On Nonlocal Modified Gravity and its Cosmological Solutions IvanDimitrijevic,BrankoDragovich,JelenaStankovic,AlexeyS.Koshelev andZoranRakic 7 1 0 2 n a J AbstractDuringhundredyearsofGeneralRelativity(GR),manysignificantgrav- 9 itationalphenomenahavebeenpredictedanddiscovered.GeneralRelativityisstill ] thebesttheoryofgravity.Nevertheless,some(quantum)theoreticaland(astrophys- h icalandcosmological)phenomenologicaldifficultiesofmoderngravityhavebeen t - motivation to search more general theory of gravity than GR. As a result, many p modificationsofGRhavebeenconsidered.Oneofpromisingrecentinvestigations e h isNonlocalModifiedGravity.Inthisarticlewepresentabriefreviewofsomenon- [ localgravitymodelswiththeircosmologicalsolutions,inwhichnonlocalityisex- pressedbyananalyticfunctionofthed’Alembert-Beltramioperator(cid:3).Somenew 1 resultsarealsopresented. v 0 9 0 2 0 . 1 I.Dimitrijevic 0 FacultyofMathematics,UniversityofBelgrade,Studentskitrg16,Belgrade,Serbia 7 e-mail:[email protected] 1 B.Dragovich : v InstituteofPhysics, UniversityofBelgrade;MathematicalInstituteSANU,Belgrade, Serbia i e-mail:[email protected] X J.Stankovic r TeacherEducationFaculty,UniversityofBelgrade,KraljiceNatalije43,Belgrade,Serbia a e-mail:[email protected] A.S.Koshelev DepartamentodeF´ısicaandCentrodeMatema´ticaeAplicac¸o˜es,UniversidadedaBeiraInterior, 6200Covilha˜,Portugal;Theoretische Natuurkunde, VrijeUniversiteitBrussel, andTheInterna- tionalSolvayInstitutes,Pleinlaan2,B-1050Brussels,Belgium e-mail:[email protected] Z.Rakic FacultyofMathematics,UniversityofBelgrade,Studentskitrg16,Belgrade,Serbia e-mail:[email protected] 1 2 I.Dimitrijevicetal. 1 Introduction Generalrelativity(GR)wasformulatedonehundredyearsagoandisalsoknownas Einsteintheoryofgravity.GRisregardedasoneofthemostprofoundandbeautiful physical theories with great phenomenologicalachievements and nice theoretical properties. It has been tested and quite well confirmedin the Solar system, and it hasbeenalsousedasatheoreticallaboratoryforgravitationalinvestigationsatother spacetimescales.GRhasimportantastrophysicalimplicationspredictingexistence ofblackholes,gravitationallensingandgravitationalwaves1.Incosmology,itpre- dicts existence of about95% of additionalnew kind of matter, which makes dark sideoftheuniverse.Namely,ifGRisthegravitytheoryfortheuniverseasawhole andiftheuniverseishomogeneousandisotropicwiththeflatFriedmann-Lemaˆıtre- Robertson-Walker(FLRW) metricat thecosmic scale, thenit containsabout68% ofdarkenergy,27%ofdarkmatter,andonlyabout5%ofvisiblematter[2]. Despite of some significant phenomenological successes and many nice theo- retical properties, GR is not complete theory of gravity. For example, attempts to quantizeGRleadtothe problemofnonrenormalizability.GRalso containssingu- larities like the Big Bang andblack holes. At the galactic andlarge cosmic scales GR predicts new forms of matter, which are not verified in laboratory conditions andhavenotsofarseeninparticlephysics.Hence,therearemanyattemptstomod- ifyGeneralrelativity.Motivationsforitsmodificationusuallycomefromquantum