ebook img

On quantum analogues of p-brane black holes PDF

8 Pages·0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On quantum analogues of p-brane black holes

ON QUANTUM ANALOGUES OF P-BRANE BLACK HOLES V.D. Ivashchuk1,† M. Kenmoku2‡ and V.N. Melnikov3† † Center for Gravitation and Fundamental Metrology, VNIIMS, 3-1 M. Ulyanovoy Str., Moscow 117313, Russia Institute of Gravitation and Cosmology, PFUR, 6 Miklukho-Maklaya St., Moscow 117198, Russia ‡ Department of Physics, Nara Women University, Nara 630, Japan In a multidimensional model with several scalar fields and an m-form we deal with classical spherically symmetric solutions with one (electric or magnetic) p-brane and Ricci-flat internal spaces and the corresponding solutions to 1 the Wheeler–DeWitt (WDW) equation. Classical black holes are considered and their quantum analogues (e.g. for 0 M2 and M5 extremal solutions in D = 11 supergravity, electric and magnetic charges in D = 4 gravity) are 0 suggested when the curvaturecoupling in the WDW equation is zero. 2 n 1. Introduction 2. The model a J Consider the model governed by the action 1 Inthispaperwecontinueourinvestigationsof p-brane 1 solutions (see, e.g., [1, 2, 3] and references therein) 1 1 based on the sigma-model approach [4, 5, 6]. S = 2κ2 ZMdDz |g|{R[g]−hαβgMN∂Mϕα∂Nϕβ v The model under consideration contains several 1 p 3 scalardilatonicfieldsandoneantisymmetricform. We exp[2λ(ϕ)]F2 +SGH (2.1) − m! } 4 consider sphericallysymmetric solutions (see [15,14]), 0 when all functions depend on one radial variable and where g = gMNdzM dzN is the metric (M,N = 1 pay attention to black hole (BH) solutions with Ricci- 1,...,D), ϕ = (ϕα)⊗ Rl is a vector of dilatonic 0 ∈ 01 flinat[1i6n,te1r7n,a1l8s])p.aces (see [15, 14] and special solutions (scla∈larNfi)e,ldFs, =(hαdβA) =is am1!nFoMn1-d...eMgmendezrMat1e∧l.×..l∧mdaztMrimx / ThecorrespondingsolutionstotheWDWequation is an m-form (m 1) on a D-dimensional mani- c fold M and λ is a≥1-form on Rl: λ(ϕ) = λ ϕα, q (in the spherically symmetric case) were considered in α gr- [(1a2n,d1/4o]r. cHonerfeorwmealulys-ecotvhaericaonvta)riafonrtm“do’Af lethmebeWrtiDanW” αF2==1F,.M.1..,..lM.mIFnN(12....N1)mgwMe1dNe1n.o.t.egM|gm|N=m,|wdehte(rgeMSNG)|H, : equation of Refs.[9, 10, 11]. We single out certain is the standard Gibbons-Hawking boundary term [8]. v The signature of the metric is ( 1,+1,...,+1). i classes of solutions to the WDW equations and sug- − X The equations of motion corresponding to (2.1) gest quantum analogues of BH solutions. r have the following form: a The plan of the paper is as follows. In Sec.2 we consider the model and present the WDW equation. 1 R g R = T , (2.2) Sec.3 is devoted to classical and quantum exact solu- MN − 2 MN MN tions when spherical symmetry is assumed. In Sec.4 λα [g]ϕα e2λ(ϕ)F2 = 0, (2.3) we consider the classical black-hole solutions and for △ − m! a∈∆ thecase a=0 (theterm aR[ ] intheWDWequation X is responsiblefor the scalarcuGrvature ofminisuperme- ∇M1[g](e2λ(ϕ)FM1...Mm) = 0, (2.4) tric ) we suggest quantum analogues of black-hole G α = 1,...,l. In (2.3) λα = hαβλβ, where (hαβ) is solutions. In the extremal case we consider severalex- matrix inverse