}. Forv =e−3weshowthatthedecreaseofH ischaracterisedbyaparticularstructureofthesetsC , D , C and R 2 2 3 thatH doesnotdecreasefore ≤ 12,see(4.2),(4.3);inparticular,fore = 13,weidentifypreciselythesemigroups R withH decreasing,see(4.6)andexamples(4.7). R Incasev =e−4weobtainanalogousinformationsonthestructureofC ,C ,D ,D ,see(4.9)and(4.10). 2 3 2 3 SuchmethodsallowtoconstructvariousexamplesofsemigroupringswithdecreasingH ,see,forexample(3.2), R (3.7)wheree−7≤v ≤e−3;inparticularexample(3.7.1)describesasemigroupwhoseHilbertfunctiondecreases attwodifferentlevels. TheexampleshavebeenperformedbyusingtheprogramCoCoAtogetherwithFreeMatand Excel. As a consequenceof some of the abovefacts, one can see thatthe semigroupsS with |C | = 3 and |C ∩Ape´ry 2 3 set| ≤ 1 cannot be symmetric. It follows that every Gorenstein ring k[[S]] with v ≥ e − 4 has non-decreasing Hilbertfunction(4.11). ThisresultisapartialanswertotheconjecturesettledbyM.E.Rossi[15,Problem4.9]thata Gorenstein1-dimensionallocalringhasnon-decreasingHilbertfunction. 1 1 Preliminaries. WebreaflyrecallthedefinitionoftheHilbertfunctionforlocalrings.Let(R,m,k)beanoetherianlocald-dimensional ring,theassociatedgradedringofRwithrespecttomisG:= mn/mn+1: theHilbertfunctionH :G−→N n≥0 R ofRisdefinedbyH (n) = dim (mn/mn+1). ThisfunctioniLscalled non-decreasing ifH (n−1) ≤ H (n)for R k R R eachn∈Nand decreasing ifthereexistsℓ∈NsuchthatH (ℓ−1)>H (ℓ), wesayH decreasingatlevelℓ. R R R 1.1 Let R be a one-dimensional Cohen-Macaulay local ring and assume k = R/m infinite. Then there exists a superficialelementx∈m,ofdegree1,(i.e.suchthatxmn =mn+1forn>>0). Itiswell-knownthat • GisCohen-Macaulay ⇐⇒ theimagex∗ ofxinGisanon-zerodivisor. • IfGisCohen-Macaulay,thenH isnon-decreasing. R Webeginbysettingthenotationofthepaperandbyrecallingsomeknownusefulfacts. Setting1.2 InthispaperRdenotesa1-dimensionalnumericalsemigroupring,i.e. R=k[[S]],wherekisaninfinite fieldandS ={ a n , a ,n ∈N}isanumericalsemigroup ofmultiplicityeandembeddingdimensionvminimally i i i i generatedby{eP:= n1,n2,...,nv},with0 < n1 < ··· < nv, GCD(n1,...,nv) = 1. ThenRisthecompletionof thelocalring k[x ,...,x ] ofthemonomialcurveC parametrizedbyx := tni (1 ≤ i ≤ v). Themaximal 1 v (x1,...,xv) i idealofRism=(tn1,··· ,tnv)andx =teisasuperficialelementofdegree1.Letv:k((t))−→Z∪{∞}denote 1 theusualvaluation. 1. M :=S\{0}=v(m), hM =v(mh), foreachh≥1 andtheHilbertfunctionH verifies R H (0)=1, H (h)=|hM \(h+1)M|, foreachh≥1. R R 2. Letg ∈S,the order ofgisdefinedas ord(g):=max{h|g ∈hM}. 3. Ap=Ape´ry(S):= {s ∈ S|s−e ∈/ S}is theApe´ry setofS withrespecttothe multiplicitye , |Ap| = e and e+f isthegreatestelementinAp,wheref :=max{x∈IN\S}istheFrobeniusnumberofS. Letd:=max{ord(σ)| σ ∈Ap}. DenotebyAp :={s∈Ap|ord(s)=k}, k ∈[1,d]thesubsetoftheelementsoforderkinApe´ry. k 4. LetR′ := R/teR,theHilbertfunctionofR′ is HR′ = [1,a1,...,ad]withak = |Apk| foreachk ∈ [1,d], see,forexample,[12,Lemma1.3]. 