ebook img

On local property of absolute summability of factored Fourier series PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On local property of absolute summability of factored Fourier series

ON LOCAL PROPERTY OF ABSOLUTE SUMMABILITY OF FACTORED FOURIER SERIES 3 1 HÜSEYİNBOR,DANSHENGYU,ANDPINGZHOU 0 2 Abstract. Weestablishtwo general theorems onthe localproperties of the n absolutesummabilityoffactoredFourierseriesbyapplyingarecentlydefined a absolute summability, |A,αn|k summability, and the class S(αn,φn), which J generalize somewellknownresultsandcanbeappliedtoimprovemanyclas- 9 sicalabsolutesummabilitymethods. 2 ] P 1. Introduction A . Let A:=(ank) be a lower triangularmatrix and {sn} the partial sums of an. h Let {α } be a nonnegative sequence, then the series a is said to be summable t n n P a |A,α | ,k ≥1, if (see [19]) m n k P ∞ [ αn|An−An−1|k <∞, 1 nX=1 v where n 4 A := a s . 7 n nv v 8 v=1 X 6 In particular, if α = nk−1 , then |A,α | −summability reduces to the |A| - n n k k 1. summability (see [17]). Let A be the Cesàro matrices C := (cnv) of order α, that 0 is, 3 Aα−1 1 cnv := An−αv, v =0,1,··· ,n, : n v where i Γ(n+α+1) X Aα := , n=0,1,··· . n Γ(α+1)Γ(n+1) r a Whenα =nδk+k−1,k ≥1,δ ≥0,|A,α | −summabilityisusuallycalled|C,α,δ| - n n k k summability. Therefore,aseries a issaidtobesummable|C,α,δ| , k ≥1,α> n k −1, if (see [9]) ∞ P nδk+k−1 σα−σα k <∞, n n−1 n=1 X (cid:12) (cid:12) where (cid:12) (cid:12) n Aα−1 σα := n−js . n Aα j j=0 n X 2010 Mathematics Subject Classification. 40D15,40F05,40G05 ,42A24,42B15. Key words and phrases. Absolute summability, Fourier series, Local property, Cesàro matrices, Rhalygeneralized Cesàromatrices,p−Cesàromatrices,Hölder’sinequality. ResearchofthesecondauthorissupportedbyNSFofChina(10901044),andProgramforExcellent YoungTeachers inHZNU.Researchofthethirdauthor issupportedbyNSERCofCanada. 1 For any positive sequence {p } such that P = p +p +···+p → ∞, the n n 0 1 n corresponding Riesz matrix R has the entries p v r := , v =0,1,··· ,n, n=0,1,2,··· . nv P n δk+k−1 Taking α = Pn and α =nδk+k−1, we get two special absolute summa- n pn n bility, N,p ,(cid:16)δ s(cid:17)ummabilityand|R,p ,δ| summability,of|R,α | summability, n k n k n k respectively. Inparticular,ifnp ≍P ,then N,p ,δ summabilityand|R,p ,δ| (cid:12) (cid:12) n n n k n k (cid:12) (cid:12) summability are equivalent. See [2] and [3] for more details on N,p ,δ summa- (cid:12) (cid:12) n k bility and |R,p ,δ| summability. (cid:12) (cid:12) n k (cid:12) (cid:12) One can find more examples of |A,α | −summability for d(cid:12)ifferent(cid:12)weight se- n k quences {α } and different summability matrices A discussed in many papers, see n [2], [3], [6], [10], and [16] for examples. Let f be a function with period 