to (h ). In (2.2) αβ amples, e.g. for D = 4 Einstein-Maxwell theory and D = 11 supergravity. It is shown that the brane part T =T [ϕ,g]+ e2λ(ϕ)T [F,g], (2.5) MN MN MN of the solution satisfying the outgoing-wave boundary condition is regular for small brane quasi-volume (it where lookslikeapseudo-Euclideanquantumwormhole). We T [ϕ,g]=h ∂ ϕα∂ ϕβ gMN∂ ϕα∂Pϕβ , MN αβ M N P also compare our approach with that suggested by H. − 2 Lu¨,J.Maharana,S.MukherjiandC.N.Pope[20](with 1 (cid:16) 1 (cid:17) T [F,g]= g F2 flat minisupermetric and classical fields of forms). MN m! −2 MN (cid:20) +mFa FM2...Mm . MM2...Mm N i In(2.3),(2.4) [g] and [g] aretheLaplace-Beltrami 1e-mail: [email protected] △ ▽ 2e-mail: [email protected] andcovariantderivativeoperatorscorrespondingto g, 3e-mail: [email protected] respectively. 2 V.D. Ivashchuk, M. Kenmoku and V.N. Melnikov Consider the manifold and I Ω. In (2.17) = [g] is the Hodge operator s ∈ ∗ ∗ on (M,g). Theindices e and m correspondtoelectric M =R (M =Sd0) (M =R) ... M (2.6) 0 1 n and magnetic p-branes, respectively. × × × × Forthepotentialsin(2.16),(2.17)andthedilatonic with the metric scalar fields we put n g = e2γ(u)du du+ e2φi(u)gi, (2.7) Φs =Φs(u), ϕα =ϕα(u), (2.18) ⊗ i=0 X s=e,m; α=1,...,l. where u is a radial coordinate, gi = gi (y )dymi dyni is a metric on M satisfying the emquinaitioin i ⊗ ¿From(2.16)and(2.17)weobtaintherelationsbe- i i tween the dimensions of the p-brane worldsheets and R [gi]=ξ gi , (2.8) the ranks of forms: mini i mini d(I )=m 1, d(I )=D m 1, (2.19) m ,n = 1,...,d ; d = dimM , ξ = const, i = s s i i i i i i − − − 0,...,n; n N. Thus (M ,gi) are Einstein spaces. The function∈s γ,φi: (u ,ui) R are smooth. The for s=e,m, respectively. − + → It follows from [5] that the equations of motion metric g0 is a canonical metric on M = Sd0, ξ = 0 0 (2.2)–(2.4) and the Bianchi identities d 1 and g1 = dt dt, ξ =0. Here (M ,g1) is a 0 1 1 − − × time manifold. dF =0, (2.20) Each manifold M is assumed to be oriented and i connected, i = 0,...,n (for i = 0,1 this is satisfied forthefieldconfiguration(2.7),(2.15)–(2.18)areequiv- automatically). Then the volume d -form alent to equations of motion for a σ-model with the i action τ = gi(y ) dy1 ... dydi, (2.9) i | i | i ∧ ∧ i S = θ du G φ˙iφ˙j +h ϕ˙αϕ˙β and thepsignature parameter σ 2 N ij αβ Z (cid:26) ε(i)=signdet(gmi ini)=±1 (2.10) +εsexp[−2Us(φ,ϕ)](Φ˙s)2−2N−2V(φ) (2.21) (cid:27) arecorrectlydefinedforall i=0,...,n. Here ε(0)=1 where x˙ dx/du, and ε(1)= 1. ≡ − Let Ω be a set of all subsets of I 0,...,n : n Ω0 = {∅0,{0},{1},...,{n},{0,1},...,0{0≡,1{,..., n}}} V =V(φ)= 12 ξidie−2φi+2γ0(φ) (2.22) For any I = i ,...,i Ω , i < ... < i , we i=0 1 k 0 1 k X { } ∈ define the form is the potential with τ(I) τ ... τ , (2.11) n ≡ i1 ∧ ∧ ik γ (φ)= d φi; (2.23) 0 i of rank i=0 X d(I) d , (2.12) furthermore, i ≡ i∈I X =exp(γ γ)>0 (2.24) 0 and the corresponding p-brane submanifold N − is the lapse function, M M ... M , (2.13) I ≡ i1 × × ik Us = Us(φ,ϕ)= χ λ(ϕ)+ d φi, (2.25) s i where p = d(I) 1, dimM = d(I). We also define − the ε-symbol − I iX∈Is ε = ( ε[g])(1−χs)/2ε(I )θ = 1 (2.26) s s − ± ε(I) ε(i )...