5. AsemigroupS iscalledsymmetricifforeachs∈S s∈Ap⇐⇒e+f −s∈Ap. By(1.2.1)and(1.1),iford(s+e)=ord(s)+1foreachs∈S,thenGisCohen-MacaulayandH isnon-decreasing. R Thereforein order to focus on the possible decreasing Hilbert functions, it is useful to define the following subsets D ,C ⊆S,wealsointroducethenotionofsupport forabetterunderstandingofthesesets. k k Setting1.3 1. D :={s∈S|ord(s)=k−1andord(s+e)>k}. D =D =∅, ∀k ≥r[12,Lemma1.5.2] . k 1 k (cid:0) (cid:1) Dt :={s∈D suchthat ord(s+e)=t} andlet k :=min{k suchthat D 6=∅}. k k 0 k 2. C :={s∈S|ord(s)=k and s−e∈/ (k−1)M}, i.e.,C =Ap ∪ (Dk+e), with 2≤h≤k−1 . k k k h h S (cid:8) (cid:9) C ={n ,··· ,n }, C =Ap , C =(D3+e)∪Ap and C =∅, ∀k ≥r+1 [12,Lemma1.8.1], [3]. 1 2 v 2 2 3 2 3 k 3. Amaximalrepresentationofs∈S isanyexpressions= v a n ,a ∈IN,with v a =ord(s) j=1 j j i j=1 j P P andinthiscasewedefinesupport ofsas Supp(s):={n ∈Ap |a 6=0}. Recall: i 1 i Supp(s)dependsonthechoiceofamaximalrepresentationofs. Furtherfors∈S,wedefine: |Supp(s)|:=max |Supp( a n )|, suchthats= a n isamaximalrepresentationofs . i i i i i i (cid:8) P P (cid:9) 4. ForasubsetH ⊆S, Supp(H):= Supp(s ),s ∈H . i i S(cid:8) (cid:9) 2 5. Wecallinducedbys= v a n (maximalrepresentation)anelement j=1 j j s′ = v b n ,with P0≤b ≤a . Recall: ord(s′)= b by[12,Lemma1.11]. j=0 j j j j j P P Thefollowingtwopropositionsarecrucialinthesequel. Proposition1.4 LetS beasinSetting1.2andlets∈C , k ≥2. Then k 1. Foreachs= a n ∈C (maximalrepresentation,with a =k),wehave: j≥1 j j k j≥1 j P P (a) Everyelements′ = b n inducedbys,with b =h, belongstoC . j≥1 j j j≥1 j h (b) Supp(C )⊆Supp(PC )⊆...⊆Supp(C ). P k k−1 2 2. Ifs=g+ewithg ∈D , (h≤k−1),anymaximalrepresentations= a n hasa =0. h j≥1 j j 1 P Proof.(1.a).See[12,Lemma1.11]. (2).Ifa >0,theng =(a −1)e+ a n hasord=k−1,by(1.a),contradiction. ⋄ 1 1 j≥2 j j P Proposition1.5 LetS beasinSetting1.2,letk beasin(1.3.1)andlet k ≥2. 0 1. H (k)−H (k−1)=|C |−|D | [12,Proposition1.9.3],[3,Remark4.1] R R k k 2. GisCohenMacaulay ⇐⇒D =∅ foreachk ≥2. [12,Theorem1.6]. k 3. If|D |≤k+1foreveryk≥2,thenH isnon-decreasing [5,Theorem3.3,Corollary3.4]. k R 4. If|D |≥k+1,then |C |≥h+1 forall h∈[2,k] [5,proofofProposition3.9]. k h 5. Inparticular(recall: k =min{k|D 6=∅})[5, Corollary3.11]: 0 k (a) IfH isdecreasingatlevelk,then|D |≥max{1+|C |, k+2}, R k k (b) IfH isdecreasing,then|Ap |≥k +1, R k0 0 (c) IfH isdecreasing,then|Ap |≥3. R 2 WeshowasemigroupS withH decreasing,whichisthefirstexampleinthesensethate =v+3 =13, |Ap | =3 R 2 areminimalinordertohavedecreasingHilbertfunction,see(4.2),(4.3). Example1.6 [14,Section2] Let S =<13,19,24,44,49,54,55,59,60,66>,withe=13, v =10, Ap={ 0 19, 24, 38, 43, 44, 48, 49, 54, 55, 59, 60, 66 }. M \2M 13 19 24 44 49 54 55 59 60 66 dim = 10 2M \3M 26 32 37 38 43 48 68 73 79 dim = 9 3M \4M 39 45 50 51 56 57 61 62 67 72 92 dim = 11 4M \5M 52 58 63 64 69 70 74 75 80 81 85 86 dim = 12 5M \6M 65 71 76 77 82 83 87 88 93 94 98 99 105 dim = 13 ThenHR =[1,10,9,11,12,13→], HR′ =[1,9,3].FurtherSupp(D2+e)=SuppC2 ={19,24}: D2 = {44,49,54,59} C2 ={38,43,48}={19·2,19+24,24·2}=Ap2 D +e = {57,62,67,72} 57=3·19, 62=2·19+24, 67=19+2·24, 72=3·24 2 D = {68,73} C ={57,62,67,72}=D +e 3 3 2 D +e = {81,86} 81=3·19+24, 86=2·19+2·24 3 D = {92} C ={81,86}=D +e 4 4 3 D +e = {105} 105=3·19+2·24 4 D = {∅} C ={105}=D +e. 5 5 4 3 2 Technical analysis of C and D via supports and Ape´ry subsets. k k Lemma2.1 Letx= v a n ∈C ,witha ≥1,foreachi, v a =ord(x) =kand|Supp(x)|=q. i=2 i i k i i=2 i P P (a) |C |≥hp+1≥q, if q ≥h+1, p≥1 Let 2≤h<k, then h (cid:20) (b) |Ch|≥q, if q ≤h. Proof.Firstrecallthat,by(1.4.1a),everyelementoforderhinducedbythegivenmaximalrepresentationofx,belongs toC . WedenoteforsimplicitySupp(x)={m <m <··· .