2π, integrable (L) over(−π,π). Without loss of generality we may assume that the constant term in the Fourier series of f(t) is zero, so that π f(t)dt=0 Z−π and ∞ ∞ f(t)∼ (a cosnt+b sinnt)≡ C (t). n n n n=1 n=1 X X It is well known that (see [18]) the convergence of the Fourier series at t = x is a localpropertyofthegeneratingfunctionf(t)(i.e.,itdependsonlyonthebehavior of f in a arbitrarily small neighborhood of x), and hence the summability of the Fourier series at t = x by any regular linear summability method is also a local property of the generating function f(t). In1939,BosanquetandKestleman([8])showedthateventhesummability|C,1| of the Fourier series at a point is not a local property of f. Mohanty ([11]) subse- quently observed that the summability |R,logn,1| of the factored series C (t)/log(n+1), n atanypointis alocalpropertyXoff, whereasthe summability |C,1| ofthis seriesis not. SeveralgeneralizationsofMohanty’s resulthave been made by many authors, for examples, see, Bhatt ([1]), Bor ([3]-[5]), Borwein ([7]), Sarigöl ([14], [15]), etc. For any lower triangular matrix A, associated it with two lower triangular ma- trices A and A defined by n ba = a , v =0,1,2,··· ,n and n=0,1,2,··· , nv nr r=v X and anv =anv−an−1,v, v =0,1,··· ,n−1;n=1,2,3,··· . ann =ann =ann. Sarigöl ([15]) proved the following theorem: b b TheoremA.Let Abealowertriangularmatrixwithnonnegativeentriessatisfying (i) an−1,v ≥anv for n≥v+1, (ii) a =1, n=0,1,··· , n0 2 (iii) n−1a a =O(a ), v=1 vv n,v+1 nn (iv) ∆X =O 1 , X =(na )−1,n=1,2,··· ,X =0. P n n n nn 0 If {θn} holds forbthe following conditions, (v) ∞ (θ a(cid:0))k(cid:1)−1Xk−11λk <∞, v=1 v vv v v v (vi) ∞ (θ a )k−1Xk∆λ <∞, P v=1 v vv v v (vii) ∞ (θ a )k−1|∆a |=O (θ a )k−1a P n=v+1 n nn n,v+1 v vv vv and (cid:16) (cid:17) (viii)P∞ (θ a )k−1a b =O (θ a )k−1 , n=v+1 n nn n,v+1 v vv then the summability of A,θk−1 ,k ≥1(cid:16),ofthe seri(cid:17)es λ X C (t) at any point P n k n n n is a local property of f,wherbe {λ } is a convex sequence such that n−1λ is (cid:12) (cid:12) n P n convergent. (cid:12) (cid:12) P TheoremAgeneralizedsomewellknownresultsonthelocalpropertyofsumma- bility of factored Fourier series. Although, there are some matrices satisfying the conditions in Theorem A, a Cesàro’s matrix may not satisfy all the conditions (i)- (iii). Infact,(ii)and(iii)donotholdforanyα>1orα<1. Furthermore,Rhaly’s generalized Cesàro matrices and the p−Cesàro matrices do not satisfy the condi- tions of TheoremA neither (see Section 3 for the definitions of Rhaly’s generalized Cesàro matrices and the p−Cesàro matrices). In the present paper, we establish a new factor theorem which generalizes The- orem A, and can be applied to many well known matrices, including the ones mentioned above. We need the following