ε(i ). (2.14) 1 k ≡ for s = e,m, ε[g] = signdet(g ), χ = +1, 1, for MN s − For I = we put τ( )=ε( )=1, d( )=0. s=e,m, respectively, and ∅ ∅ ∅ ∅ For the field of form we adopt the following 1-form G =d δ d d (2.27) ansatz ij i ij − i j F = s, (2.15) are components of the “cosmological” minisupermet- F ric, i,j =0,...,n [11]. where In the electric case for finite “internal space” vol- umes V the action (2.21) (the time manifold should i s = dΦs τ(Is), s=e, (2.16) be S1) coincides with the action (2.1) if θ = 1/κ2, Fs = e−2λ∧(ϕ) (dΦs τ(I)), s=m (2.17) κ2 =κ2V ...V . − 0 F ∗ ∧ 0 0 n On quantum analogues of p-brane black hole 3 The action (2.21) may be also written in the form 2.1. Wheeler–DeWitt equation S = θ du (X)X˙AˆX˙Bˆ 2 −2V (2.28) Here we fix the gauge as follows: σ 2 N GAˆBˆ − N Z n o γ γ =f(X), = ef, (2.42) where X = (XAˆ) = (φi,ϕα,Φs) RN, and the min- 0− N ∈ isupermetric = (X)dXAˆ dXBˆ on minisuper- where f: R is a smooth function. Then we space = RGN, GNAˆBˆ= n + 2 +⊗l, is defined by the obtain the LMagr→ange system with the Lagrangian M relation θ Gij 0 0 Lf = 2efGAˆBˆ(X)X˙AˆX˙Bˆ −θe−fV (2.43) ( (X))= 0 h 0 . (2.29) GAˆBˆ  αβ  and the energy constraint 0 0 ε e−2Us(X)  s  θ   E = ef (X)X˙AˆX˙Bˆ +θe−fV =0. (2.44) The minisuperspace metric may be written as fol- f 2 GAˆBˆ lows: Thestandardprescriptionsofcovariantandconfor- =G¯+εse−2Us(x)dΦs dΦs (2.30) mallycovariantquantization(see,e.g.,[11,9,10])lead G ⊗ where x=(xA)=(φi,ϕα), G¯ =G¯ dxA dxB, to the Wheeler-DeWitt (WDW) equation AB ⊗ (G¯ )= Gij 0 , (2.31) HˆfΨf ( 1 ∆ ef + aR ef + e−fθV)Ψf =0 AB 0 h ≡ −2θ G θ G αβ (cid:18) (cid:19) (cid:2) (cid:3) (cid:2) (cid:3) (2.45) Us(x)=UsxA is defined in (2.25) and A (Us)=(d δ , χ λ ). (2.32) where A i iIs − s α N 2 Here δiI is an indicator of i belonging to I: δiI = 1, a=ac(N)= − . (2.46) 8(N 1) i I and δ =0, i / I. iI − ∈ ∈ The potential (2.22) reads Here Ψf =Ψf(X) is the wave function corresponding n ξ to the f-gauge (2.42) and satisfying the relation V = jd e2Uj(x), (2.33) j 2 j=0 Ψf = ebfΨf=0, b=(2 N)/2, (2.47) X − where ∆[ ] and R[ ] denote the Laplace-Beltrami oper- 1 1 Uj(x) = UjxA = φj +γ (φ), (2.34) atoGr and the Gscalar curvature corresponding to . A − 0 G1 (Uj) = ( δj +d ,0). (2.35) We note that parameter a may be arbitrary if we do A − i i not care about the conformal covariance of the WDW TheintegrabilityoftheLagrangesystem(2.28)de- equation. pendsonthescalarproductsofco-vectors Uj, Us cor- For the scalar curvature of minisupermetric (2.30) responding to G¯: we get (see (2.29) in [5]): (U,U′)=G¯ABU U′ , (2.36) A B R[ ]= 2(Us,Us). (2.48) G − where For the Laplace operator we obtain Gij 0 (G¯AB)= (2.37) 0 hαβ ∂ ∂ (cid:18) (cid:19) ∆[ ]= eUs(x) G¯ABe−Us(x) is the matrix inverse to (2.31). Here (as in [11]) G ∂xA ∂xB (cid:18) (cid:19) 2 Gij = δij + 1 , (2.38) +εse2Us(x) ∂∂Φs . (2.49) di 2 D (cid:18) (cid:19) − i,j = 0,...,n. These products have the following The WDW equation (2.45) for f = 0 (in the har- form: monic time gauge) δ (Ui,Uj) = ij 1, (2.39) 1 a dj − HˆΨ= ∆[ ]+ R[ ]+θV Ψ=0, (2.50) −2θ G θ G (d(I ))2 (cid:18) (cid:19) (Us,Us) = d(I )+ s +λ λ hαβ, (2.40) s α β 2 D may be rewritten, using Eqs.(2.48), (2.49) and − (Us,Ui) = δ , (2.41) − iIs d(I ) Usi =GijUs =δ s , Usα = χ λα, (2.51) s=e,m. j iIs − D 2 − s − 4 V.D. Ivashchuk, M. Kenmoku and V.N. Melnikov as follows: (φi,ϕα), with Eqs.