<m },distinctminimalgenerators,withm 6=eby h 1 2 q i (1.4.2). (a). Ifq ≥h+1. Thenwecanconstructthe(h+1)+h(q−h−1)distinctinducedelementsinC : h i=1,··· ,h+1, for η =1, σ =( η+hm )−m , η =1,··· ,q−h, . (cid:26) η,i j=η j i (cid:20) i=η,··· ,h+η−1, for 2≤η ≤q−h, (cid:27) P (b). If1≤q ≤h,thereexists(a′,··· ,a′)suchthata ≥a′ ≥1, ∀i=1,··· ,q, a′ =h+1. ThenC contains 1 q i i i i h theqdistinctelements σj = q1a′imi−mj, j =1,··· ,q. ⋄ P P Proposition2.2 Letk =min{k∈N|D 6=∅}, d=max{ord(σ), σ ∈Ap}. 0 k 1. Letg ∈D , g+e= a n ,with a =k+p, p≥1(maximalrepresentation): k j j j j j P P (a) Lety ∈C , h<k+p,beinducedbyg+e;if h≤max{p+1,k }, then y belongstoAp. h 0 (b) p≤d−1. (c) |Supp(g+e)|≤|Ap |. p+1 2. If Ap =∅, then D +e=C foreachk ≥2. 3 k k+1 Proof.1.(a) Let h≤k andletz ∈C \Ap; thenz−e∈S, with ord(z−e)≤h−2,hencez−e∈D , r <k , 0 h r 0 impossible. Further,ify = b n andy ∈/ Ap,with h= b ≤p+1,theny =e+σ,with 0<σ ∈S. Then: j j j g =σ+ (aj −bj)nj =⇒oPrd(g)≥1+k+p−(p+1)=Pk, contradiction. P 1.(b) Letg+e = a n (maximalrepresentation),if a ≥ k+d,thend+1 ≤ a −k+1andsoevery j j j j j j j inducedelement∈PCd+1belongstoApby(1),impossibleP,since(d+1)M ⊆M +e;hePnceord(g+e)=k+1. 1.(c)Let|Supp(g+e)|=qandleth :=p+1< p+k,by(2.1)thereareatleastqelementsinC . Theseelements h areinAp,by1.(a).Henceq ≤|Ap |. p+1 2. Ifthereexistsg ∈D suchthatord(g+e)≥k+2,thenp≥2;by1.(a)wewouldhavey ∈Ap foreveryy ∈C k 3 3 inducedbyg+e. ⋄ Remark2.3 1. (2.2.1a)cannotbeimproved,forexamplein(1.6)ifs = 92 : ord(s) = 3, 92+e = 105 = 3·19+2·24=⇒92∈D , p=1 and2·19+24=62=49+e∈C \Ap (here3=p+2). 4 3 3 2. Letx ,x ∈D , x 6=x suchthatSupp(x +e)=Supp(x +e), x +e= α n , 1 2 k 1 2 1 2 1 i i x2+e= βini. Thenthereexist i,j suchthatαi >βi, αj <βj. P Proof. IfxP6= x andα ≥ β foreachi,thenx +e = x +e+σ,ord(σ) ≥ 1,henceord(x ) > ord(x ), 1 2 i i 1 2 1 2 impossible. 3. Letx ∈ D , ord(x+e) ≥ k+2. Ify ∈ D andord(y+e) = h ≤ k+1. Theny+ecannotbeinducedby k k x+e. Proof.Ifx+e=y+e+s,withord(s)≥1thenx=y+s,ord(x) >ord(y),impossible,sincebyassumption ord(x)=ord(y)=k−1. GiventhesetsC ,C ,withh < k,weestimatelowerboundsforthecardinalityofC ,byenumeratingtheelements h k h inducedbyC . Wefirstconsidertheelementsinducedbythesubset{x∈C suchthat|Supp(x)|≤2}. k k Lemma2.4 Forx ∈C ,(k ≥3), let x =a n +b n , a +b =kandlet r ∈[2,k−1]. r k r r i r j r r 4 1. Letx ∈C ;thenumberofdistinctelementsofC inducedbyx is 1 k h 1 1+min{b ,h}, if a ≥h 1 1 β1 =1+min{a1,b1,h,k−h}= 1+a1 if a1 <h≤b1 1+k−h if a ,b <h 1 1 withβ ≥1 andβ =1⇐⇒ a b =0. 1 1 1 1 2. Letx ,x bedistinctelementsinC suchthat Supp(x )∪Supp(x )={n ,n }. 