gravity,string theory,astrophysicsand cosmology(fora review,see [22, 60, 63]). WearemainlyinterestedincosmologicalreasonstomodifyEinsteintheoryofgrav- ity,i.e.tofindsuchextensionofGRwhichwillnotcontaintheBigBangsingularity andofferanotherpossibledescriptionoftheuniverseaccelerationandlargeveloci- tiesingalaxiesinsteadofmysteriousdarkenergyanddarkmatter.Itisobviousthat physical theory has to be modified when it contains a singularity. Even if it hap- penedthatdarkenergyanddarkmatterreallyexistitisstillinterestingtoknowis thereamodifiedgravitywhichcanimitatethesameorsimilareffects.Hence,ade- quategravitymodificationcanreduceroleandrateofthedarkmatter/energyinthe universe. Anywell foundedmodificationof the Einstein theoryof gravityhas to contain generalrelativityandtobeverifiedatleastonthedynamicsoftheSolarsystem.In otherwords,ithastobeageneralizationofthegeneraltheoryofrelativity.Mathe- matically,itshouldbeformulatedwithinthepseudo-Riemanniangeometryinterms of covariantquantities and take into account equivalence of the inertial and grav- itational mass. Consequently, the Ricci scalar R in gravity Lagrangian L of the g Einstein-Hilbertactionshouldbereplacedbyan adequatefunctionwhich,ingen- eral, may contain not only R but also some scalar covariant constructions which arepossibleinthepseudo-Riemanniangeometry.However,wedonotknowwhatis hereadequatefunctionandthereareinfinitelymanypossibilitiesforitsconstruction. Unfortunately,sofarthereisnoguidingtheoreticalprinciplewhichcouldmakeap- propriatechoicebetweenallpossibilities.InthiscontexttheEinstein-Hilbertaction 1Whilewepreparedthiscontribution,thediscoveryofgravitationalwaveswasannounced[1]. OnNonlocalModifiedGravityanditsCosmologicalSolutions 3 isthesimplestone,i.e.itcanbeviewedasrealizationoftheprincipleofsimplicity inconstructionofL . g Oneofpromisingmodernapproachestowardsmorecompletetheoryofgravityis itsnonlocalmodification.Motivationfornonlocalmodificationofgeneralrelativity can be found in string theory which is nonlocal theory and contains gravity. We present here a brief review and some new results of nonlocalgravity with related bouncecosmologicalsolutions.Inparticular,wepayspecialattentiontomodelsin whichnonlocalityisexpressedbyananalyticfunctionofthed’Alembertoperator (cid:3)= 1 ¶ m √ ggmn ¶ n like nonlocality in string theory. In these models, we are √ g − mainly−interestedinnonsingularbouncesolutionsforthecosmicscalefactora(t). In Sect. 2 we mentiona few differentapproachesto nonlocalmodifiedgravity. Section3 containsrathergeneralmodifiedactionwith an analyticnonlocalityand with corresponding equations of motion. Cosmological equations for the FLRW metricispresentedinSect.4.Cosmologicalsolutionsforconstantscalarcurvature are considered separately in Sect. 5. Some new examplesof nonlocalmodels and relatedAnsa¨tzeareintroducedinSect.6.Attheandafewremarksarealsonoticed. 