(3.7) substituted, are equivalent to the Lagrange equations for the Lagrangian ∂ ∂ ∂ ∂ 2θHˆΨ= Gij hαβ (cid:26)− ∂φi∂φj − ∂ϕα∂ϕβ LQ = 1G¯ABx˙Ax˙B VQ (3.8) 2 − 2 ∂ −εse2Us(φ,ϕ) ∂Φs where (cid:18) (cid:19) 1 + ∂ d(Is) n ∂ χ λα ∂ VQ =V + 2εsQ2sexp[2Us(x)], (3.9) ∂φi − D 2 ∂φj − s as∂ϕα (cid:20)iX∈Is − Xj=0 (cid:21) (G¯AB) and V aredefinedin(2.31)and(2.22),respec- tively. The zero-energy constraint (2.44) reads +2aR[ ]+2θ2V Ψ=0. (2.52) G 1 (cid:27) E = G¯ x˙Ax˙B +V =0. (3.10) Q AB Q 2 Here Hˆ Hˆf=0 and Ψ Ψf=0. ≡ ≡ When the conditions (i)–(iii) are satisfied, exact solutions for the Lagrangian (3.8) with the potential 3. Exact solutions (3.9) and V ¿from (3.4) have the following form [14]: Hereweusethefollowingrestrictionontheparameters xA(u)= U0A ln f (u u ) of the model: −(U0,U0) | 0 − 0 | UsA (i) ξ =d 1, ξ =...=ξ =0, (3.1) ln f (u u ) +cAu+c¯A (3.11) 0 0− 1 n − (Us,Us) | s − s | onespace M =Sd0 isaunitsphereandall M (i>1) 0 i where u , u are constants, 0 s are Ricci-flat; (d 1) 0 f (τ)= − sinh( C τ), (3.12) (ii) 0∈/ Is, (3.2) 0 √C0 0 p and i.e. the“brane”submanifold M (see(2.13))doesnot Is contain M0, and f (τ)= |Qs| sinh( C τ), ε <0; (3.13) s s s ν √C (iii) (Us,Us)>0. (3.3) Qs s p s | | cosh( C τ), C >0, ε >0(;3.14) s s s The latter is satisfied in most of examples of interest. ν √C s s ¿From (i), (ii) we get for the potential (2.33): p C and C are constants. Here sinh(√Cx)/√C = x 0 s V = 21ξ0d0e2U0(x), (3.4) forTCh=e c0o.ntravariantcomponents U0A =G¯ABUB0 are where (see (2.39)) U0i = δ0i, U0α =0. (3.15) −d 0 (U0,U0)=1/d 1<0. (3.5) 0− (For UsA,s S, see (2.51)). ∈ ¿From (iii) and (2.41) we get The vectors c=(cA) and c¯=(c¯A) satisfy the lin- ear constraint relations (due the configuration space (U0,Us)=0. (3.6) splitting into a sum of three mutually orthogonalsub- spaces, see [14]) 3.1. Classical solutions n U0(c)=c0+ d cj =0, U0(c¯)=0, (3.16) Consider a solution to the Lagrange equations corre- j sponding to the Lagrangian (2.43) with the energy- Xj=0 constraint(2.44)undertherestrictions(3.1)–(3.3). We Us(c)= d ci χ λ cα =0, Us(c¯)=0. (3.17) i − s asα put f =0, i.e., use the harmonic time gauge. iX∈Is Integrating the Maxwell equations (for s=e) and The zero-energy constraint E = E +E +(1/2) the Bianchi identities (for s=m), we get G¯ cAcB = 0, with C = 2E (U00,U0)s, C = AB 0 0 s × d exp( 2Us)Φ˙s =0 Φ˙s =Q exp(2Us), 2Es(Us,Us) may be written as s du − ⇐⇒ n d (cid:16) (cid:17) (3.7) C 0 =C ν2+h cαcβ + d (ci)2 0d 1 s s αβ i 0 − i=1 X where Qs =const. We put Qs 6=0. 1 n 2 For fixed Qs, the Lagrange equations for the La- + d ci . (3.18) i grangian (2.43) with f = 0 corresponding to (xA) = d0 1 ! − i=1 X On quantum analogues of p-brane black hole 5 The followingexpressionsfor the metric andscalar As usual,weseek asolutionto the WDWequation fields follows from (2.51 (3.15)) and (3.15): (2.50) by separation of variables, i.e., we put g =[fs2(u−us)]d(Is)νs2/(D−2)× Ψ∗(z)=Ψ0(z0)Ψs(zs)eiPsΦseipaza. (3.27) × [f02(u−u0)]d0/(1−d0)e2c0u+2c¯0[du⊗du+f02(u−u0)g0] It follows from (3.26) that Ψ∗(z) satisfies the WDW (cid:26) equation (2.50) if ϕ+αXi=6=0ν[f2s2χ(uλ−α