1 2 k 1 2 i j x =a n +b n , 1 1 i 1 j Wecanassumethat x2 =a2ni+b2nj, a +b =k, 0≤a <a , =⇒ 0≤b <b . i i 1 2 2 1 ThenumberofdistinctelementsofC inducedby{x ,x }is h 1 2 (a) 1+min{b ,h}≥2 (=2⇐⇒b =1,b =0) if h≤a <a 1 1 2 1 2 (b) 2+min{a ,k−h}+min{h−a −1,b }≥3 if 0≤a <h≤a β = 1 1 2 1 2 2 (c) 2+min{a ,k−h}+min{a −a −1,k−h}≥2 if 0≤a <a <h 1 2 1 1 2 β =2⇐⇒a =0,a =1 2 1 2 x =a n +b n 1 1 i 1 j 3. If C ⊇{x ,x ,x }, let x2 =a2ni+b2nj, , k 1 2 3 x3 =a3ni+b3nj, a +b =k, 0≤a <a <a , b >b >b ≥0 i i 1 2 3 1 2 3 ThenumberofdistinctelementsofC inducedby{x ,x ,x }is h 1 2 3 (a) 1+min{b ,h}≥3 if h≤a <a <a 1 1 2 3 (b) 2+min{a ,k−h}+min{h−a −1,b}≥3 if a <h≤a <a 1 1 2 1 2 3 further β ≥4, except the cases: 3 (i) h=2, a ∈{0,1} 1 (ii) k =h+1, a =h−1, b =2 1 1 (iii) a =0, b =1 1 2 β = 3 (c) 3+min{a ,k−h}+min{a −a −1,k−h}+min{h−a −1,b } if a <a <h≤a 1 2 1 2 3 1 2 3 further β ≥4, except the cases: 3 (c ) a =a −1=min{h−2,b }=0 1 1 2 3 (d) 3+min{a ,k−h}+ min{a −a −1,k−h} if a <a <a <h 1 i=1,2 i+1 i 1 2 3 further β =3⇐⇒aP=0,a =1, a =2 3 1 2 3 Proof.1. Puta =a,b =bforsimplicity.Ifa≥h,theinduceddistinctelementsinC are: 1 1 h {hn , (h−1)n +n ,··· ,hn },ifh≤b, i i j j {hn , (h−1)n +n ,··· ,bn },ifh>b. i i j j Thenβ =1+min{b,h}=i+min{a,b,h,a+b−h}. 1 If a < h ≤ b, then {hn , (h−1)n +n ,··· ,(h−a)n +an } are indueced distinct elements of C . Hence i i j i j h β =a+1wherea=min{a,b,h,a+b−h}sincea≤a=b−h<b. 1 Ifa,b<h, thentheinduceddistinctelementsare:an +(h−a)n , (a−1)n +(h−a+1)n ,··· ,(h−b)n +bn , i j i j i j then β = a+b−h+1 = k−h+1, furtherβ = 1+min{a,b,h,a+b−h} = a+b−h(= k−h), since 1 1 a+b−h<a<h, a+b−h<b. If a,b ≥ h, then β = 1+h and the induced distinct elements are {hn , (h−1)n +n ,··· ,hn }. In this case 1 i i j j |C |=h+1ismaximal. Then,ifa≥h,β =1+min{b ,h}. h 1 1 2(a). Theinduceddistinctelements∈C are {(h−i)n +in , 0≤i≤min{b ,h} }. h i j 1 2(b). Wehave1+min{a ,k−h}elements∈C inducedbyx , by(1): 1 h 1 (a −i)n +(h−a +i)n , 0≤i≤min{a ,k−h} 1 i 1 j 1 Moreover fromx wecanextractthefollowingdistinctadditionalelements 2 5 (h−p)n +pn , p≥0, h−p≥a +1, p≤b hencewith 0≤p≤min{h−a −1,b }. i j 1 2 1 2 (cid:0) (cid:1) 2(c). First, x induces the same elements of C considered in (2.b); moreover from x one gets other M distinct 1 h 2 elements (a −p)n +(h−a +p)n ,withp≥0, a −p≥a +1, h−a +p≤b 2 i 2 j 2 1 2 2 (hence0≤p≤min{a −a −1,k−h}),where 2 1 eitherM =(a −a ), if h−a −1≤b (elements(a −p)n +(h−a +p)n ,with0≤p≤a −a −1); 2 1 1 2 2 i 2 j 2 1 or M =k−h+1, if h−a −1>b (elements a n +(h−a )n ,··· ,(h−b )n +b n ). 1 2 2 i 2 j 2 i 2 j 3. Itcomesdirectlybyusingthesameideasoftheproofofstatement(2). ⋄ Thislemmaallowstoprovethemoregeneral Proposition2.5 Assumek ≥3, 2≤h≤k−1and C ⊇{x ,x ,··· ,x }, p≤k+1, with k 1 2 p x =a n +b n , 1≤i≤p, a +b =k i i i i j i i (cid:26) 0≤a1 <a2 <···<ap ≤k (=⇒k ≥b1 >b2 >···>bp ≥0) and let β be the number of distinct elements of C induced by {x , i = 1,··· ,p}. Then β ≥ min{h+1,p}, p h i p precisely: 1+min{b ,h} if h≤a <···<a 1 1 p i+1+min{a1,k−h}+···+min{ai−ai−1−1,k−h}+min{h−ai−1,bi+1} if <ai <h≤ai+1 < (i≤p−1) p+min{a1,k−h}+···+min{ap−ap−1−1,k−h} if <ap <h Lemma2.6 Letx ,x bedistinctelementsinD suchthatSupp(x +e)={n ,n }, Supp(x +e)={n ,n }, {n ,n }∩ 1 2 k 1 i j 2 t u i j y =x +e=an +bn 1 1 i j {nt,nu}=∅. Let y2 =x2+e=cnt+dnu . abcd6=0, a+b=k+r , c+d=k+r 1 2 Let r := min{r ,r }, and let 2 ≤ h ≤ k + r. Consider the induced elements z = pn + (h − p)n , z = 1 2 1 i j 2 qn +(h−q)n ∈C . t u h Then z 6= z for every p,q,h and |C | ≥ β + β where β ,β are defined in (2.4.1) (called β ). 