ebook img

On Nonlocal Modified Gravity and its Cosmological Solutions PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Nonlocal Modified Gravity and its Cosmological Solutions

On Nonlocal Modified Gravity and its Cosmological Solutions IvanDimitrijevic,BrankoDragovich,JelenaStankovic,AlexeyS.Koshelev andZoranRakic 7 1 0 2 n a J AbstractDuringhundredyearsofGeneralRelativity(GR),manysignificantgrav- 9 itationalphenomenahavebeenpredictedanddiscovered.GeneralRelativityisstill ] thebesttheoryofgravity.Nevertheless,some(quantum)theoreticaland(astrophys- h icalandcosmological)phenomenologicaldifficultiesofmoderngravityhavebeen t - motivation to search more general theory of gravity than GR. As a result, many p modificationsofGRhavebeenconsidered.Oneofpromisingrecentinvestigations e h isNonlocalModifiedGravity.Inthisarticlewepresentabriefreviewofsomenon- [ localgravitymodelswiththeircosmologicalsolutions,inwhichnonlocalityisex- pressedbyananalyticfunctionofthed’Alembert-Beltramioperator(cid:3).Somenew 1 resultsarealsopresented. v 0 9 0 2 0 . 1 I.Dimitrijevic 0 FacultyofMathematics,UniversityofBelgrade,Studentskitrg16,Belgrade,Serbia 7 e-mail:[email protected] 1 B.Dragovich : v InstituteofPhysics, UniversityofBelgrade;MathematicalInstituteSANU,Belgrade, Serbia i e-mail:[email protected] X J.Stankovic r TeacherEducationFaculty,UniversityofBelgrade,KraljiceNatalije43,Belgrade,Serbia a e-mail:[email protected] A.S.Koshelev DepartamentodeF´ısicaandCentrodeMatema´ticaeAplicac¸o˜es,UniversidadedaBeiraInterior, 6200Covilha˜,Portugal;Theoretische Natuurkunde, VrijeUniversiteitBrussel, andTheInterna- tionalSolvayInstitutes,Pleinlaan2,B-1050Brussels,Belgium e-mail:[email protected] Z.Rakic FacultyofMathematics,UniversityofBelgrade,Studentskitrg16,Belgrade,Serbia e-mail:[email protected] 1 2 I.Dimitrijevicetal. 1 Introduction Generalrelativity(GR)wasformulatedonehundredyearsagoandisalsoknownas Einsteintheoryofgravity.GRisregardedasoneofthemostprofoundandbeautiful physical theories with great phenomenologicalachievements and nice theoretical properties. It has been tested and quite well confirmedin the Solar system, and it hasbeenalsousedasatheoreticallaboratoryforgravitationalinvestigationsatother spacetimescales.GRhasimportantastrophysicalimplicationspredictingexistence ofblackholes,gravitationallensingandgravitationalwaves1.Incosmology,itpre- dicts existence of about95% of additionalnew kind of matter, which makes dark sideoftheuniverse.Namely,ifGRisthegravitytheoryfortheuniverseasawhole andiftheuniverseishomogeneousandisotropicwiththeflatFriedmann-Lemaˆıtre- Robertson-Walker(FLRW) metricat thecosmic scale, thenit containsabout68% ofdarkenergy,27%ofdarkmatter,andonlyabout5%ofvisiblematter[2]. Despite of some significant phenomenological successes and many nice theo- retical properties, GR is not complete theory of gravity. For example, attempts to quantizeGRleadtothe problemofnonrenormalizability.GRalso containssingu- larities like the Big Bang andblack holes. At the galactic andlarge cosmic scales GR predicts new forms of matter, which are not verified in laboratory conditions andhavenotsofarseeninparticlephysics.Hence,therearemanyattemptstomod- ifyGeneralrelativity.Motivationsforitsmodificationusuallycomefromquantum gravity,string theory,astrophysicsand cosmology(fora review,see [22, 60, 63]). WearemainlyinterestedincosmologicalreasonstomodifyEinsteintheoryofgrav- ity,i.e.tofindsuchextensionofGRwhichwillnotcontaintheBigBangsingularity andofferanotherpossibledescriptionoftheuniverseaccelerationandlargeveloci- tiesingalaxiesinsteadofmysteriousdarkenergyanddarkmatter.Itisobviousthat physical theory has to be modified when it contains a singularity. Even if it hap- penedthatdarkenergyanddarkmatterreallyexistitisstillinterestingtoknowis thereamodifiedgravitywhichcanimitatethesameorsimilareffects.Hence,ade- quategravitymodificationcanreduceroleandrateofthedarkmatter/energyinthe universe. Anywell foundedmodificationof the Einstein theoryof gravityhas to contain generalrelativityandtobeverifiedatleastonthedynamicsoftheSolarsystem.In otherwords,ithastobeageneralizationofthegeneraltheoryofrelativity.Mathe- matically,itshouldbeformulatedwithinthepseudo-Riemanniangeometryinterms of covariantquantities and take into account equivalence of the inertial and grav- itational mass. Consequently, the Ricci scalar R in gravity Lagrangian L of the g Einstein-Hilbertactionshouldbereplacedbyan adequatefunctionwhich,ingen- eral, may contain not only R but also some scalar covariant constructions which arepossibleinthepseudo-Riemanniangeometry.However,wedonotknowwhatis hereadequatefunctionandthereareinfinitelymanypossibilitiesforitsconstruction. Unfortunately,sofarthereisnoguidingtheoreticalprinciplewhichcouldmakeap- propriatechoicebetweenallpossibilities.InthiscontexttheEinstein-Hilbertaction 1Whilewepreparedthiscontribution,thediscoveryofgravitationalwaveswasannounced[1]. OnNonlocalModifiedGravityanditsCosmologicalSolutions 3 isthesimplestone,i.e.itcanbeviewedasrealizationoftheprincipleofsimplicity inconstructionofL . g Oneofpromisingmodernapproachestowardsmorecompletetheoryofgravityis itsnonlocalmodification.Motivationfornonlocalmodificationofgeneralrelativity can be found in string theory which is nonlocal theory and contains gravity. We present here a brief review and some new results of nonlocalgravity with related bouncecosmologicalsolutions.Inparticular,wepayspecialattentiontomodelsin whichnonlocalityisexpressedbyananalyticfunctionofthed’Alembertoperator (cid:3)= 1 ¶ m √ ggmn ¶ n like nonlocality in string theory. In these models, we are √ g − mainly−interestedinnonsingularbouncesolutionsforthecosmicscalefactora(t). In Sect. 2 we mentiona few differentapproachesto nonlocalmodifiedgravity. Section3 containsrathergeneralmodifiedactionwith an analyticnonlocalityand with corresponding equations of motion. Cosmological equations for the FLRW metricispresentedinSect.4.Cosmologicalsolutionsforconstantscalarcurvature are considered separately in Sect. 5. Some new examplesof nonlocalmodels and relatedAnsa¨tzeareintroducedinSect.6.Attheandafewremarksarealsonoticed. 