ulns)f]−νs2+δicIsαeu2+ciuc¯+α2.c¯igi(cid:27), ((33..2109)) 2Hˆ0Ψ0 ≡((cid:18)∂∂z0(cid:19)2+θ2ξ0d0e2q0z0)Ψ0 s s as | s| =2 Ψ ; (3.28) 0 0 ¿From the relation exp(2Us) = f−2 (following from E s ∂ ∂ (3.6), (3.11) (3.17)) we get for the forms: 2Hˆ Ψ eqszs e−qszs s s ≡ − ∂zs ∂zs (cid:26) (cid:18) (cid:19) s = Q f−2du τ(I ), (3.21) F s s ∧ s +ε P2e2qszs Ψ =2 Ψ , (3.29) s = e−2λ(ϕ) Q f−2du τ(I ) =Q¯ τ(I¯) (3.22) s s s Es s F ∗ s s ∧ s s s (cid:27) for s = e,m, res(cid:2)pectively, where(cid:3)Q¯ = Q ε(I )µ(I ) and s s s s and µ(I) = 1 is defined by the relation µ(I)du τ(I )=τ(I¯) ±du τ(I) [14]. ∧ 2 0+ηabpapb+2 s+2aR[ ]=0, (3.30) 0 E E G ∧ ∧ Thus we obtain exact spherically symmetric so- with a and R[ ] from (2.46) and (2.48), respectively. lutions with internal Ricci-flat spaces (M ,gi), i = G i Linearly independent solutions to Eqs.(3.28) and 2,...,n in the presence of several scalar fields and (3.29) have the following form: one form. The solution is presented by the relations (3.20), (3.21)–(3.19)with the functions f0, fs defined eq0z0 ionn(t3h.1e2s)–o(lu3t.1io4n) apnadratmheetreerlsatcioAn,sc¯(A3.1(6A)–(=3.1i7,α),)(,3.C18), Ψ0(z0) = Bω00 −θ2(d0−1)d0 q0 !, (3.31) 0 p Cs, νs. Ψ (zs) = eqszs/2Bs ε P2 eqszs , (3.32) This solution describes a charged p-brane (electric s ωs s s q (cid:18) s (cid:19) or magnetic) “living” on the submanifold MIs (2.13), p where the set I does not contain 0, i.e. the p-brane where s lives only in the “internal” Ricci-flat spaces. 1 Inthe non-compositecasewithseveralintersecting ω = 2 /q , ω = 2 ν2, (3.33) 0 E0 0 s 4 − Es s p-branes,solutionsof this type wereconsideredin [12, r p 13] (the electric case) and [15] (the electro-magnetic B0,Bs =I ,K are the modified Bessel function. ω ω ω ω case). For the composite case see [14]. The general solution of the WDW equation (2.50) is a superposition of the “separated” solutions (3.27): 3.2. Quantum solutions The truncated minisuperspace metric (2.31) may be Ψ(z)= dpdPd C(p,P, ,B)Ψ∗(z p,P, ,B), E E | E diagonalized by the linear transformation XB Z (3.34) zA =SA xB, (zA)=(z0,za,zs) (3.23) B where p = (p ), P = (P ), = ( ), B = (B0,Bs), a s s as follows: B0,Bs = I,K, and Ψ = ΨE(z p,EP, ,B) is given by ∗ ∗ | E G¯ = dz0 dz0+ηsdzs dzs+dza dzbηab, (3.24) therelations(3.27),(3.31)–(3.33)with E0 ¿from(3.30). − ⊗ ⊗ ⊗ Here C(p,P, ,B) are smooth enough functions. For E where a,b=1,...,n; η =η δ ;η = 1, and several intersecting p-branes (non-composite electric ab aa ab aa ± and composite electro-magnetic) see [12] and [14], re- q z0 =U0(x), q zs =Us(x), (3.25) 0 s spectively. with q = (U0,U0)1/2 = [1 1/d ]1/2 > 0, q = 0 0 s | | − ν−1 = (Us,Us)1/2. 4. Black hole (BH) solutions s | | ¿From (2.49), (3.23), (3.24) we get 4.1. Classical BH solutions ∂ 2 ∂ ∂ ∆[ ]= +ηab Letussingleoutsolutionswithahorizon(withrespect G − ∂z0 ∂za∂zb (cid:18) (cid:19) to time t). We put 2 ∂ ∂ ∂ + eqszs e−qszs +ε e2qszs . (3.26) ∂zs ∂zs s ∂Φs 1 Is, (4.1) (cid:18) (cid:19) (cid:18) (cid:19) ∈ 6 V.D. Ivashchuk, M. Kenmoku and V.N. Melnikov i.e., the p-brane contains the time manifold. Let Recall that ν2 =(Us,Us)−1. s ε = 1 (4.2) Extremal case. Inthe extremalcase µ +0 we get s − for the metric (4.7) → This is a physical restriction