2 Nonlocal Modified Gravity We consider here nonlocal modified gravity. Usually a nonlocal modified gravity modelcontainsaninfinitenumberofspacetimederivativesintheformofapower seriesexpansionwithrespecttothed’Alembertoperator(cid:3)= 1 ¶ m √ ggmn ¶ n .In √ g − thisarticle,wearemainlyinterestedinnonlocalityexpressedin−theformofanana- lyticfunctionF((cid:3))=(cid:229) ¥ f (cid:3)n,wherecoefficients f shouldbedeterminedfrom n=0 n n varioustheoreticaland phenomenologicalconditions.Some conditionsare related totheabsenceoftachyonsandgosts. Beforetoproceedwiththisanalyticnonlocalityitisworthtomentionsomeother interestingnonlocalapproaches.Forapproachescontaining(cid:3) 1 onecansee,e.g., − [27, 26, 66, 61, 45, 67, 42, 43, 46, 47] and referencestherein. For nonlocalgrav- ity with(cid:3) 1 see also [8, 58].Manyaspectsofnonlocalgravitymodelshavebeen − considered,seee.g.[20,16,17,59,18,36]andreferencestherein. Ourmotivationtomodifygravityinananalyticnonlocalwaycomesmainlyfrom string theory, in particular from string field theory (see the very original effort in thisdirectionin[3])and p-adicstringtheory[15,38,39,40,65].Sincestringsare one-dimensionalextendedobjects,theirfieldtheorydescriptioncontainsspacetime nonlocalityexpressedbysomeexponentialfunctionsofd’Alembertoperator(cid:3). Atclassicallevelanalyticnon-localgravityhasproventoalleviatethesingularity oftheBlack-holetypebecausetheNewtonianpotentialappearsregular(tendingto aconstant)onauniversalbasisattheorigin[41,11,9].Alsotherewassignificant successinconstructingclassicallystablesolutionforthecosmologicalbounce[11, 13,48,51,55]. Analysisofperturbationsrevealedanaturalabilityofanalyticnon-localgravities to accommodate inflationary models. In particular, the Starobinsky inflation was 4 I.Dimitrijevicetal. studiedindetailsandnewpredictionsfortheobservableparametersweremade[24, 53]. Moreover, in the quantum sector infinite derivative gravity theories improve renormalization,seee.g.whiletheunitarityisstillpreserved[56,57,53](notethat justalocalquadraticcurvaturegravitywasproventoberenormalizablewhilebeing non-unitary[64]). 3 Modified GR withAnalyticalNonlocality Tobetterunderstandnonlocalmodifiedgravityitself,weinvestigateitherewithout presence of matter. Models of nonlocal gravity which we mainly investigate are givenbythefollowingaction M2 l S= d4x√ g PR L + P(R)F((cid:3))Q(R) , (1) Z − (cid:18) 2 − 2 (cid:19) ¥ whereRisthescalarcurvature,L isthecosmologicalconstant,F((cid:3))= (cid:229) f (cid:3)n n n=0 isananalyticfunctionofthed’Alembert-Beltramioperator(cid:3)=(cid:209) m (cid:209) m where(cid:209) m is thecovariantderivative.ThePlanckmassM isrelatedtotheNewtonianconstant P GasM2= 1 andP,Qarescalarfunctionsofthescalarcurvature.Thespacetime P 8p G dimensionality D=4 and our signature is ( ,+,+,+). l is a constant and can be absorbedin the rescaling of F((cid:3)). Howe−ver,it is convenientto remain l and recoverGRinthelimitl 0. → Note that to have physically meaningful expressions one should introduce the scale of nonlocality using a new mass parameter M. Then the function F would ¥ be