2 Nonlocal Modified Gravity We consider here nonlocal modified gravity. Usually a nonlocal modified gravity modelcontainsaninfinitenumberofspacetimederivativesintheformofapower seriesexpansionwithrespecttothed’Alembertoperator(cid:3)= 1 ¶ m √ ggmn ¶ n .In √ g − thisarticle,wearemainlyinterestedinnonlocalityexpressedin−theformofanana- lyticfunctionF((cid:3))=(cid:229) ¥ f (cid:3)n,wherecoefficients f shouldbedeterminedfrom n=0 n n varioustheoreticaland phenomenologicalconditions.Some conditionsare related totheabsenceoftachyonsandgosts. Beforetoproceedwiththisanalyticnonlocalityitisworthtomentionsomeother interestingnonlocalapproaches.Forapproachescontaining(cid:3) 1 onecansee,e.g., − [27, 26, 66, 61, 45, 67, 42, 43, 46, 47] and referencestherein. For nonlocalgrav- ity with(cid:3) 1 see also [8, 58].Manyaspectsofnonlocalgravitymodelshavebeen − considered,seee.g.[20,16,17,59,18,36]andreferencestherein. Ourmotivationtomodifygravityinananalyticnonlocalwaycomesmainlyfrom string theory, in particular from string field theory (see the very original effort in thisdirectionin[3])and p-adicstringtheory[15,38,39,40,65].Sincestringsare one-dimensionalextendedobjects,theirfieldtheorydescriptioncontainsspacetime nonlocalityexpressedbysomeexponentialfunctionsofd’Alembertoperator(cid:3). Atclassicallevelanalyticnon-localgravityhasproventoalleviatethesingularity oftheBlack-holetypebecausetheNewtonianpotentialappearsregular(tendingto aconstant)onauniversalbasisattheorigin[41,11,9].Alsotherewassignificant successinconstructingclassicallystablesolutionforthecosmologicalbounce[11, 13,48,51,55]. Analysisofperturbationsrevealedanaturalabilityofanalyticnon-localgravities to accommodate inflationary models. In particular, the Starobinsky inflation was 4 I.Dimitrijevicetal. studiedindetailsandnewpredictionsfortheobservableparametersweremade[24, 53]. Moreover, in the quantum sector infinite derivative gravity theories improve renormalization,seee.g.whiletheunitarityisstillpreserved[56,57,53](notethat justalocalquadraticcurvaturegravitywasproventoberenormalizablewhilebeing non-unitary[64]). 3 Modified GR withAnalyticalNonlocality Tobetterunderstandnonlocalmodifiedgravityitself,weinvestigateitherewithout presence of matter. Models of nonlocal gravity which we mainly investigate are givenbythefollowingaction M2 l S= d4x√ g PR L + P(R)F((cid:3))Q(R) , (1) Z − (cid:18) 2 − 2 (cid:19) ¥ whereRisthescalarcurvature,L isthecosmologicalconstant,F((cid:3))= (cid:229) f (cid:3)n n n=0 isananalyticfunctionofthed’Alembert-Beltramioperator(cid:3)=(cid:209) m (cid:209) m where(cid:209) m is thecovariantderivative.ThePlanckmassM isrelatedtotheNewtonianconstant P GasM2= 1 andP,Qarescalarfunctionsofthescalarcurvature.Thespacetime P 8p G dimensionality D=4 and our signature is ( ,+,+,+). l is a constant and can be absorbedin the rescaling of F((cid:3)). Howe−ver,it is convenientto remain l and recoverGRinthelimitl 0. → Note that to have physically meaningful expressions one should introduce the scale of nonlocality using a new mass parameter M. Then the function F would ¥ be expanded in Taylor series as F((cid:3))= (cid:229) f¯(cid:3)n/M2n with all barred constants n n=0 dimensionless. For simplicity we shall keep M2 =1. We shall also see later that analytic function F((cid:3))=(cid:229) ¥ f (cid:3)n, has to satisfy some conditions, in order to n=0 n escape unphysicaldegreesof freedomlike ghostsand tachyons,and to have good behaviorinquantumsector(see[9,10,41]). Varyingtheaction(1)bysubstituting gmn gmn +hmn (2) → tothelinearorderinhmn ,removingthetotalderivativesandintegratingfromtime totimebypartsonegets mn h d S= d4x√ g Gmn , (3) Z − 2 (cid:20)− (cid:21) where OnNonlocalModifiedGravityanditsCosmologicalSolutions 5 l l ¥ Gmn ≡MP2Gmn +gmn L − 2gmn PF((cid:3))Q+l (Rmn −Kmn )V− 2 (cid:229) fn n=1 n 1 (cid:229)− Pm(l)Q(nn−l−1)+Pn(l)Q(mn−l−1) gmn (grs Pr(l)Q(sn−l−1)+P(l)Q(n−l)) =0 ×l=0(cid:16) − (cid:17) (4) presentsequationsofmotionforgravitationalfieldgmn inthevacuum.In(4)Gmn = Rmn 1gmn RistheEinsteintensor, −2 Kmn =(cid:209) m (cid:209) n gmn (cid:3), V =PRF((cid:3))Q+QRF((cid:3))P, − where the subscript R indicates the derivative w.r.t. R (as many times as it is re- peated)and P(l)=(cid:3)lP, Pr(l)=¶ r (cid:3)lPwiththesameforQ, PR, ... Inthecaseofgravitywithmatter,thefullequationsofmotionareGmn =Tmn ,where Tmn istheenergy-momentumtensor.Thankstotheintegrationbypartsthereisal- waysthesymmetryofanexchangeP Q. Whenl =0in(4)werecognizeth↔eEinstein’sGRequationwiththecosmolog- icalconstantL .If f =0forn 1then(4)correspondstoequationsofmotionof n ≥ an f(R)theory. 4 CosmologicalEquations forFLRWMetric WeusetheFLRWmetric dr2 ds2= dt2+a2(t) +r2dq 2+r2sin2q df 2 − (cid:18)1 kr2 (cid:19) − and look for some cosmological solutions. In the FLRW metric the Ricci scalar curvatureis a¨ a˙2 k R=6 + + (cid:18)a a2 a2(cid:19) and (cid:3)= ¶ 2 3H¶ , − t − t whereH=a˙ istheHubbleparameter.Weusenaturalsystemofunitsinwhichspeed a oflightc=1. Due to symmetries of the FLRW spacetime, in (4) there are only two linearly independentequations.Theyare:traceand00,i.e.whenindicesm =n =0. Thetraceequationand00-equation,respectively,are 6 I.Dimitrijevicetal. M2R 4L +2l PF((cid:3))Q l (R+3(cid:3))V P − − ¥ n 1 (5) l (cid:229) fn (cid:229)− grs ¶ r (cid:3)lP¶ s (cid:3)n−l−1Q+2(cid:3)lP(cid:3)n−lQ =0, − n=1 l=0(cid:16) (cid:17) l l ¥ M2G L + PF((cid:3))Q+l (R (cid:209) (cid:209) (cid:3))V (cid:229) f p 00− 2 00− 0 0− − 2 n n=1 (6) n 1 (cid:229)− 2¶ 0(cid:3)lP¶ 0(cid:3)n−l−1Q+grs ¶ r (cid:3)lP¶ s (cid:3)n−l−1Q+(cid:3)lP(cid:3)n−lQ =0. ×l=1(cid:16) (cid:17) 5 CosmologicalSolutions forConstantScalarCurvature R WhenRisaconstantthenPandQarealsosomeconstantsandwehavethat(cid:3)R=0, F((cid:3))= f .Thecorrespondingequationsofmotion(5)and(6)containsolutionsas 0 in the localcase. However,metricperturbationsatthe backgroundR=const. can givenontrivialcosmicstructureduetononlocality. LetR=R =constant=0.Then 0 6 a¨ a˙ k 2 6 + + =R . (7) a a a2 0 (cid:16) (cid:0) (cid:1) (cid:17) Thechangeofvariableb(t)=a2(t)transforms(7)intoequation 3b¨ R b= 6k. (8) 0 − − DependingonthesignofR ,thefollowingsolutionsofequation(8)are 0 b(t)= 6k +s eqR30t+t e−qR30t, R0>0, R 0 (9) 6k R R b(t)= +s cos − 0t+t sin − 0t, R <0, R r 3 r 3 0 0 wheres andt aresomeconstantcoefficients. SubstitutionR=R intoequationsofmotion(5)and(6)yields,respectively, 0 M2R 4L +2l Pf Q l R V =0, (10) p 0− 0 − 0 0 l M2G L + Pf Q+l R V =0, (11) p 00− 2 0 00 0 whereV = f (P Q+Q P) andG =R +R0. 0 0 R R |R=R0 00 00 2 Combiningequations(10)and(11)oneobtains OnNonlocalModifiedGravityanditsCosmologicalSolutions 7 M2R 4L +2l Pf Q l R V =0, (12) p 0− 0 − 0 0 4R +R =0. (13) 00 0 Equation (12) connects some parameters of the nonlocal model (1) in the al- gebraicform with respectto R , while (13) implies a conditionon the parameters 0 s ,t ,kandR insolutions(9).Namely,R isrelatedtofunctionb(t)as 0 00 3a¨ 3(b˙)2 2bb¨ R = = − . (14) 00 − a 4 b2 ReplacingR in(13)by(14)andusingdifferentsolutionsforb(t)in(9)weobtain 00 9k2=R2st , R >0, 0 0 (15) 36k2=R2(s 2+t 2), R <0. 0 0 5.1 Case: R >0 0 Letk=0.From9k2=R2st followsthatatleastoneofs andt hastobezero. • 0 Thusthereispossibilityforanexponentialsolutionfora(t)anda(t)=0.Taking t =0ands =a2onehas 0 b(t)=a20eqR30t. (16) If k=+1 one can find j such that s +t = 6 coshj and s t = 6 sinhj . • R0 − R0 Moreover,weobtain 12 1 R b(t)= cosh2 0t+j , R 2 r 3 0 (cid:16) (cid:17) (17) 12 1 R a(t)= cosh 0t+j . rR 2 r 3 0 (cid:16) (cid:17) Ifk= 1onecantransformb(t)anda(t)to • − 12 1 R b(t)= sinh2 0t+j , R 2 r 3 0 (cid:16) (cid:17) (18) 12 1 R a(t)= sinh 0t+j . rR0(cid:12) 2(cid:16)r 3 (cid:17)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 8 I.Dimitrijevicetal. 5.1.1 Case:R=12g 2 This is a special case of R , which simplifies the aboveexpressionsand yieldsde 0 Sitter-likecosmologicalsolutions. k=0: • b(t)=a2e2gt, a(t)=a egt. (19) 0 0 k=+1: • 1 j b(t)= cosh2 g t+ , g 2 2 (cid:16) (cid:17) (20) 1 j a(t)= cosh g t+ . g 2 (cid:16) (cid:17) | | k= 1: • − 1 j b(t)= sinh2 g t+ , g 2 2 (cid:16) (cid:17) (21) 1 j a(t)= sinh g t+ . g 2 (cid:12) (cid:16) (cid:17)(cid:12) | |(cid:12) (cid:12) (cid:12) (cid:12) 5.2 Case: R <0 0 Whenk=0thens =t =0,andconsequentlyb(t)=0. • Ifk= 1onecandefinej bys = 6cosj andt = 6sinj ,andrewriteb(t) • − −R0 −R0 anda(t)as 12 1 R b(t)= − cos2 0t j , R0 2(cid:16)r− 3 − (cid:17) (22) 12 1 R a(t)= − cos ( 0t j ) . r R0 (cid:12) 2 r− 3 − (cid:12) (cid:12) (cid:12) Inthelastcasek=+1,bythesame(cid:12)procedureasfork=(cid:12) 1,onecantransform • − b(t)toexpression 12 1 R b(t)= sin2 0t j , (23) R0 2(cid:16)r− 3 − (cid:17) whichisnotpositiveandhenceyieldsnosolution. 5.3 Case: R =0 0 The case R =0 can be considered as limit of R 0 in both cases R >0 and 0 0 0 R <0.WhenR >0 thereis condition9k2 =R2st →in (15). Fromthiscondition, 0 0 0 OnNonlocalModifiedGravityanditsCosmologicalSolutions 9 R 0impliesk=0andarbitraryvaluesofconstantss andt .Thesameconclusion 0 obt→ainswhenR <0withcondition36k2=R2(s 2+t 2).Inboththesecasesthereis 0 0 Minkowskisolutionwithb(t)=constant>0andconsequentlya(t)=constant>0, see(9). 