class of matrices, S(α ,φ ), which is n n recently introduced by Yu and Zhou ([20]): Definition 1. Let {α }, {φ } be sequences of positive numbers. We say that n n a lower triangular matrix A := (a ) ∈ S(α ,φ ), if it satisfies the following nk n n conditions n−1 |∆ a |=O(φ ); (T1) i ni n i=0 X |ani|=O(φbn), i=0,1,··· ,n; (T2) ∞ b αnφnk−1|∆iani|=O αiφki ; (T3) n=i+1 X (cid:0) (cid:1) ∞ b α φk−1|a |=O α φk−1 . (T4) n n n,i+1 i i n=i+1 X (cid:0) (cid:1) Our main results are the following:b Theorem1. Let {α },and{φ }besequencesofpositivenumbers.Let{λ }∈BV n n n 1 be a sequenceof complex numbers such that λ =O(|λ |) for n=1,2,··· , and n+1 n ∞ (A) α φkXk λk <∞, n=0 n n n n (B) ∞ α φk−1Xk|∆λ |<∞. Pn=0 n n (cid:12)n (cid:12) n If A∈S(α ,φ ) satisfi(cid:12)es(cid:12) n n P n |a a |=O(φ ), (1.1) vv n,v+1 n v=0 X b 1 ∞ Wesayasequenceofcomplexnumbers {λn}∈BV,ifPn=1|∆λn|<∞. 3 φ n ∆X =O(φ ), X = , (1.2) n n n a nn thenthesummabilityof|A,α | for k≥1,of theseries C (t)λ X atanypoint n k n n n is a local property of f. P Remark 1. The restrictions of {λ } in Theorem A are relaxed in Theorem 1 to n the simple conditions that {λ }∈BV and λ =O(|λ |), which obviously hold n n+1 n when {λ } is a convex sequence such that n−1λ is convergent. n n Theorem 2. The result of Theorem 1 alsoPholds when (1.1) and (1.2) are replaced by n |a φ |=O(φ ), (1.3) n,v+1 v n v=0 X b 1 ∆X =O n−1 , X = ,n=1,2,··· ,X =0, (1.4) n n 0 nφ n (cid:0) (cid:1) respectively. Remark 2. If the matrix A satisfies the condition a = 1, n = 0,1,··· , then n0 the indexes of the summations in (A), (B), (1.1) and (1.3) only need to run from 1 instead of 0, which can be observed in the proofs of the theorems. Remark 3. Let φ := a ,α = θk−1. If the matrix A satisfies the conditions in n nn n n TheoremA, then we can easily have that A∈S(α ,φ ). That is, Theorem A can n n be regardedas a corollary of Theorem 2. We prove the theorems in Section 2. In Section 3, we show that some well known matrices such as Cesàro’s matrices, Rhaly’s generalized Cesàro matrices, the p−Cesàro matrices, and Riesz’s matrices are in S(α ,φ ) for some certain n n sequences{α }and{φ },andthenderivesomenewtheoremsonthelocalproperty n n of some factored Fourier series, as applications of the above theorems. 2. Proofs of the Main Results We prove Theorem 1 in this section. The proof of Theorem 2 is similar. The behavior of the Fourier series, as far as convergence is concerned, at a particular value of x, depends on the behavior of the function in the immediate neighborhood of this point only. Therefore, in order to prove the theorem, it is sufficient to prove that if {s } is bounded, then under the conditions of Theorem n 1, a λ X is summable |A,α | , k ≥ 1. Let T be the n−th term of the n n n n k n A−transform of n λ a X . Then P i=0 i i i Pn v n n n T = a a λ X = a λ X a = a a λ X . n nv i i i i i i nv ni i i i v=0 i=0 i=0 v=i i=0 X X X X X 4 Thus, n n−1 Tn−Tn−1 = aniaiλiXi− an−1,iaiλiXi i=0 i=0 X X n n = aniaiλiXi = aniλiXi(si−si−1) i=0 i=0 X X n−1b b = (a λ X −a λ X )s +a λ s X ni i i n,i+1 i+1 i+1 i nn n n n i=0 X n−1 b b n−1 n−1 = a ∆λ X s + a λ ∆X s + (∆ a )λ X s n,i+1 i i i n,i+1 i+1 i i i ni i i i i=0 i=0 i=0 X X X +a λ X s bnn n n n b b =:T +T +T +T . n1 n2 n3 n4 Therefore, it is sufficient to prove that ∞ α |T |k <∞, for i=1,2,3,4. (2.1) n ni n=1 X Applying Hölder’s inequality, we have m+1 m+1 n−1 k α |T |k =O(1) α |a ||X ||∆λ | n n1 n n,i+1 i i ! n=1 n=1 i=0 X X X m+1 n−1 b n−1 =O(1) α |a | Xk |∆λ | |a ||∆λ | . n n,i+1 i i n,i+1 i ! ! n=1 i=0 i=0 X X (cid:12) (cid:12) X b (cid:12) (cid:12) b Since {λ }∈BV, we have n n−1 |a ||∆λ |=O(φ ), n,i+1 i n i=0 X b by (T2). Hence m+1 m+1 n−1 α |T |k =O(1) α φk−1 |a | Xk |∆λ | n n1 n n n,i+1 i i n=1 n=1 i=0 X X X (cid:12) (cid:12) m mb+1 (cid:12) (cid:12) =O(1) Xk |∆λ | α φk−1|a | i i n n n,i+1 i=0 n=i+1 X(cid:12) (cid:12) X m (cid:12) (cid:12) b =O(1) α φk−1 Xk |∆λ |=O(1), (2.2) i i i i i=0 X (cid:12) (cid:12) (cid:12) (cid:12) by (T3), and (B) of Theorem 1. 5 It follows from (1.2) that ∆X = O(a X ). Then by Hölder’s inequality, (1.1) i ii i and condition (A) of the Theorem 1, we have m+1 m+1 n−1 k α |T |k =O(1) α |a λ ∆X | n n2 n n,i+1 i+1 i ! n=1 n=1 i=0 X X X m+1 n−1 b k =O(1) α |a λ a X | n n,i+1 i ii i ! n=1 i=0 X X m+1 n−1 b n−1 k−1 =O(1) α |a a | λk Xk |a a | n n,i+1 ii i i n,i+1 ii ! ! n=1 i=0 i=0 X X (cid:12) (cid:12)(cid:12) (cid:12) X m+1 bn−1 (cid:12) (cid:12)(cid:12) (cid:12) b =O(1) α φk−1 |a a | λk Xk n n n,i+1 ii i i ! n=1 i=0 X X (cid:12) (cid:12)(cid:12) (cid:12) m mb+1 (cid:12) (cid:12)(cid:12) (cid:12) =O(1) λk Xk |a | α φk−1|a | i i ii n n n,i+1 i=0 n=i+1 X(cid:12) (cid:12)(cid:12) (cid:12) X m (cid:12) (cid:12)(cid:12) (cid:12) b =O(1) α φk−1 λk Xk |a | n n i i ii i=0 X (cid:12) (cid:12)(cid:12) (cid:12) m (cid:12) (cid:12)(cid:12) (cid:12) =O(1) α φk λk Xk =O(1), n n i i i=0 X (cid:12) (cid:12)(cid:12) (cid:12) where we also used the fact that a(cid:12) (cid:12)=(cid:12) a (cid:12) =O(φ ), which follows from (T2). nn nn n By (T1), (T3) and condition (A), we have m+1 m+1 bn−1 k α |T |k =O(1) α |∆a λ X | n n3 n n,i+1 i i ! n=1 n=1 i=0 X X X m+1 n−1 b n−1 k−1 =O(1) α |∆a | λk Xk |∆a | n n,i+1 i i n,i+1 ! ! n=1 i=0 i=0 X X (cid:12) (cid:12)(cid:12) (cid:12) X m+1 n−1b (cid:12) (cid:12)(cid:12) (cid:12) b =O(1) α φk−1 |∆a | λk Xk n n n,i+1 i i n=1 i=0 X X (cid:12) (cid:12)(cid:12) (cid:12) m m+1 b (cid:12) (cid:12)(cid:12) (cid:12) =O(1) λk Xk α φk−1|∆a | i i n n n,i+1 i=0 n=i+1 X(cid:12) (cid:12)(cid:12) (cid:12) X m (cid:12) (cid:12)(cid:12) (cid:12) b =O(1) α φk λk Xk =O(1). (2.3) i i i i i=0 X (cid:12) (cid:12)(cid:12) (cid:12) By using a =O(φ ) again, w(cid:12)e h(cid:12)a(cid:12)ve (cid:12) nn n m+1 m+1 α |T |k =O(1) α |a λ X |k n n4 n nn n n n=1 n=1 X X m+1 =O(1) α φk λk Xk n n n n n=1 X (cid:12) (cid:12)(cid:12) (cid:12) =O(1). (cid:12) (cid:12)(cid:12) (cid:12) (2.4) 6 Combining (2.2)-(2.4), we have (2.1). This proves Theorem 1. 