satisfied when a pseudo- Euclidean brane in pseudo-Euclidean space is consid- g =H2d(Is)νs2/(D−2) dR dR+R2dΩ2 ered. s ⊗ d0 (cid:26) We single outthe solutionwith a horizon: for inte- n gration constants we put c¯A =0, Hs−2νs2dt dt+ Hs−2νs2δiIsgi , (4.15) − ⊗ i=2 (cid:27) UrA X cA = µ¯ µ¯δA, (4.3) where H =H′ ( ′ = ) in (4.10), s=e,m. (Ur,Ur) − 1 s s Ps Ps r=0,s X Remark. This solutionhas a regular horizonat R C = C =µ¯2, (4.4) → 0 s +0 (with a finite limit of the Riemann tensor squared for R +0) if ν2d(I )d¯ D 2 (see [19]). where µ¯ > 0. Here A = (iA,αA) and A = 1 means → s s ≥ − i =1. Itmaybe verifiedthatthe restrictions(3.16)– A 4.2. Quantum analogues of BH solutions (3.17) and (3.18) are satisfied identically. Let us introduce the new radial variable R=R(u) Let us put a = 0 in the WDW equation. In this case by the relations there exist a map that puts into correspondence some 2µ quantum solution to WDW equation to any classical e−2µ¯u =1 , µ=µ¯d¯>0, d¯=d 1 (4.5) − Rd¯ 0− BH solution. We also put and put u0 =0, us <0, E0 =E0, Es =Es, (4.16) Q i.e., the classical energies of subsystems coincide with s |µ¯νs|sinhβs =1, βs ≡µ¯|us|, (4.6) the eigenvalues of the Hamiltonians Hˆ0 and Hˆs, re- spectively, and s=e,m. Then the solutions for the metric and the scalar ′νs P =Q = , (4.17) fields (see (3.20), (3.19)) are: s s −Ps d¯ i.e., the classicalcharges coincide with the eigenvalues g =H2d(Is)νs2/(D−2) dR⊗dR +R2dΩ2 of the momentum operators Pˆ = ∂/∂Φs. s 1 2µ/Rd¯ d0 s − (cid:26) − Then it may be shown that n H−2νs2 1 2µ dt dt+ H−2νs2δiIsgi ,(4.7) p za =c xA. (4.18) − s − Rd¯ ⊗ s a A (cid:18) (cid:19) i=2 (cid:27) X Using these relations, we get solutions to the WDW ϕα =ν2χ λα lnH , (4.8) s s as s equation(with a=0)ofspecialtype. These solutions where correspond to classical BH solutions and have an am- biguity in the choice of the Bessel functions. We note Q d¯ H =1+ Ps, | s| e−βs. (4.9) that the quantum energy constraint (3.30) is satisfied s Rd¯ Ps ≡ νs identically due to our choice a=0. The form field is given by (2.16), (2.17) with Extremal case. In the extremal case we have ν Φs = s , (4.10) = =p za =0. (4.19) H′ E0 Es a s ′ Hence the wave function (4.20) reads H′ =1+ Ps , (4.11) s Rd¯+ ′ Ψ =Ψ Ψ exp(iQ ), (4.20) Ps−Ps ∗ 0 s s ′ Qsd¯ where . (4.12) Ps ≡− ν s Ψ = B0 iθ r v0 , (4.21) s=e,m. It follows from (4.6), (4.9) and (4.12) that 0 0 | | 0 ′ = µ = eβs = ( +2µ). (4.13) Ψs = vs1/2(cid:0)B1s/2(iQ(cid:1)svs), (4.22) |Ps| sinhβ Ps Ps Ps r = d (d 1) and s 0 0 0 − p The Hawking “temperature” corresponding to the p n solution is (see also [15, 18]) v0 = eq0z0 =exp( φ0+ diφi), (4.23) − i=0 d¯ 2µ νs2 v = eqszs =exp( χ λ(ϕX)+ d φi), (4.24) T = . (4.14) s s i H 4π(2µ)1/d¯(cid:18)2µ+Ps(cid:19) − iX∈Is On quantum analogues of p-brane black hole 7 are “quasivolumes”, s = e,m. The gravitational part The (extremal) solutions read of the wave function, i.e. Ψ , coinsides with that of 0 Refs.