1 2 h ab cd ab cd 1 Consequently |C |≥4, if h<k+r, |C |≥3, if h=k+r, r 6=r , |C |≥2, if h=k+r, r =r . h h 1 2 h 1 2 Proof.Assumez =z ,thenbysubstitutingweget 1 2 y =(a−p)n +(b+p−h)n +z =(a−p)n +(b+p−h)n +qn +(h−q)n 1 i j 1 i j t u . (cid:20) y2 =(c−q)nt+(d+q−h)nu+z1 =pni+(h−p)nj +(c−q)nt+(d+q−h)nu Firstnotethatbytheassumption,wehavez 6=z if: p=q =0,orp=q−h=0,orq =h−p=0,orh=p=q; 1 2 moreoverifthreecoefficientsare6=0,then|Supp(y )|=3,againsttheassumption.Thisargumentallowstocomplete i theproofintheremainingcaseswhicharethefollowing: (a−p)n (b+p−h)n qn (h−q)n | pn (h−p)n (c−q)n (d+q−h)n i j t u i j t u 6=0 0 0 6=0 | 6=0 b c d−h 6=0 0 6=0 0 | 6=0 b c−h d 0 6=0 0 6=0 | 6=0 6=0 c d−h 0 6=0 6=0 0 | 6=0 6=0 c−h d ⋄ Lemma2.7 Letk≥3andletx ,x bedistinctelementsinD suchthat|Supp(x +e)|=|Supp(x +e)|=2, 1 2 k 1 2 x +e=an +bn 1 i j , a,b,c,d>0with n ,n ,n distinctelementsinAp . (cid:26) x2+e=cnt+dnj i j t 1 Forh<k,considertheinducedelementsinC : z =pn +(h−p)n , z′ =qn +(h−q)n . Then h i j t j (cid:8) (cid:9) (i) pq =0 and p+q >0 (ii) a<h and q ≥max{1,h−d} 1. z 6=z′inthefollowingcases or c<h and p≥max{1,h−b} 6 x +e=n +bn 2. Inthecases 1 i j wehave|C |≥3, intheremainingcases|C |≥4. (cid:26) x2+e=nt+dnj h h Proof.1. (i)isimmediatebytheassumptions. (ii). Itisenoughtoconsiderp>0by(i);ifz =z′,then x +e=pn +(d+q−p)n +(c−q)n ,whered+q−p≥h−p≥1,sincep≤a<h. Then: 2 i j t |Supp(x +e)|≥3 if c−q >0 2 , contradictioninanycase. (cid:20) Supp(x2+e)=Supp(x1+e) if c−q =0 2. Wecanassume0<a≤c. Thefollowingz belongtoC andaredistinct. i h (ii) 1≤a,c<h: z =an +(h−a)n (i) a=c=1: z =n +(h−1)n 1 i j 1 i j (ac≥2) z =(a−1)n +(h−a+1)n z =h n 2 i j 2 j z =cn +(h−c)n z =n +(h−1)n 3 t j 3 t j z =(c−1)n +(h−c+1)n 4 t j (iii) a<h=c: z =an +(h−a)n 1 i j (iv) a<h<c: z =an +(h−a)n z2 =(a−1)ni+(h−a+1)nj 1 i j z =(a−1)n +(h−a+1)n z3 =c nt 2 i j z =h n z4 =(c−1)nt+nj 3 t z =(h−1)n +n 4 t j (v) h≤a≤c: z =hn 1 i z =(h−1)n +n 2 i j z =h n 3 t z =(h−1)n +n 4 t j Thenontrivialsubcasesof(i),··· ,(iv)comedirectlyfrompart1. Case(v).z =z =⇒ eitherSupp(x +e)=Supp(x +e)(ifa=h),or|Supp(x +e)| =3,(ifa >h),against 1 4 1 2 1 theassumptions. z = z =⇒ either Supp(x +e) = Supp(x +e)( if c = h), or |Supp(x +e)| = 3,( if c > h), against the 2 3 2 1 2 assumptions. ⋄ Nextpropositionshowsthatfork=2,statement(1.5.4)holdsalsoatstepk+1. Proposition2.8 AssumeH decreasingatlevel h. Then R 1. Thereexistx ,x ∈D suchthat|Supp(x +e)|≥2, for r =1,2. 1 2 h r 2. |C |≥4. 3 Proof. 1. AssumeH decreasingatlevelh: weknowthatm =|C |≤|D |−1. If|Supp(x +e)| = 1 ∀x ∈D , R h h r r h thenx +e=α m , α ≥h+1,m ∈Ap ,withm 6=m , if r6=s. Hencetheelements{hm }wouldbedistinct r r r r r 1 r s r elements∈C and|C |>m. h h Henceletx ∈D ,|Supp(x +e)|≥2,withamaximalrepresentation x +e= β m ,withβ ≥ 1,m ∈Ap 1 h 1 1 i i i i 1 distinctelements.Oneinducedelement∈Chis c1 =mi+mj+sforsomesofordPerh−2. Ifeachxi ∈Dh,i>1 has maximalrepresentationof the type x +e = α n , then hm ,··· ,hm ∈ C are distinct elements; further i i i j m+1 h hm 6= c for each i (otherwise x +e = c +(α −h)m and so |Supp(x +e)| ≥ 2). Then |C | ≥ m+1, i 1 i 1 i i i h contradiction. 2. By(1.5.3and4)weknowthatifh > 2then|C |≥ j+1forall2 ≤ j ≤ h. Itremainstoprovethestatementfor j h=2, and |D |≥4by[5,prop.2.4]. 2 SinceC =Ap ∪(D3+e),thefactistrueiford(x+e)=3 ∀x∈D . Henceweassumethereexistsx∈D such 3 3 2 2 2 thatord(x+e)≥4. Inthisproof,forsimplicity,wedenotetheelementsofSupp(x)withm ,m ,m ··· andassumem <m <m . 1 2 3 1 2 3 If|Supp(x+e)|≥4:x+e=m +m +m +m +s,withm <m <m <m ,then|C |≥4by(2.1.a). 1 2 3 4 1 2 3 4 3 If|Supp(x+e)|=3, x+e=β m +β m +β m withβ ≥1, β ≥5),wefind4inducedelementsin C as 1 1 2 2 3 3 i i 3 follows: P whenβ ≥2,β ≥2:{m +m +m ,2m +m ,2m +m ,2m +m }; 1 2 1 2 3 1 2 1 3 2 3 7 whenβ ≥2,β ≥2:{m +m +m ,2m +m ,2m +m ,m +2m }; 1 3 1 2 3 1 2 1 3 2 3 whenβ ,β ≥2,β ≥2:{m +m +m ,2m +m ,m +2m ,m +2m }; 1 2 3 1 2 3 2 3 1 2 2 3 whenβ ≥3:{m +m +m ,2m +m ,2m +m ,3m }. 1 1 2 3 1 2 1 3 1 If|Supp(x+e)|=3, x+e=β m +β m +β m withβ ≥1, β =4,thenx+einducesinC threedistinct 1 1 2 2 3 3 i i 3 elementsc1,c2,c3(seethefollowingtable).TogetthefourthelemenPt,wetakey ∈D2,y 6=x,|Supp(y+e)|≥2(by 1). IfSupp(x+e) 6= Supp(y+e)andeachelementinducedbyy+einC isalsoinducedbyx+e,then wecan 3 alwaysreducetothecaseSupp(x+e)⊇Supp(y+e),bysuitablesubstitutions(inoneormoresteps). Hence we can assume Supp(x+e) ⊇ Supp(y +e); we study in the next table one of the possible subcases, the remainingaresimilar. Let x+e=m +2m +m 1 2 3 (cid:26) y+e=β1′m1+β2′m2+β3′m3, βi′ ≥3 If β′ =3,theny+e6=zforeachz ∈C inducedbyx+e,otherwisePord(x)>ord(y). Henceassume β′ >3; i 3 i P c1 =m1+2m2 P c2 =m1+m2+m3 c =2m +m 3 2 3 and, according to the values ofthe β′, i c =2m +m if β′ =2,β′ ≥1 thenC ⊇ 4 1 2 1 2 3 c5 =m2+2m3 if β1′ ≤1,1≤β2′ ≤2,β3′ =2 c =3m if β′ ≥3 6 3 3 c7 =3m1 if β1′ ≥3 c8 =3m2, or 2m1+m2, or m2+2m3 if β2′ ≥3 c =2m +m if β′ =2,β′ =0,β′ ≥1 9 1 3 1 2 3 Clearlytheelementsc , i = 4,··· ,7aredistinctfromc ,c ,c . Incaseβ′ ≥ 3wehaveeithery+e = 3m +m , i 1 2 3 2 2 i (i = 1 or3) or y+e = 3m . Inthe first case if 3m = m +m +m , then2m = m +m =⇒y+e = 2 2 1 2 3 2 1 3 2m +m +m , or y+e=m +m +2m andwecanaddc resp. c . 1 2 3 1 2 3 4 5 In case y +e = 3m , we get3m ∈/ {c ,c ,c }, otherwise 2m = m +m =⇒y +e = m +m +m , i.e., 2 2 1 2 3 2 1 3 1 2 3 x=y+m ,impossiblesinceord(x) =ord(y). 2 Ifβ′ =2,β′ =0,β′ ≥1,thenc ∈/ {c ,c ,c }otherwise2m +m =m +2m =⇒m +m =2m =⇒x−y = 1 2 3 9 1 2 3 1 3 1 2 1 3 2 (2−α)m ,impossibleinanycase. 3 Finallyweassume: |Supp(x+e)| = |Supp(y+e)| = 2, ord(x+e) ≥ 4. Bylemmas(2.6)and(2.7),itremainsto analysethecases x+e=m +bm x +e=am +bm 1 2 1 1 2 x+e=am +bm a+b=3 (I) by≥+e3,=dm≥32+dm2 (II) xa2++be≥=4,cmc+1+dd≥m32 (III)(cid:26) y+e=cm31+dm42 c+d≥4 (I). Theinduceddistinctelementsarec1 =m1+2m2 c2 =3m2 c3 =2m2+m3 . Byassumption,thereexisttwootherelem(cid:8)entsz1,z2 ∈D2;bytheabovetoolsandby(2.3),w(cid:9)ecanrestricttothecases (i) z +e=αm +βm α6=1 α+β ≥3 1 1 2 b≥3, d≥2: (ii) z1+e=αm3+βm2 α6=1 α+β ≥3 . (iii) z +e=αm +βm α+β ≥3 1 1 3 In the first two cases, if α > 0, then α ≥ 2 (by 2.3.2), thereforeif β > 0 we obtain |C | ≥ 4 by applying(2.7.2) 3 to thepair of elements{z +e, y +e} (resp{x+e, z +e}). Incase (iii), again, from(2.7.2), bysubstitutingin 1 1 {x+e, z +e}m′ =m ,m′ =m ,m′ =m ,wededuce|C |≥4, if αβ >0. Theremainingpossibilitiesare 1 1 2 2 1 3 3 3 (i′) z +e=βm β ≥3 1 2 (ii′) z +e=αm α≥3 . 1 1 (iii′) z +e=αm α≥4 1 3 Incase(i′)wecanassumetheelementz ∈D ,verifiesz +e=αm , α≥3 (orz +e=αm ). 2 2 2 1 2 3 If3m = 2m +m , then, either|Supp(z +e)| = 3 andwe aredone, or z +e = 2m +m , impossiblesince 1 2 3 2 2 2 3 y+e=m +dm . 3 2 Similarlywecansolvecase(ii′). Incase(iii′),if3m =m +2m , then z +e=m +2m +(α−3)m .Thecaseα≥5hasalreadybeenproved 3 1 2 1 1 2 3 above.Ifα=4,weconsiderm +m +m ∈C which,inthissituation,isdistinctfromc ,c ,c . 1 2 3 3 1 2 3 8 (II). If we have 4 elementswith support ⊆ {m ,m }, then we are doneby (2.5). The othercases can be studied 1 2 amongtheonesofshape(I)or(III). (III). By 2.6, it remains to consider elements z + e = αm + βm , with α + β = 3. In this case, C ⊇ i 1 2 3 {x+e,z +e,}∪{y ,y , inducedbyy+e}. ⋄ 1 1 2 3 Structure of C . 3 Theorem3.1 Assume |Ap |=3. Then 2 1. If|C |≥2, then|Supp(x)|≤2, foreachx∈C . 3 3 2. If|C |≥4, then 3 (a) Thereexistx ,x ∈C suchthat|Supp(x )|=2. 1 2 3 i 3n 2n i (b) Thereexistni,nj ∈Ap1suchthatC2(=Ap2)= n2nii+nj, C3 = 2nnii++2nnjj . j 3n j Proof.1. Ifx∈C ,then|Supp(x)|≤3. Firstweshowthatifx ,x ∈C ,then|Supp(x )|≤2fori=1,2.Assume 3 1 2 3 i thatx =n +n +n , n <n <n . Then,by(1.4.1a)andtheassumption,wededucethat 1 i j k i j k Ap ={n +n ,n +n ,n +n } (∗) 2 i j i k j k Hence2n ,2n ∈/ Ap, 2n ∈Ap⇐⇒n +n =2n . Ifx ∈C ,x 6=x therearethreecases: i k j i k j 2 3 2 1 n +n i j (a) If |Supp(x2)|=1,hencex2 =3nt,then2nt ∈C2,by(1.4.1a).Henceby(∗)2nt = ni+nk n +n j k Ineverycaseweseethat|Supp(x )|≥2,acontradiction. 2 (b) If |Supp(x )|=2,x =2n +n ,t6=v,then2n ∈C ,by(1.4.1a). 2 2 t v t 2 n +n =⇒x =n +n +n =⇒n ∈{n ,n } i j 2 i j v v i j nv =ni=⇒x2 =2ni+nj =⇒2ni ∈Ap2 Henceby(∗)2n = n =n =⇒x =n +2n =⇒n +n =2n ∈Ap =⇒2n ∈Ap t v j 2 i j i k j 2 i 2 ni+nk (similar) nj +nk (similar) everycasecontradictsequality(∗). (c) If |Supp(x )| = 3, x = n +n +n , n < n < n , by (∗)wemusthave: n +n = n +n ,hence 2 2 t v w t v w t v i j x =n +n +n . Thisequalityimpliesthat 2 i j w n 6=n (sincex 6=x ) w k 2 1 nw 6=nj (otherwise x2 =ni+2nj =2ni+nk, see(∗)) . n +n ∈Ap =⇒n +n =n +n i w 2 i w j k Hencex =2n +n =n +2n ,contradiction. 2 j k i k 2(a). Let x ∈ C ,1 ≤ i ≤ 4, distinct elements such that 1 ≤ |Supp(x )| ≤ 2 (by 1). If |Supp(x )| = 1, for i 3 i i x = 3n 1 a i=1,2,3, x2 = 3ni ,thenby(1.4.1a)C2 =Ap2 ={2na,2ni,2nc}. Since|Ap2|=3,by(1)and(1.4.1a),we x = 3n 3 c have|Supp(x )|=2:wecanassumex =2n +n ,n +n =2n . Hencex =n +n +n ,withn 6=n and 4 4 a d a d i 2 a d i a d so|Supp(x )|≥2,againsttheassumption. 2 x =2n +n , n 6=n 2(b). Let{x ,x ,x ,x }⊆C ;by2(a),wecanassumethat 1 i j i j . 1 2 3 4 3 (cid:26) x2 =2nh+nk nh 6=nk Weprovethat|Ap |=3=⇒n =n ,n =n , i.e. Supp(x )=Supp(x ),x =n +2n . 2 i k j h 1 2 2 i j Notethat|Ap | = 3=⇒|{n ,n ,n ,n }| ≤ 3,otherwise,{2n ,2n ,n +n ,n +n } ⊆ Ap =⇒|Ap | ≥ 4. In 2 i j h k i h i j h k 2 2 factif2n = n +n =⇒|Supp(x +e)| ≥ 3(theothercasesaresimilar). Hencetherearethreepossibledistinct i h k 1 9 situations: x =2n +n , n 6=n , 1 i j i j x =2n +n , n 6=n x =2n +n , n 6=n (b1) x =2n +n nni 6=6=nnh , (b2)(cid:26) x21 =2nhi +nji nhj 6=nii , (b3)(cid:26) x12 =2nii+njk nik 6=njj . 2 h j h j (b ).WehaveAp ⊇{2n ,n +n ,2n ,n +n },hence|Ap |=3=⇒ 1 2 i i j h h j 2 either n +n =2n =⇒x =n +2n (thesis) i j h 2 i j (cid:20) or 2ni =nh+nj (analogous). (b ). Wehave Ap ⊇{2n ,n +n ,n +n ,2n }=⇒2n =n +n =⇒ eitherx =x 2 2 i i j h i h h i j 2 1 (againsttheassumption),or n =n (=⇒x =2n +n ). h j 2 j i (b ). Thiscasecannothappen.InfactwehaveAp ={2n ,n +n ,n +n }. Bysimilarargumentsasaboveonecan 3 2 i i j i k seethatforanyotherelementx∈C , x6=x ,x ,themaximalrepresentationofxmustbewrittenasx=3n . Infact 3 1 2 i theotherpossiblerepresentationsareincompatible;forinstance,x=3n ,with2n =n +n =⇒x=n +n +n , j j k i i j k impossibleby(2).Thiswouldmeanthat|C |≤3,againsttheassumption. 3 AccordingtotheabovefactswededucethatC ={3n ,2n +n ,n +2n ,3n }. ⋄ 3 i i j i j j Example3.2 Accordingtothenotationof(3.1),weshowseveralexamplesofsemigroupswhichverifytheassump- tionsof (3.1): Ap = {2n ,n +n ,2n }. The first exampleshowsthatthe conditions(3.1.2b)are, in general, not 2 i i j j sufficienttohaveH decreasing. R 1. Let S =< 19,21,24,47,49,50,51,52,53,54,55,56,58,60 > and let n = 21,n = 24. Then: Ap = i j 2 {42,45,48}, Ap ={63},Ap ={84}, v =e−5, H =[1,14,14,14,16,18,19→]isnon-decreasing. 3 4 R 2. LetS =<19,21,24,65,68,70,71,73,74,75,77,79>withn =21,n =24. Then: i j ℓ = 2,Ap = {42,45,48}, Ap = {3n ,2n +n ,n +2n ,3n }, v = e−7, D +e = {4n ,3n + 2 3 i i j i j j 2 i i n ,...,n +3n }, D ={65,68,71,74,77} H decreasesatlevel2, H =[1,12,10,11,15,18,19→]. j i j 2 R R 3. LetS =<19,21,24,46,49,51,52,54,55,56,58,60>withn =21,n =24. Then: i j ℓ=3, |Ap |=4, v =e−7, H decreasingatlevel3,H =[1,12,15,14,16,18,19→]. 3 R R 4. S =<30,33,37,64,68,71,73,75,76,78,79,80,82→89,91,92,95>withn =33,n =37. Then: i j Ap = {2n ,n +n ,2n }, Ap = {3n ,n +2n ,3n }, Ap = {132= 4n }, v = e−7, H decreasesat 2 i i j j 3 i i j j 4 i R level4:H =[1,23,25,25,24,27,28,29,30→]. R Lemma3.3 Let d = max{ord(σ)| σ ∈ Ap}. Assume there exists 3 ≤ r ≤ d such that |Ap | = 1. Let r := r 0 min{j | |Ap |=1} (r ≥3), then: j 0 1. Ifr <d,thereexistsn ∈Ap suchthatAp ={kn } for r ≤k ≤d(and kn ∈Ap , fork <r ). 0 i 1 k i 0 i k 0 2. Ifthereexistsg ∈D , (k ≥ 2)suchthatord(g+e) =k+p, withp ≥ r −1,then Ap = dn (n ∈Ap ), k 0 d i i 1 and g+e=(k+p)n >dn ; furthersuchelement g isunique. i i Proof.1.BytheAdmissibilityTheoremofMacaulayforHR′,weknowthat|Apk|=1,forr0 ≤k ≤d. Nowsuppose r < d, and|Supp(σ)| ≥ 2, σ ∈ Ap . Ifn ,n ∈ Supp(σ),then,by(1.4),theelementsσ−n , σ−n wouldbe 0 d i j i j distinctelementsinAp , contradiction. d−1 2. By the assumption and (2.2.1c), we have r ≤ p + 1 ≤ d and |Supp(g + e)| ≤ |Ap | = 1. Therefore 0 p+1 g+e = (k +p)n , with n ∈ Ap . Then forr ≤ j ≤ p+1, the inducedelementjn ∈ C belongsto Ap , by i i 1 0 i j j (2.2.1a). ThenAp = {jn } forr ≤ j ≤ d. Hencek+p > d. Foreach k, if such g exists, then it is uniqueby j i 0 (2.3.2). ⋄ Proposition3.4 Assume|Ap | = 3,|Ap | = 1andH decreasing. Letℓ = min{h|H decreasesatlevelh}and 2 3 R R letd=max{ord(σ)| σ ∈Ap}. Wehave: 10