3. Applications of The Theorems 3.1. Cesàro’s Matrices. We will use the following formula often in the proofs (see [21] for proof, for example): nα 1 Aα = 1+O . (3.1) n Γ(α+1) n (cid:18) (cid:18) (cid:19)(cid:19) In this subsection, we set n−1, α>1 φ :=1, φ := n=1,2,··· . 0 n 1 =c , 0<α≤1, (cid:26) Aαn nn By (3.1), we see that n−1, α>1 φn ∼ n−α, 0<α≤1, n=1,2,··· . (cid:26) Recallthata nonnegativesequence{a } issaidto be almostdecreasing,ifthere n is a positive constant K such that a ≥Ka n m holds for all n ≤ m, and it is said to be quasi-β-power decreasing, if nβa is n almost decreasing. (cid:8) (cid:9) It should be noted that every decreasing sequence is an almost decreasing se- quence, and every almost decreasing sequence is a quasi-β-power decreasing se- quence for any non-positive index β, but the converse is not true. Lemma 1. ([20])Let α > 0, and let {α } be a sequence of positive numbers. If n α φk−1n−1 is quasi-ε-power decreasing for some ε>0, then C ∈S(α ,φ ). n n n n (cid:8) A direct c(cid:9)alculation leads to n n−1 1 1 c = Aα−1− Aα−1 ni Aα n−j Aα n−1−j n j=i n−1 j=i X X b Aα Aα iAα−1 = n−i − n−1−i = n−i . Aα Aα nAα n n−1 n Thus, for 0<α≤1, n |c c |=O 1 n (v+1)Aαn−−v1−1 vv n,v+1 n1+α Aα v=0 (cid:18) (cid:19)v=1 v X X b 1 n/2 1 n/2 =O v1−α+O vα−1 n2 n2α (cid:18) (cid:19)v=1 (cid:18) (cid:19)v=1 X X =O(φ ). (3.2) n Similarly, for α>1, n 1 |c |=O(φ ). (3.3) n,v+1 n v v=1 X 7 b Now set φn , 0<α≤1, Xn ≡1= (nφcnn)−1, α>1. (cid:26) n Then X satisfies (1.2) and (1.4) for 0 < α ≤ 1 and α > 1 respectively. Now, n applying Lemma 1, (3.2), (3.3), Theorem 1 and Theorem 2, we have the following Theorem 3. Let α > 0, {α } be sequences of positive numbers. Let {λ } ∈ BV n n be a sequence of complex numbers such that λ =O(|λ |) for n=1,2,··· , and n+1 n (a) ∞ α φk λk <∞, n=1 n n n (b) ∞ α φk−1|∆λ |<∞. If α φPk−n=1n1−1n nis(cid:12)(cid:12)qu(cid:12)(cid:12)asin-ε-power decreasing, then the summability of |C,α | for nPn n k k ≥1, of the series C (t)λ at any point is a local property of f. n n (cid:8) (cid:9) As examples, wePgive two corollaries of Theorem 3. Corollary 1. Let {λ }∈BV be a sequence of complex numbers such that λ = n n+1 O(|λ |) for n=1,2,··· , and n (c) ∞ nδk−1logγn λk <∞, n=1 n (d) ∞ nδklogγn|∆λ |<∞, then thPe snu=m1mability of C(cid:12)(cid:12),nn(cid:12)(cid:12)δk+k−1logγn , for α≥1, γ ∈R, k ≥1 and 0≤δ < P k 1, of the series C (t)λ at any point is a local property of f. k n (cid:12) n (cid:12) (cid:12) (cid:12) Proof. Let α =Pnδk+k−1logγn, n=1,2,··· , α =1. Since α≥1, then φ =n−1. n 0 n Itisthen obviousthat(c)implies (a), and(d) implies (b).Fromthe conditionthat 0 ≤ δ < 1, we see that there exists an ε > 0 such that δk−1+ε < 0, and thus k nδk−1+εlogγn is quasi decreasing for γ ∈ R. In other words, α φk−1n−1 is n n quasi-ε-powerdecreasing. Therefore, by Theorem 3, we have Corollary 1. (cid:3) (cid:8) (cid:9) (cid:8) (cid:9) Corollary 2. Let {λ }∈BV be a sequence of complex numbers such that λ = n n+1 O(|λ |) for n=1,2,··· , and n (c′) ∞ nδk+(1−α)k−1logγn λk <∞, n=1 n (d′) ∞ nδk+(1−α)(k−1)logγnX |∆λ |<∞, Pn=1 (cid:12) n(cid:12) n then the summability of C,nδk+k(cid:12)−1(cid:12)logγn , for 0 < α < 1, γ ∈ R, k ≥ 1 and P k 0≤δ < 2−α+(1−α)k, of the series C (t)λ at any point is a local property of f. k (cid:12) n (cid:12) n (cid:12) (cid:12) Proof. Note that φ =n−α for 0<Pα<1. Then the proof of Corollary 2 is similar n to that of Corollary 1. (cid:3) 3.2. Rhaly’s Generalized Cesàro Matrices. Let D be the Rhaly generalized Cesàromatrix(see[12]),thatis,Dhasentriesoftheformd =tn−k/(n+1), k = nk 0,1,··· ,n, n=1,2,··· .Whent=1,theRhalygeneralizedCesàromatrixreduces tothe Cesàromatrixoforder1.Weshallrestrictourattentionto0<t<1.Inthis case, D does not satisfy condition (ii) of Theorem A. It is routine to deduce that n tn−r n−1tn−1−r 1 1−tn−v+1 1−tn−v d = − = − . (3.4) nv n+1 n 1−t n+1 n r=v r=v (cid:18) (cid:19) X X 8 b Set φ =1, φ =n−1,n=1,2,··· . By (3.4), we have 0 n 1 1−tn−v+1 1−tn−v d = − nv 1−t n+1 n (cid:18) (cid:19) b 1−tn−v−ntn−v(1−t) =− (1−t)n(n+1) 1 ntn−v =O + . n(n+1) n(n+1) (cid:18) (cid:19) Thus n n n 1 1 1 d d =O +O tn−v =O(φ ). (3.5) vv n,v+1 n2 v n n Xv=0(cid:12) (cid:12) (cid:18) (cid:19)Xv=1 (cid:18) (cid:19)Xv=1 (cid:12) b (cid:12) Lemma 2. ([2(cid:12)0])Let 0 <(cid:12) t < 1, and {α } be a sequences of positive numbers. If n α φk−1n−1 is quasi-ε−power decreasing for some ε>0, then D ∈S(α ,φ ). n n n n (cid:8) Now set (cid:9) φ n+1 n X = = . n d n nn Then X =O(1) and ∆X =O(φ ). Therefore,by Lemma 2, (3.5) and Theorem n n n 1, we have Theorem4. Let0<t<1andlet{α }beasequenceof positive numbers.Assume n that {λ } ∈ BV is a sequence of complex numbers such that λ = O(|λ |) for n n+1 n n = 1,2,··· , and (A), (B) in Theorem 1 hold. If α φk−1n−1 is quasi-ε-power n n decreasing for some ε>0, then the summability of |D,α | for k ≥1, of the series (cid:8) n k (cid:9) C (t)n+1λ at any point is a local property of f. n n n PObviously,wecanalsohaveacorollaryofTheorem3thatissimilartoCorollary 1. We omit the details here. 3.3. p−Cesáro Matrices. Let E be the p−Cesàro matrix (see [13]), that is, the entries of E has the form e = 1/(n+1)p, i = 0,1,··· ,n, n = 1,2,··· . When ni p=1,the p−Cesàromatrixreducesto theCesàromatrixoforder1again. Also,E does not satisfy condition (ii) of Theorem A. We restrict our attention to the case when 1<p≤2. Set φ =1, φ =n−p,n=1,2,··· . Then 0 n n−i+1 (n−i) eni =eni−en−1,i = (n+1)p − np , (3.6) and b 1 1 ∆ieni =en,i+1−eni =eni−en−1,i = (n+1)p − np. (3.7) By (3.6), we have b b b 1 1 1 e =(n−i) − + =O(φ ). (3.8) ni (n+1)p np (n+1)p n (cid:18) (cid:19) Now set Xn =beφnnn. Then direct calculations yield that ∆X =O n−2 =O(φ ), 1<p≤2, n n 9 (cid:0) (cid:1) and n |e e |=O(φ ). vv n,v+1 n v=1 X Lemma 3. ([20])Let p > 1 and {bα } be a sequences of positive numbers. If n α φk−1n−1 is quasi-ε-power decreasing for some ε> 0 such that p−2+ε> 0, n n then D ∈S(α ,φ ). n n (cid:8) (cid:9) Therefore, we have Theorem5. Let1<p≤2andlet{α }beasequenceofpositivenumbers.Assume n that {λ } ∈ BV is a sequence of complex numbers such that λ = O(|λ |) for n n+1 n n = 1,2,··· , and (A), (B) in Theorem 1 hold. If α φk−1n−1 is quasi-ε-power n n decreasing for some ε>0 such that p−2+ε>0, then the summability of |E,α | (cid:8) (cid:9) n k for k ≥1, of the series C (t)X λ at any point is a local property of f. n n n 3.4. Riesz’s matrices.PWe firstly establish a general result, then apply it to the Riesz’s matrices. Lemma 4. ([20]) Let A be a lower triangular matrix with nonnegative entries, and {α } be a sequence of positive numbers. If n (I) a =1, n=0,1,··· , n0 (II) an−1,v ≥anv for n≥v+1, (III) na =O(1), nn (IV) ∞ α n−k+1|∆ a |=O α a v−k+1 , n=v+1 n v nv v vv (V) ∞ α n−k+1a =O α v−k+1 , Pn=v+1 n n,v+1 v(cid:0) (cid:1) then A∈S α ,n−1 . b P n (cid:0) (cid:1) Now, by setting φ =b1,X = 0,φ := n−1,X = (nφ )−1,n = 1,2,··· , and (cid:0) (cid:1)0 0 n n n applying Theorem 2, we have Theorem 6. Let {α } be a sequence of positive numbers, and let A be a lower n triangular matrix with nonnegative entries satisfying conditions (I)-(V) of Lemma 4. Assume that {λ } ∈ BV is a sequence of complex numbers such that λ = n n+1 O(|λ |) for n=1,2,··· , and (A), (B) in Theorem 1 hold. If (1.3) and (1.4) hold, n thenthesummabilityof|A,α | for k≥1,of theseries C (t)X λ atanypoint n k n n n is a local property of f. P We now show that under some necessaryconditions, Riesz matrix R satisfies all the conditions in Lemma 4. For any positive sequence {p } such that P = p + n n 0 p +···+p →∞,thecorrespondingRieszmatrixRhastheentriesr := pv, v = 1 n nv Pn 0,1,··· ,n; n = 0,1,2,··· . Now obviously, we have rn0 = 1 and rn−1,v ≥ rnv for n≥v+1. Direct calculations yield that (set P−1 =0) Pv−1pn r = , (3.9) nv PnPn−1 and b p p n v |∆ r |= . (3.10) v nv PnPn−1 So if np =O(P ) and n n b m+1 p α n−k+1 n =O α v−k+1P−1 , (3.11) n PnPn−1 v v n=v+1 X (cid:0) (cid:1) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.