expanded in Taylor series as F((cid:3))= (cid:229) f¯(cid:3)n/M2n with all barred constants n n=0 dimensionless. For simplicity we shall keep M2 =1. We shall also see later that analytic function F((cid:3))=(cid:229) ¥ f (cid:3)n, has to satisfy some conditions, in order to n=0 n escape unphysicaldegreesof freedomlike ghostsand tachyons,and to have good behaviorinquantumsector(see[9,10,41]). Varyingtheaction(1)bysubstituting gmn gmn +hmn (2) → tothelinearorderinhmn ,removingthetotalderivativesandintegratingfromtime totimebypartsonegets mn h d S= d4x√ g Gmn , (3) Z − 2 (cid:20)− (cid:21) where OnNonlocalModifiedGravityanditsCosmologicalSolutions 5 l l ¥ Gmn ≡MP2Gmn +gmn L − 2gmn PF((cid:3))Q+l (Rmn −Kmn )V− 2 (cid:229) fn n=1 n 1 (cid:229)− Pm(l)Q(nn−l−1)+Pn(l)Q(mn−l−1) gmn (grs Pr(l)Q(sn−l−1)+P(l)Q(n−l)) =0 ×l=0(cid:16) − (cid:17) (4) presentsequationsofmotionforgravitationalfieldgmn inthevacuum.In(4)Gmn = Rmn 1gmn RistheEinsteintensor, −2 Kmn =(cid:209) m (cid:209) n gmn (cid:3), V =PRF((cid:3))Q+QRF((cid:3))P, − where the subscript R indicates the derivative w.r.t. R (as many times as it is re- peated)and P(l)=(cid:3)lP, Pr(l)=¶ r (cid:3)lPwiththesameforQ, PR, ... Inthecaseofgravitywithmatter,thefullequationsofmotionareGmn =Tmn ,where Tmn istheenergy-momentumtensor.Thankstotheintegrationbypartsthereisal- waysthesymmetryofanexchangeP Q. Whenl =0in(4)werecognizeth↔eEinstein’sGRequationwiththecosmolog- icalconstantL .If f =0forn 1then(4)correspondstoequationsofmotionof n ≥ an f(R)theory. 4 CosmologicalEquations forFLRWMetric WeusetheFLRWmetric dr2 ds2= dt2+a2(t) +r2dq 2+r2sin2q df 2 − (cid:18)1 kr2 (cid:19) − and look for some cosmological solutions. In the FLRW metric the Ricci scalar curvatureis a¨ a˙2 k R=6 + + (cid:18)a a2 a2(cid:19) and (cid:3)= ¶ 2 3H¶ , − t − t whereH=a˙ istheHubbleparameter.Weusenaturalsystemofunitsinwhichspeed a oflightc=1. Due to symmetries of the FLRW spacetime, in (4) there are only two linearly independentequations.Theyare:traceand00,i.e.whenindicesm =n =0. Thetraceequationand00-equation,respectively,are 6 I.Dimitrijevicetal. M2R 4L +2l PF((cid:3))Q l (R+3(cid:3))V P − − ¥ n 1 (5) l (cid:229) fn (cid:229)− grs ¶ r (cid:3)lP¶ s (cid:3)n−l−1Q+2(cid:3)lP(cid:3)n−lQ =0, − n=1 l=0(cid:16) (cid:17) l l ¥ M2G L + PF((cid:3))Q+l (R (cid:209) (cid:209) (cid:3))V (cid:229) f p 00− 2 00− 0 0− − 2 n n=1 (6) n 1 (cid:229)− 2¶ 0(cid:3)lP¶ 0(cid:3)n−l−1Q+grs ¶ r (cid:3)lP¶ s (cid:3)n−l−1Q+(cid:3)lP(cid:3)n−lQ =0. ×l=1(cid:16) (cid:17) 5 CosmologicalSolutions forConstantScalarCurvature R WhenRisaconstantthenPandQarealsosomeconstantsandwehavethat(cid:3)R=0, F((cid:3))= f .Thecorrespondingequationsofmotion(5)and(6)containsolutionsas 0 in the localcase. However,metricperturbationsatthe backgroundR=const. can givenontrivialcosmicstructureduetononlocality. LetR=R =constant=0.Then 0 6 a¨ a˙ k 2 6 + + =R . (7) a a a2 0 (cid:16) (cid:0) (cid:1) (cid:17) Thechangeofvariableb(t)=a2(t)transforms(7)intoequation 3b¨ R b= 6k. (8) 0 − − DependingonthesignofR ,thefollowingsolutionsofequation(8)are 0 b(t)= 6k +s eqR30t+t e−qR30t, R0>0, R 0 (9) 6k R R b(t)= +s cos − 0t+t sin − 0t, R <0, R r 3 r 3 0 0 wheres andt aresomeconstantcoefficients. SubstitutionR=R intoequationsofmotion(5)and(6)yields,respectively, 0 M2R 4L +2l Pf Q l R V =0, (10) p 0− 0 − 0 0 l M2G L + Pf Q+l R V =0, (11) p 00− 2 0 00 0 whereV = f (P Q+Q P) andG =R +R0. 