6 Some Models andRelatedAnsa¨tze forCosmologicalSolutions 6.1 NonlocalGravityModelQuadraticinR NonlocalgravitymodelwhichisquadraticinRwasgivenbytheaction[11,12] R 2L S= d4x√ g − +RF((cid:3))R . (24) Z − (cid:16) 16p G (cid:17) Thismodelisimportantbecauseitisghostfreeandhassomenonsingularbounce solutions,whichcanberegardedasasolutionoftheBigBangcosmologicalsingu- larityproblem. Thecorrespondingequationsofmotioncanbeeasilyobtainedfrom(5)and(6). Toevaluaterelatedequationsofmotion,thefollowingAnsa¨tzewereused: LinearAnsatz:(cid:3)R=rR+s,whererandsareconstants. • QuadraticAnsatz:(cid:3)R=qR2,whereqisaconstant. • QubicAnsatz:(cid:3)R=CR3,whereCisaconstant. • Ansatz(cid:3)nR=c Rn+1, n 1,wherec areconstants. n n • ≥ TheseAnsa¨tzemakesomeconstraintsonpossiblesolutions,butsimplifyformalism tofindaparticularsolution(see[29]andreferencestherein). 6.1.1 LinearAnsatzandNonsingularBounceCosmologicalSolutions UsingAnsatz(cid:3)R=rR+safewnonsingularbouncesolutionsforthescalefactor L 1 L t2 are found:a(t)=a cosh t (see [11, 12]), a(t)=a e2 3 (see [48, 49]) 0 (cid:18)q3 (cid:19) 0 q anda(t)=a (s el t+t e l t)[30].ThefirsttwoconsequencesofthisAnsatzare 0 − s s (cid:3)nR=rn(R+ ), n 1, F((cid:3))R=F(r)R+ (F(r) f ), (25) 0 r ≥ r − whichconsiderablysimplifynonlocalterm. Generalization of the above quadratic model in the form of nonlocal term RpF((cid:3))Rq, where p andq are some naturalnumbers,wasrecentlyconsideredin [28].Herecosmologicalsolutionforthescalefactorhastheforma(t)=a e gt2. o − 10 I.Dimitrijevicetal. 6.2 GravityModelwith NonlocalTermR 1F((cid:3))R − Thismodelwasintroducedin[31]anditsactionmaybewrittenintheform R S= d4x√ g +R 1F((cid:3))R , (26) Z − (cid:16)16p G − (cid:17) whereF((cid:3))=(cid:229) ¥ f (cid:3)nand f = L playsroleofthecosmologicalconstant. n=0 n 0 −8p G ThenonlocaltermR 1F((cid:3))Rin(26)isinvariantundertransformationR CR. − → ThisnonlocaltermdoesnotdependonthemagnitudeofscalarcurvatureR,buton itsspacetimedependence,andintheFLRWcaseisrelevantonlydependenceofR L ontimet.Term f = iscompletelydeterminedbythecosmologicalconstant L , which accordi0ng t−o8Lp CGDM model is small and positive energy density of the vacuum. Coefficients f, i N can be estimated from other conditions, including i ∈ agreementwith dynamicsthe Solar system. In comparisonto the modelquadratic inR(24),completeLagrangianofthismodelremainstobelinearinRandinsuch senseissimplernonlocalmodificationthan(24). In this model are also used the above Ansa¨tze. Especially quadratic Ansatz (cid:3)R=qR2, whereq is a constant,is effectiveto considerpower-lawcosmological solutions,see[31,32,37,33]. 6.3 SomeNewModelsand Ansa¨tze Itisworthtoconsidersomeparticularexamplesofaction(1)whenP=Q=(R+ R )m,i.e. 0 1 l S= R L + (R+R )mF((cid:3))(R+R )m √ gd4x, (27) Z (cid:16)16p G − 2 0 0 (cid:17) − whereR R,m Q,andwhichhavescalefactorsolutionas 0 ∈ ∈ a(t)=Atnegt2, g R. (28) ∈ TothisendweconsidertheAnsatz (cid:3)(R+R )m=p(R+R )m, (29) 0 0 where pisaconstantand(cid:3)isthed’AlembertoperatorinFLRWmetric. ¿FromAnsatz(29)andscalarcurvatureRfork=0,wegetthefollowingsystem ofequations:

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.