[22, 23], see also[21, 24]. For small quasivolumes Ψ =B0 iθ √2v0 v1/2 v 0 we get ∗ 0 | | s × s → Bs (cid:16)( i vs)(cid:17)exp( i ν Φs), (4.32) × 1/2 − Ps − Ps s Ψ vs 2iQ /π, B =I, (4.25) s s ∼ with v = exp(φ1), s = e,m, and v = exp(φ0 + Ψs ∼ pπ/2iQs, B =K. (4.26) φ1). Wse see that here electric and mag0netic solutions For apbig brane quasivolume v we get coincide. (This fact may be concidered as a simple s →∞ manifestationofelectro-magneticdualityataquantum exp(iQsvs) level). Ψ , B =I, (4.27) s ∼ √2πiQ s exp( iQ vs) Ψ − s , B =K, (4.28) 4.2.3. WDW equation with fixed charges s ∼ 2iQ /π s There exists another quantization scheme, where the Thus,forappositivecharge s or,equivalently, Qs <0 fields of forms are considered to be classical. This P (see(4.17)),thebranepartofthesolutionwith B =K scheme is based on the zero-energy constraint relation satisfies the outgoing-wave boundary condition, used (3.10), see [20]. The corresponding WDW equation in first in quantum cosmology in [25], and is regular for the harmonic gauge reads small brane quasi-volumes. 1 ∂ ∂ Hˆ Ψ G¯AB +θV Ψ=0 (4.33) 4.2.1. Example: D =11 supergravity Q ≡ −2θ ∂xA∂xB Q (cid:18) (cid:19) Consider D = 11 supergravity [7] with the truncated where the potential V is defined in (3.9). This equa- Q bosonic action (without a Chern-Simons term) tion describes quantum cosmology with classicalfields offormsandquantumscalefactorsanddilatonicfields. 1 S = d11z g R[g] F2 , (4.29) The basis of solutions is given by the following re- 11tr ZM | |(cid:26) − 4! (cid:27) placements in (3.27), (3.30), (3.32) and (3.33): Ps p Q , 2aR[ ] 0, ω 2 ν2. and Ψ (zs) 7→ where F is a 4-form. Here we have two types of so- s G 7→ s 7→ − Es s s 7→ lutions: an electric 2-brane with d(Is) = 3 (s = e) Bωss εsQ2seqszs/qs . p and a magnetic 5-brane with d(Is) = 6 (s = m). In In(cid:16)pthis approach(cid:17)there is no problem with the a both cases (Us,Us) = 2 = νs−2, (s = e,m. We put parameter when quantum analogues of black-hole so- ε(1)= 1 and ε(k)=1, k >1. lutions are constructed (since in the harmonic gauge − In the extremal case we get for an M2-brane (s= R(G¯)=0). e) and an M5-brane (s=m): Letuscomparequantumblack-holesolutionsinthe two approaches. The function Ψ is the same in both Ψ =B0 iθ r v0 v1/2 0 ∗ 0 | | 0 s × approachesbutforthebranepartofthewavefunction Bs (cid:0) i 1 v(cid:1)s exp i νsΦs , (4.30) we get × 1/2 − Ps2d¯ − Ps d¯ (cid:18) (cid:19) (cid:18) (cid:19) Ψ =Bs(iQ vs). (4.34) s 0 s with v = exp( d φi), s = e,m, and v defined s i∈Is i 0 in (4.23). For small quasivolumes v 0 we get s P → Ψ 1, B =I, (4.35) 4.2.2. Example: D =4 Einstein-Maxwellgrav- s ∼ ity Ψs ln(iQsvs/2), B =K. (4.36) ∼− Consider D =4 gravity: For a big brane quasivolume, v , we get s →∞ S4 =ZMd4z |g|(cid:26)R[g]− 21!F2(cid:27), (4.31) Ψs ∼ e√xp2π(iiQQssvvss), B =I, (4.37) p where F is a 2-form. Here we have two types of exp( iQsvs) Ψ − , B =K, (4.38) s solutions: an electric 0-brane (electric charge) with ∼ 2iQ vs/π s d(I ) = 1 (s = e) and a magnetic 0-brane (mag- s p netic charge) with d(I ) = 1 (s = m). In both cases Thusfor Q <0 thebranepartofthesolutionwith s s (Us,Us)=1/2=ν−2 (s=e,m). We put ε(1)= 1. B =K satisfiestheoutgoing-waveboundarycondition s − Here n=1, d =2 and d =1. [25]butitisnotregularforasmallbranequasi-volume. 0 1 8 V.D. Ivashchuk, M. Kenmoku and V.N. Melnikov 5. Conclusions [15] K.A. Bronnikov, V.D. Ivashchuk and V.N. Melnikov, Grav. & Cosmol. , No. 3 (11), 200 (1997); gr- We haveconsideredclassicalsphericallysymmetricso- qc/9710054; lutions with one brane and the corresponding black- [16] M.CveticandA.A.Tseytlin,Nucl.Phys. B 478,181 holesolutions. Usingsolutionstothe Wheeler-DeWitt (1996). equation,havewesuggestedthequantumanaloguesto [17] I.Ya. Aref’eva, M.G. Ivanov and I.V. Volovich, Phys. black-hole solutions in the extremal and non-extremal Lett. B 406, 44 (1997); hep-th/9702079. cases. This was possible when the coupling parameter [18] N. Ohta, “Intersection rules for non-extreme p- intheWDWequationwastrivial: a=0. Inthealter- branes”, hep-th/9702164. native approach of [20] (with classical fields of forms) one may use an arbitrary coupling a in the WDW [19] V.D. Ivashchuk and V.N. Melnikov. Class. Quant. Grav. , 16, 849 (1999); hep-th/9802121. equation when constructing quantum analogues. [20] H.Lu¨,J.Maharana,S.MukherjiandC.N.Pope,Phys. Acknowledgement Rev. D 57, 2219 (1998); hep-th/9707182. [21] U. Bleyer, V.D. Ivashchuk, V.N. Melnikov and A.I. This work was supported in part by a DFG grant, by Zhuk,Nucl. Phys. B 429 77 (1994); gr-qc/9405020. the Russian Ministry for Science and Technology and [22] A.Zhuk,Class. Quant. Grav. 9, 202 (1992). Russian Basic Research Foundation, grant N 98-02- 16414. V.D.I. and V.N.M. are grateful for hospitality [23] A.Zhuk,Phys. Rev. D45, 1192 (1992). during their stay at Nara Women’s University. [24] V.D.IvashchukandV.N.Melnikov,Int.J.Mod.Phys. D 3, No. 4, 795 (1994); Grav. & Cosmol. 1, No. 3, References 204 (1995). [25] M.I. Kalinin and V.N. Melnikov, in: “Problems of [1] M.J. Duff, R.R. Khuri and J.X. Lu, Phys. Rep. 259, Gravitation and Elementary Particle Theory”, Proc. 213 (1995). VNIIFTRI,16(46), Moscow, 1972, p.49 (in Russian); [2] K.S.Stelle,“Lecturesonsupergravityp-branes”,hep- K.P.StaniukovichandV.N.Melnikov.“Hydrodynam- th/9701088. ics, Fields and Constants in the Theory of Gravita- tion”, Moscow, Energoatomizdat, 1983, 256 pp. (in [3] I.Ya. Aref’eva and O.A. Rytchkov, “Incidence ma- Russian). trixdescriptionofintersectingp-branesolutions”,hep- th/9612236; I.Ya. Aref’eva, M.G. Ivanov and O.A. Rytchkov, ”Properties ofintersecting p-branesin variousdimen- sions”, hep-th/9702077. [4] V.D. Ivashchukand V.N. Melnikov, Grav. & Cosmol. 2(4),297(1996);hep-th/9612089; Phys.Lett.B 403, 23 (1997). [5] V.D. Ivashchuk and V.N. Melnikov, Class. Quantum Grav. 14, 3001 (1997); hep-th/9705036. [6] V.D. Ivashchuk,V.N.Melnikov and M. Rainer, Grav. & Cosmol. 4, No. 1 (13), 73 (1998); gr-qc/9705005. [7] E. Cremmer, B. Julia and J. Scherk, Phys. Lett. B 76, 409 (1978). [8] G.W. GibbonsandS.W.Hawking, Phys. Rev. D 15, 2752 (1977). [9] C.W. Misner, In: “Magic without Magic: John Archibald Wheeler”, ed. J.R. Klauder, Freeman, San Francisko, 1972. [10] J.J. Halliwell, Phys. Rev. D 38, 2468 (1988). [11] V.D.Ivashchuk,V.N.MelnikovandA.I.Zhuk,Nuovo Cim. B104, 575 (1989). [12] M.A.Grebeniuk, V.D. Ivashchuk and V.N. Melnikov, Grav.&Cosmol. 3,No.3,243(1997);gr-qc/9708031. [13] K.A.Bronnikov,M.A.Grebeniuk,V.D.Ivashchukand V.N.Melnikov,Grav.&Cosmol. 3,No.2,105(1997). [14] V.D. Ivashchuk and V.N. Melnikov, J. Math. Phys. 39, 2866 (1998); hep-th/9708157.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.