0 0 R R |R=R0 00 00 2 Combiningequations(10)and(11)oneobtains OnNonlocalModifiedGravityanditsCosmologicalSolutions 7 M2R 4L +2l Pf Q l R V =0, (12) p 0− 0 − 0 0 4R +R =0. (13) 00 0 Equation (12) connects some parameters of the nonlocal model (1) in the al- gebraicform with respectto R , while (13) implies a conditionon the parameters 0 s ,t ,kandR insolutions(9).Namely,R isrelatedtofunctionb(t)as 0 00 3a¨ 3(b˙)2 2bb¨ R = = − . (14) 00 − a 4 b2 ReplacingR in(13)by(14)andusingdifferentsolutionsforb(t)in(9)weobtain 00 9k2=R2st , R >0, 0 0 (15) 36k2=R2(s 2+t 2), R <0. 0 0 5.1 Case: R >0 0 Letk=0.From9k2=R2st followsthatatleastoneofs andt hastobezero. • 0 Thusthereispossibilityforanexponentialsolutionfora(t)anda(t)=0.Taking t =0ands =a2onehas 0 b(t)=a20eqR30t. (16) If k=+1 one can find j such that s +t = 6 coshj and s t = 6 sinhj . • R0 − R0 Moreover,weobtain 12 1 R b(t)= cosh2 0t+j , R 2 r 3 0 (cid:16) (cid:17) (17) 12 1 R a(t)= cosh 0t+j . rR 2 r 3 0 (cid:16) (cid:17) Ifk= 1onecantransformb(t)anda(t)to • − 12 1 R b(t)= sinh2 0t+j , R 2 r 3 0 (cid:16) (cid:17) (18) 12 1 R a(t)= sinh 0t+j . rR0(cid:12) 2(cid:16)r 3 (cid:17)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 8 I.Dimitrijevicetal. 5.1.1 Case:R=12g 2 This is a special case of R , which simplifies the aboveexpressionsand yieldsde 0 Sitter-likecosmologicalsolutions. k=0: • b(t)=a2e2gt, a(t)=a egt. (19) 0 0 k=+1: • 1 j b(t)= cosh2 g t+ , g 2 2 (cid:16) (cid:17) (20) 1 j a(t)= cosh g t+ . g 2 (cid:16) (cid:17) | | k= 1: • − 1 j b(t)= sinh2 g t+ , g 2 2 (cid:16) (cid:17) (21) 1 j a(t)= sinh g t+ . g 2 (cid:12) (cid:16) (cid:17)(cid:12) | |(cid:12) (cid:12) (cid:12) (cid:12) 5.2 Case: R <0 0 Whenk=0thens =t =0,andconsequentlyb(t)=0. • Ifk= 1onecandefinej bys = 6cosj andt = 6sinj ,andrewriteb(t) • − −R0 −R0 anda(t)as 12 1 R b(t)= − cos2 0t j , R0 2(cid:16)r− 3 − (cid:17) (22) 12 1 R a(t)= − cos ( 0t j ) . r R0 (cid:12) 2 r− 3 − (cid:12) (cid:12) (cid:12) Inthelastcasek=+1,bythesame(cid:12)procedureasfork=(cid:12) 1,onecantransform • − b(t)toexpression 12 1 R b(t)= sin2 0t j , (23) R0 2(cid:16)r− 3 − (cid:17) whichisnotpositiveandhenceyieldsnosolution. 5.3 Case: R =0 0 The case R =0 can be considered as limit of R 0 in both cases R >0 and 0 0 0 R <0.WhenR >0 thereis condition9k2 =R2st →in (15). Fromthiscondition, 0 0 0 OnNonlocalModifiedGravityanditsCosmologicalSolutions 9 R 0impliesk=0andarbitraryvaluesofconstantss andt .Thesameconclusion 0 obt→ainswhenR <0withcondition36k2=R2(s 2+t 2).Inboththesecasesthereis 0 0 Minkowskisolutionwithb(t)=constant>0andconsequentlya(t)=constant>0, see(9). 6 Some Models andRelatedAnsa¨tze forCosmologicalSolutions 6.1 NonlocalGravityModelQuadraticinR NonlocalgravitymodelwhichisquadraticinRwasgivenbytheaction[11,12] R 2L S= d4x√ g − +RF((cid:3))R . (24) Z − (cid:16) 16p G (cid:17) Thismodelisimportantbecauseitisghostfreeandhassomenonsingularbounce solutions,whichcanberegardedasasolutionoftheBigBangcosmologicalsingu- larityproblem. Thecorrespondingequationsofmotioncanbeeasilyobtainedfrom(5)and(6). Toevaluaterelatedequationsofmotion,thefollowingAnsa¨tzewereused: LinearAnsatz:(cid:3)R=rR+s,whererandsareconstants. • QuadraticAnsatz:(cid:3)R=qR2,whereqisaconstant. • QubicAnsatz:(cid:3)R=CR3,whereCisaconstant. • Ansatz(cid:3)nR=c Rn+1, n 1,wherec areconstants. n n • ≥ TheseAnsa¨tzemakesomeconstraintsonpossiblesolutions,butsimplifyformalism tofindaparticularsolution(see[29]andreferencestherein). 6.1.1 LinearAnsatzandNonsingularBounceCosmologicalSolutions UsingAnsatz(cid:3)R=rR+safewnonsingularbouncesolutionsforthescalefactor L 1 L t2 are found:a(t)=a cosh t (see [11, 12]), a(t)=a e2 3 (see [48, 49]) 0 (cid:18)q3 (cid:19) 0 q anda(t)=a (s el t+t e l t)[30].ThefirsttwoconsequencesofthisAnsatzare 0 − s s (cid:3)nR=rn(R+ ), n 1, F((cid:3))R=F(r)R+ (F(r) f ), (25) 0 r ≥ r − whichconsiderablysimplifynonlocalterm. Generalization of the above quadratic model in the form of nonlocal term RpF((cid:3))Rq, where p andq are some naturalnumbers,wasrecentlyconsideredin [28].Herecosmologicalsolutionforthescalefactorhastheforma(t)=a e gt2. o − 10 I.Dimitrijevicetal. 6.2 GravityModelwith NonlocalTermR 1F((cid:3))R − Thismodelwasintroducedin[31]anditsactionmaybewrittenintheform R S= d4x√ g +R 1F((cid:3))R , (26) Z − (cid:16)16p G − (cid:17) whereF((cid:3))=(cid:229) ¥ f (cid:3)nand f = L playsroleofthecosmologicalconstant. n=0 n 0 −8p G ThenonlocaltermR 1F((cid:3))Rin(26)isinvariantundertransformationR CR. − → ThisnonlocaltermdoesnotdependonthemagnitudeofscalarcurvatureR,buton itsspacetimedependence,andintheFLRWcaseisrelevantonlydependenceofR L ontimet.Term f = iscompletelydeterminedbythecosmologicalconstant L , which accordi0ng t−o8Lp CGDM model is small and positive energy density of the vacuum. Coefficients f, i N can be estimated from other conditions, including i ∈ agreementwith dynamicsthe Solar system. In comparisonto the modelquadratic inR(24),completeLagrangianofthismodelremainstobelinearinRandinsuch senseissimplernonlocalmodificationthan(24). In this model are also used the above Ansa¨tze. Especially quadratic Ansatz (cid:3)R=qR2, whereq is a constant,is effectiveto considerpower-lawcosmological solutions,see[31,32,37,33]. 6.3 SomeNewModelsand Ansa¨tze Itisworthtoconsidersomeparticularexamplesofaction(1)whenP=Q=(R+ R )m,i.e. 0 1 l S= R L + (R+R )mF((cid:3))(R+R )m √ gd4x, (27) Z (cid:16)16p G − 2 0 0 (cid:17) − whereR R,m Q,andwhichhavescalefactorsolutionas 0 ∈ ∈ a(t)=Atnegt2, g R. (28) ∈ TothisendweconsidertheAnsatz (cid:3)(R+R )m=p(R+R )m, (29) 0 0 where pisaconstantand(cid:3)isthed’AlembertoperatorinFLRWmetric. ¿FromAnsatz(29)andscalarcurvatureRfork=0,wegetthefollowingsystem ofequations: