L On -Injective Modules AkeelRamadanMehdi DepartmentofMathematics CollegeofEducation Al-QadisiyahUniversity P.O.Box88,Al-Qadisiyah,Iraq email: [email protected] January13,2015 5 1 Abstract 0 2 LetM ={(M,N,f,Q)|M,N,Q∈R-Mod,N≤M, f ∈Hom (N,Q)}andletL beanonempty R n subclassofM.JiráskointroducedtheconceptsofL-injectivemoduleasageneralizationofinjec- a tive module as follows: a module Q is said to be L-injective if for each (B,A,f,Q)∈L, there J existsahomomorphismg:B→Qsuchthatg(a)= f(a), foralla∈A. Theaimofthispaperisto 1 1 studyL-injectivemodulesandsomerelatedconcepts. ] Keywordsandphrases:Injectivemodule;Baer’scriterion;GeneralizedFuchscriterion;τ-Injective A module;P-filter;Hereditarytorsiontheory;τ-dense;Preradicals;M-injectivemodule;Quasi-injective; R Naturalclass. . h t 2010MathematicsSubjectClassification: Primary: 16D50;Secondary: 16D10,16S90. a m [ 1 Introduction 1 v 1 Injective modules can be traced to Baer [4] who studied divisible Abelian groups. Eckmann 9 andSchopf[12]introducedtheterminology"injective". AnR-moduleM issaidtobeinjectiveif, 4 foranymoduleB,everyhomomorphism f :A→M,whereAisanysubmoduleofB,extendstoa 2 homomorphismg:B→M.Manyauthorsinterestedinthisclassofmodules, forexample, Matlis 0 . [19], Faith [13] and Page and Zhou [21]. Also, many authors tried to generalize the concept of 1 injectivemodule, forexample, JohnsonandWongintroducedquasi-injectivemodulein[17]. The 0 5 notionofM-injectivemodulewasintroducedin[3].Thenotionofτ-injectivemodulewasstudiedin 1 [23]andthenotionofsoc-injectivemodulewasintroducedin[1]. Also,Zeyadain[25]introduced : theconceptofs-injectivemodule. v i LetM andN bemodules. RecallthatN issaidtobeM-injectiveifeveryhomomorphismfrom X a submodule of M to N extends to a homomorphism from M to N [3]. A module M is said to be r quasi-injectiveifMisM-injective. a Letτ =(T,F)beatorsiontheory. AsubmoduleBofamoduleAissaidtobeτ-denseinAif A/Bisτ-torsion(i.e. A/B∈T). AsubmoduleAofamoduleBissaidtobeτ-essentialinBifitis τ-denseandessentialinB. Atorsiontheoryτ issaidtobenoetherianifforeveryascendingchain I ⊆I ⊆... of left ideals of R with I =(cid:83)∞ I a τ-dense left ideal in R, there exists a positive 1 2 ∞ j=1 j integernsuchthatI isτ-denseinR.AmoduleMissaidtobeτ-injectiveifeveryhomomorphism n from a τ-dense submodule of B to M extends to a homomorphism from B to M, where B is any module. Let M be an R-module. A τ-injective envelope (or τ-injective hull) of M is a τ-injective moduleE whichisaτ-essentialextensionofM [7]. EveryR-moduleM hasaτ-injectiveenvelope and it is unique up to isomorphism [9]. We use the notation E (M) to stand for an τ-injective τ envelopeofM.Aτ-injectivemoduleEissaidtobe∑-τ-injectiveifE(A)isτ-injectiveforanyindex set A; E is said to be countably ∑-τ-injective in case E(C) is τ-injective for any countable index setC.LetE andM bemodules. ThenE issaidtobeτ-M-injectiveifanyhomomorphismfroma τ-densesubmoduleofM toE extendstoahomomorphismfromM toE. AmoduleE issaidtobe τ-quasi-injectiveifE isτ-E-injective. 1 LetM ={(M,N,f,Q)|M,N,Q∈R-Mod,N≤M, f ∈Hom (N,Q)}andletL beanonempty R subclassofM.Jiráskoin[16]introducedtheconceptsofL-injectivemoduleasageneralization ofinjectivemoduleasfollows: amoduleQissaidtobeL-injectiveifforeach(B,A,f,Q)∈L, thereexistsahomomorphismg:B→Qsuchthat(g(cid:22)A)= f. Clearly,injectivemoduleandallits generalizationsarespecialcasesofL-injectivity. TheaimofthisarticleistostudyL-injectivity andsomerelatedconcepts. In section two, we give some properties and characterizations of L-injective modules. For example, in Theorem 2.12 we give a version of Baer’s criterion for L-injectivity. Also, in Theo- rem 2.15 we extend a characterization due to [24, Theorem 2, p. 8] of L-injective modules over commutativeNoetherianrings. InsectionthreeweintroducetheconceptsofL-M-injectivemoduleands-L-M-injectivemod- ule as generalizations of M-injective modules and give some results about them. For examples, in Theorem 3.5 we prove that if L is a nonempty subclass of M satisfy conditions (α), (β) and (γ)andM,Q∈R-ModsuchthatM satisfiescondition(EL),thenQisL-M-injectiveifandonly if f(M)≤Q, for all f ∈HomR(EL(M),EL(Q)) with (M,L,f(cid:22)L,Q)∈L where L={m∈M | f(m)∈Q}=M(cid:84)f−1(Q). Also, inProposition3.13wegeneralize[7, Proposition14.12, p. 66], [6, Proposition 1, p. 1954] and Fuchs’s result in [14]. Moreover, our version of the Generalized FuchsCriterionisgiveninProposition3.14inwhichweprovethatifL isanonemptysubclassof M satisfyconditions(α)and(µ)andM,Q∈R-ModsuchthatM satisfiescondition(L). Thena moduleQiss-L-M-injectiveifandonlyifforeach(R,I,f,Q)∈L withker(f)∈Ω(M), there existsanelement x∈Qsuchthat f(a)=ax, ∀a∈I. In section four we study direct sums of L-injective modules. In this section we prove some results,forexample,inProposition4.3weprovethatforanyfamily{E } ofL-injectivemod- α α∈A ules,whereAisaninfiniteindexset,ifL satisfiesconditions(α), (µ)and(δ)and(cid:76) E is α∈C α anL-injectivemoduleforanycountablesubsetC ofA,then(cid:76) E isanL-injectivemodule. α∈A α InTheorem4.10weprovethatforanynonemptysubclassL ofM whichsatisfiesconditions(α) and(δ)andforanynonemptyclassK ofmodulesclosedunderisomorphiccopiesandL-injective hulls,ifthedirectsumofanyfamily{E} ofL-injectiveR-modulesinK isL-injective,then i i∈N everyascendingchainI1⊆I2⊆...ofleftidealsofRinHK(R)withI∞=(cid:83)∞j=1Ij s-L-denseinR, terminates. Also, inTheorem4.12wegeneralizeresultsin[21, p. 643]and[9, Proposition5.3.5, p. 165] in which we prove that for any nonempty subclass L of M which satisfies conditions (α), (µ), (δ)and(I)andforanynonemptyclassK ofmodulesclosedunderisomorphiccopies andsubmodules,ifeveryascendingchainJ ⊆J ⊆...ofleftidealsofRsuchthat(J /J)∈K , 1 2 i+1 i ∀i∈NandJ =(cid:83)∞ J s-L-denseinRterminates,theneverydirectsumofL-injectivemodules ∞ i=1 i inK isL-injective. Finally, in section five we introduce the concept of ∑-L-injectivity as a generalization of ∑- injectivity and ∑-τ-injectivity and prove Theorem 5.4 in which we generalize Faith’s result [13, Proposition3,p. 184]and[7,Theorem16.16,p. 98]. Throughoutthisarticle,unlessotherwisespecified,Rwilldenoteanassociativeringwithnon- zeroidentity,andallmodulesareleftunitalR-modules.Byaclassofmoduleswemeananon-empty classofmodules. TheclassofallleftR-modulesisdenotedbyR-Modandbyℜwemeantheset {(M,N)|N≤M,M∈R-Mod},whereN≤M isanotationmeansN isasubmoduleofM. Given a family of modules {M} , for each j∈I,π :(cid:76) M →M denotes the canonical projection i i∈I j i∈I i j homomorphism.LetMbeamoduleandletY beasubsetofM.TheleftannihilatorofY inRwillbe denotedbyl (Y), i.e.,l (Y)={r∈R|ry=0,∀y∈Y}.Givena∈M,let(Y :a)denotetheset{r∈ R R R|ra∈Y},andletann (a):=(0:a).TherightannihilatorofasubsetIofRinMwillbedenotedby R r (I),i.e.,r (I)={m∈M|rm=0,∀r∈I}.Theclass{I|IisaleftidealofRsuchthatann (m)⊆ M M R I, forsomem∈M}willbedenotedbyΩ(M).Finally,theinjectiveenvelopeofamoduleMwillbe denotedbyE(M). 2 Some Properties and Characterizations of L-Injective Mod- ules LetM ={(M,N,f,Q)|M,N,Q∈R-Mod,N≤M, f ∈Hom (N,Q)}andletL beanonempty R subclassofM. Jiráskoin[16]introducedtheconceptofL-injectivemoduleasageneralization 2 ofinjectivemoduleasfollows: amoduleQissaidtobeL-injectiveifeverydiagram (cid:31)(cid:127) i (cid:47)(cid:47) N M f (cid:15)(cid:15) Q with(M,N,f,Q)∈L,canbecompletedtoacommutativediagram. Forevery(B,A,f,Q)∈M, Jiráskoin[16]definedrL(B,A,f,Q)andsL(B,A,f,Q)asfollows: rL(B,A,f,Q)(sL(B,A,f,Q))isthesubmoduleofBgeneratedbyalltheg(M),g∈HomR(M,B) forwhichthereexistsacommutativediagram (cid:31)(cid:127) i (cid:47)(cid:47)(cid:47)(cid:47) N M h g (cid:15)(cid:15) (cid:31)(cid:127) i (cid:47)(cid:47)(cid:47)(cid:47) (cid:15)(cid:15) A B f (cid:15)(cid:15) Q with(M,N,fh,Q)∈L (andN=g−1(A)). Wewillusethefollowingabbreviations:rL(B,Q,IQ,Q)=rL(B,Q), sL(B,Q,IQ,Q)=sL(B,Q), rL(E(Q),Q)=rL(Q)andsL(E(Q),Q)=sL(Q). AsubmoduleN ofamoduleMissaidtobeL-denseinMifM⊆N+rL(E(M),N)[16]. Jiráskoin[16]introducedtheconceptsofL-injectiveenvelope(orL-injectivehull)ofamod- ule M as follows: an L-injective module E is said to be an L-injective envelope of a module M ifthereisnoproperL-injectivesubmoduleofE containingM. IfamoduleM hasanL-injective envelope and it is unique up to isomorphic then we will use the notation EL(M) to stand for an L-injectiveenvelopeofM. IntheclassM wewilldefinethepartialorder(cid:22)inthefollowingway: (M,N,f,Q)(cid:22)(M(cid:48),N(cid:48),f(cid:48),Q(cid:48))⇐⇒M=M(cid:48), N⊆N(cid:48), Q=Q(cid:48), f(cid:48)(cid:22)N= f. ThefollowingconditionsonL willbeusefullater,whereL alwaysdenotesanonemptysub- classofM. (α)(M,N,f,Q)∈L,(M,N(cid:48),f(cid:48),Q)∈M and(M,N,f,Q)(cid:22)(M,N(cid:48),f(cid:48),Q)implies(M,N(cid:48),f(cid:48),Q)∈ L, (β) (M,N,f,A)∈L,i:A→B implies (M,N,if,B)∈L, where i is an inclusion homomor- phism, (γ)(M,N,f,A)∈L,g:A→Banisomorphism,implies(M,N,gf,B)∈L, (δ)(M,N,f,A)∈L,g:A→Bahomomorphism,implies(M,N,gf,B)∈L, (λ)(M,N,f,A)∈L,g:A→Basplitepimorphism,implies(M,N,gf,B)∈L, (µ)(M,N,f,Q)∈L,implies(R,(N :x),f ,Q)∈L,∀x∈M,where f :(N :x)→Qisaho- x x momorphismdefineby f (r)= f(rx), ∀r∈(N:x). x Remark2.1. ([16,p.625])IfL satisfies(γ),thentheclassofL-injectivemodulesisclosedunder isomorphism. Theorem 2.2. ([16, Theorem 1.12, p. 625]) If the subclass L of M satisfies (α),(β) and (γ), theneverymoduleQhasanL-injectiveenvelopewhichisuniqueuptoQ-isomorphism. Proposition2.3. IfL satisfiescondition(β),theneverydirectsummandofanL-injectivemodule isalsoL-injective. Proof. Aneasycheck. Corollary2.4. LetL satisfyconditions(β)and(γ)andlet{M} beanyfamilyofmodules. If i i∈I (cid:76) M isL-injective,thenM isL-injective,∀i∈I. i∈I i i 3 Proof. SinceM isisomorphictoadirectsummandof(cid:76) M,thisimmediatebyProposition2.3 i i∈I i andRemark2.1. TheconverseofCorollary2.4isnottrueingeneral,considerthefollowingexample: Example2.5. Let{Ti}i∈I beafamilyofringswithunitandletR=∏i∈ITi betheringproductof thefamily{T} ,whereadditionandmultiplicationaredefinecomponentwise. LetA=(cid:116) T the i i∈I i∈I i directsumofT,∀i∈I. Ifeach T isinjective, ∀i∈I andI isinfinite, then Aisadirectsumof i Ti i R injectivemodules,but Aisnotitselfinjective,by[18,p. 140]. Hencewehavethat Aisadirect R R sumofL-injectivemodules,but AisnotitselfL-injectivewhereL =M. R Proposition2.6. Let{M} beanyfamilyofmodules. Then: i i∈I (1) if ∏i∈IMi is L-injective and L satisfies conditions (β) and (γ), then Mi is L-injective, ∀i∈I. (2)ifMiisL-injective,∀i∈IandL satisfiescondition(λ),then∏i∈IMiisL-injective. Proof. Thisisobvious. Since ∏i∈IMi =(cid:76)i∈IMi for any family {Mi}i∈I of modules with finite index set I, thus the followingcorollaryisimmediatelyfromProposition2.6. Corollary2.7. LetL satisfycondition(λ)andletM} beanyfamilyof L-injectivemodules. i i∈I IfIisafiniteset,then(cid:76) M isL-injective. i∈I i Remarks2.8. (i)LetL ⊆L beanonemptysubclassesofM andletQbeanymodule. IfQisL -injective, 2 1 1 thenQisL -injective. 2 (ii)LetL beanonemptysubclassofM andletL ={(M,N,f,Q)∈L |NisadirectsummandofM}. 1 TheneverymoduleisL -injective. 1 (iii)Theconverseof(i)isnottrueingeneral,forexampleletL =M andL ={(M,N,f,Q)∈ 1 2 L |N isadirectsummandofM},thenL ⊆L .By(ii)everyR-moduleisL -injectivebut,ifRis 2 1 2 notsemisimpleartinian,thennoteverymoduleisL -injective(clearlyL -injectivity=injectivity). 1 1 NowwewillintroducetheconceptofP-filterasfollows. Definition2.9. Letℜ={(M,N)|N≤M,M∈R-Mod}andletρ beanonemptysubclassofℜ. We saythatρ isaP-filterifρ satisfiesthefollowingconditions: (i)if(M,N)∈ρ andN≤K≤M,then(M,K)∈ρ; (ii)forallM∈R-Mod,(M,M)∈ρ; (iii)if(M,N)∈ρ,then(R,(N:x))∈ρ,∀x∈M. Example2.10. AllofthefollowingsubclassesofℜareP-filters. (1) ρT ={(M,N)∈ℜ|N ≤M such that M/N ∈T, M∈R-Mod}, where T is a nonempty classofmodulesclosedundersubmodulesandhomomorphicimages. (2)ρ =ℜ={(M,N)|N≤M, M∈R-Mod}. ∞ (3)ρ ={(M,N)∈ℜ|Nisτ-denseinM, M∈R-Mod},whereτisahereditarytorsiontheory. τ (4)ρ ={(M,N)∈ℜ | N≤Msuchthatr(M/N)=M/N, M∈R-Mod},whererisaleftexact r preradical. (5)ρ ={(M,N)∈ℜ|N isamaximalsubmoduleinMorN=M, M∈R-Mod}. max (6)ρ ={(M,N)∈ℜ|N≤ M, M∈R-Mod}. e e It is clear that the P-filters from (2) to (5) are special cases of P-filter in (1). Also, if ρ is a P-filterthenthesubclassρ ={(R,I)∈ρ |IisaleftidealofR}ofℜisalsoP-filter. R Throughoutthischapterwewillfixthefollowingnotations. -ForanytwoP-filtersρ andρ ,wewilldenotebyL thesubclassL ={(M,N,f,Q)∈ 1 2 (ρ1,ρ2) (ρ1,ρ2) M |M,N,Q∈R-Mod,(M,N)∈ρ and f ∈Hom (N,Q)suchthat(M,ker(f))∈ρ }. 1 R 2 -ForanytwononemptyclassesofmodulesT andF,wewilldenotebyL(T,F) thesubclass L(T,F)={(M,N,f,Q)∈M |M,N,Q∈R-Mod,N≤MsuchthatM/N∈T and f ∈HomR(N,Q) withM/ker(f)∈F}. ItisclearthatL(T,F)=L(ρT,ρF),whenT andF areclosedundersub- modulesandhomomorphicimages. -Foranytwopreradicalsrands,wewilldenotebyL thesubclassL ={(M,N,f,Q)∈ (r,s) (r,s) M | M,N,Q∈R-Mod, N≤Msuchthatr(M/N)=M/Nand f ∈ Hom (N,Q)withs(M/ker(f))= R M/ker(f)}. ItisclearthatL =L ,whenrandsareleftexactpreradicals. (r,s) (ρr,ρs) 4 - For any torsion theory τ, we will denote by L the subclass L = {(M,N,f,Q) ∈ M | τ τ M,N,Q∈R-Mod,N isaτ-denseinMand f ∈Hom (N,Q)}.ItisclearthatL =L ,when R τ (ρτ,ρ∞) τ isahereditarytorsiontheory. Lemma2.11. Letρ andρ betwoP-filters. ThenL satisfiesconditions(α),(δ)and(µ). 1 2 (ρ1,ρ2) Proof. Conditions(α)and(δ)areclear. Condition(µ):Let(M,N,f,Q)∈L andletx∈M,thus(M,N)∈ρ and f ∈Hom (N,Q) (ρ1,ρ2) 1 R such that (M,ker(f))∈ρ . Since ρ is a P-filter, thus (R,(N :x))∈ρ . It is easy to prove that 2 1 1 ker(f )=(ker(f):x).Since(M,ker(f))∈ρ andρ isaP-filter,(R,(ker(f):x))∈ρ andhence x 2 2 2 (R,ker(f ))∈ρ and this implies that (R,(N :x),f ,Q)∈L . Therefore L satisfies x 2 x (ρ1,ρ2) (ρ1,ρ2) condition(µ). One well-known result concerning injective modules states that an R-module M is injective if andonlyifeveryhomomorphismfromaleftidealofRtoMextendstoahomomorphismfromRto M ifandonlyifforeachleftidealI ofRandevery f ∈Hom (I,M), thereisanm∈M suchthat R f(r)=rm,∀r∈I.ThisisknownasBaer’scondition[4]. Baer’sresultshowsthattheleftidealsof Rformatestsetforinjectivity. The following theorem is the main result in this section in which we give a version of Baer’s criterionforL-injectivity. Theorem2.12. (GeneralizedBaer’sCriterion)ConsiderthefollowingthreeconditionsforanR- moduleM: (1)MisL-injective; (2)everydiagram (cid:31)(cid:127) i (cid:47)(cid:47) I R f (cid:15)(cid:15) M with(R,I,f,M)∈L canbecompletedtoacommutativediagram; (3)foreach(R,I,f,M)∈L,thereexistsanelementm∈Msuchthat f(r)=rm, ∀r∈I. Then (2) and (3) are equivalent and (1) implies (2). Moreover, if L satisfies conditions (α) and(µ),thenallthethreeconditionsareequivalent. Proof. (1)⇒(2)and(2)⇔(3)areobvious. (2)⇒(1)LetL satisfyconditions(α)and(µ)andconsiderthefollowingdiagram (cid:31)(cid:127) i (cid:47)(cid:47) A B f (cid:15)(cid:15) M with(B,A,f,M)∈L.LetS={(C,ϕ)|A≤C≤B,ϕ∈Hom (C,M)suchthat(ϕ(cid:22)A)= f}.Define R onSapartialorder(cid:22)by (C ,ϕ )(cid:22)(C ,ϕ )⇐⇒C ≤C and(ϕ (cid:22)C )=ϕ 1 1 2 2 1 2 2 1 1 Clearly,S(cid:54)=0/ since(A,f)∈S. Furthermore,onecanshowthatSisinductiveinthefollowing manner. Let F ={(A,f)|i∈I} be an ascending chain in S. Let A =∪ A. Then for any i i ∞ i∈I i a∈A thereisa j∈I suchthata∈A ,andsowecandefine f :A →M,by f (a)= f (a). Itis ∞ j ∞ ∞ ∞ j straightforwardtocheckthat f iswelldefinedand(A ,f )isanupperboundforF inS. Thenby ∞ ∞ ∞ Zorn’sLemma,Shasamaximalelement,say(B(cid:48),g(cid:48)). WewillprovethatB(cid:48)=B. Supposethatthereexistsx∈B\B(cid:48).Itisclearthat(B,A,f,M)(cid:22)(B,B(cid:48),g(cid:48),M).Since(B,A,f,M)∈ L and L satisfies condition (α), thus (B,B(cid:48),g(cid:48),M)∈L. Since L satisfies condition (µ), thus (R,(B(cid:48):x),g(cid:48),M)∈L.Byhypothesis, thereexistsahomomorphismg:R→M suchthatg(r)= x g(cid:48)(r)=g(cid:48)(rx), ∀r ∈(B(cid:48) :x). Define ψ :B(cid:48)+Rx→M by ψ(b+rx)=g(cid:48)(b)+g(r), ∀b∈B(cid:48), x ∀r∈R.ψ is a well-defined mapping, since if b +r x=b +r x where b ,b ∈B(cid:48) and r,r ∈R, 1 1 2 2 1 2 2 then(r -r )x=b -b ∈B(cid:48)andhencer -r ∈(B(cid:48):x).Sinceg(cid:48)((r -r )x)=g(r -r )=g(r )-g(r )and 1 2 2 1 1 2 1 2 1 2 1 2 g(cid:48)((r -r )x)=g(cid:48)(b -b )=g(cid:48)(b )-g(cid:48)(b ) thus g(cid:48)(b )+g(r )=g(cid:48)(b )+g(r ) and this implies that 1 2 2 1 2 1 1 1 2 2 ψ(b +r x)=ψ(b +r x).Thusψisawell-definedmapping.Itisclearthatψisahomomorphism 1 1 2 2 5 and(B(cid:48),g(cid:48))(cid:22)(B(cid:48)+Rx,ψ). Since(B(cid:48)+Rx,ψ)∈SandB(cid:48)(cid:36)B(cid:48)+Rx,thuswehaveacontradiction to maximality of (B(cid:48),g(cid:48)) in S. Hence B(cid:48) =B and this means that there exists a homomorphism g(cid:48):B→Msuchthat(g(cid:48)(cid:22)A)= f. ThusMisL-injective. ThefollowingcorollaryisageneralizationofBaer’sresultin[4],[23,Proposition2.1,p. 201], [16,Baer’sLemma2.2,p. 628]and[5,Theorem2.4,p. 319]. Corollary2.13. Letρ andρ beanytwoP-filters. Thenthefollowingconditionsareequivalent 1 2 forR-moduleM: (1)MisL -injective; (ρ1,ρ2) (2)everydiagram (cid:31)(cid:127) i (cid:47)(cid:47) I R f (cid:15)(cid:15) M with(R,I,f,M)∈L ,canbecompletedtoacommutativediagram; (ρ1,ρ2) (3)foreach(R,I,f,M)∈L ,thereexistsanelementm∈Msuchthat f(r)=rm,∀r∈I. (ρ1,ρ2) Proof. ByLemma2.11andTheorem2.12. ThefollowingcharacterizationofL-injectivityisageneralizationof[22,Proposition1.4,p. 3] and[9,Proposition2.1.3,p. 53]. Proposition2.14. ConsiderthefollowingthreeconditionsforR-moduleM: (1)QisL-injective; (2)everydiagram (cid:31)(cid:127) i (cid:47)(cid:47) N M f (cid:15)(cid:15) Q with(M,N,f,Q)∈L andN≤ M,canbecompletedtoacommutativediagram; e (3)everydiagram (cid:31)(cid:127) i (cid:47)(cid:47) I R f (cid:15)(cid:15) Q with(R,I,f,Q)∈L andI≤ R,canbecompletedtoacommutativediagram. e Then (1) implies (2), (2) implies (3) and, if L satisfies conditions (α) and (µ), then (3) implies(1). Proof. LetL satisfy(α)and(µ)andconsiderthefollowingdiagram (cid:31)(cid:127) i (cid:47)(cid:47) I R f (cid:15)(cid:15) Q with (R,I,f,Q)∈L. Let Ic be a complement left ideal of I in R and let C =I⊕Ic. Thus by [2, Proposition 5.21, p. 75],C≤ R. Define g:C=I⊕Ic →Q by g(a+b)= f(a), ∀a∈I and e ∀b∈Ic. It is clear that g is a well-defined homomorphism and (R,I,f,Q)(cid:22)(R,C,g,Q). Since L satisfies condition (α), thus (R,C,g,Q)∈L. By hypothesis, there exists a homomorphism h:R→Qsuchthat(h(cid:22)C)=g.Thus(h(cid:22)I)=(g(cid:22)I)= f andthisimpliesthatQisL-injective, byTheorem2.12. In the following theorem we extend a characterization due to [24, Theorem 2, p. 8] of L- injectivemodulesovercommutativeNoetherianrings. 6 Theorem2.15. LetRbeacommutativeNoetherianring, letM beanR-moduleandsupposethat L satisfiesconditions(α)and(µ). ThenMisL-injectiveifandonlyifeverydiagram (cid:31)(cid:127) i (cid:47)(cid:47) I R f (cid:15)(cid:15) M with(R,I,f,M)∈L andIisaprimeidealofR,canbecompletedtoacommutativediagram. Proof. (=⇒)Thisisobvious. (⇐=)Considerthefollowingdiagram (cid:31)(cid:127) i (cid:47)(cid:47) A B f (cid:15)(cid:15) M with (B,A,f,M)∈L. Let S={(C,ϕ)|A≤C≤B,ϕ ∈Hom (C,M) such that (ϕ (cid:22)A)= f }. R DefineonSapartialorder(cid:22)by (C ,ϕ )(cid:22)(C ,ϕ )⇐⇒C ≤C and(ϕ (cid:22)C )=ϕ 1 1 2 2 1 2 2 1 1 AsintheproofofTheorem2.12,wecanprovethatShasamaximalelement,say(B(cid:48),g(cid:48)). We willprovethatB(cid:48)=B. Supposethatthereexistsx∈B\B(cid:48). By[24,Theorem1,p. 8],thereexistsan elementr ∈Rsuchthat(B(cid:48):r x)isaprimeidealinRandr x∈/B(cid:48). Itisclearthat(B,A,f,M)(cid:22) 0 0 0 (B,B(cid:48),g(cid:48),M). Since(B,A,f,M)∈L andL satisfiescondition(α),thus(B,B(cid:48),g(cid:48),M)∈L.Since L satisfies condition (µ), thus (R,(B(cid:48) :b),g(cid:48),M)∈L,∀b∈B. Put y=r x, thus y∈B\B(cid:48) and b 0 hence(R,(B(cid:48):y),g(cid:48),M)∈L. Thuswehavethefollowingdiagram y (B(cid:48):y)(cid:31)(cid:127) i (cid:47)(cid:47)R g(cid:48)y (cid:15)(cid:15) (cid:124)(cid:124) g M with(R,(B(cid:48):y),g(cid:48),M)∈L and(B(cid:48):y)isaprimeidealinR. Byhypothesis,thereexistsahomo- y morphism g:R→M such that g(r)=g(cid:48)(r)=g(cid:48)(ry), ∀r∈(B(cid:48) :y). Define ψ :B(cid:48)+Ry→M by y ψ(b+ry)=g(cid:48)(b)+g(r),∀b∈B(cid:48),∀r∈R.AsintheproofofTheorem2.12,wecanprovethatψ is awell-definedhomomorphismand(B(cid:48),g(cid:48))(cid:22)(B(cid:48)+Ry,ψ). Since(B(cid:48)+Ry,ψ)∈SandB(cid:48)(cid:36)B(cid:48)+Ry, thuswehaveacontradictiontomaximalityof(B(cid:48),g(cid:48))inS. HenceB(cid:48)=Bandthismeanthatthere existsahomomorphismg(cid:48):B→Msuchthat(g(cid:48)(cid:22)A)= f. ThusMisL-injective. Corollary2.16. Letρ andρ beanytwoP-filtersandletRbeacommutativeNoetherianring, 1 2 letMbeanR-module. ThenMisL -injectiveifandonlyifeverydiagram (ρ1,ρ2) (cid:31)(cid:127) i (cid:47)(cid:47) I R f (cid:15)(cid:15) M with(R,I,f,M)∈L andIisaprimeidealofR,canbecompletedtoacommutativediagram. (ρ1,ρ2) Proof. ByLemma2.11andTheorem2.15. Corollary 2.17. ([24, Theorem 2, p. 8]) Let R be a commutative Noetherian ring, let M be an R-module. ThenMisinjectiveifandonlyifeverydiagram (cid:31)(cid:127) i (cid:47)(cid:47) I R f (cid:15)(cid:15) M withIisaprimeidealofR,canbecompletedtoacommutativediagram. Proof. BytakingthetwoP-filtersρ =ρ =ℜandapplyingCorollary2.16. 1 2 7 3 L-M-Injectivity and s-L-M-Injectivity InthissectionweintroducetheconceptsofL-M-injectivemodulesands-L-M-injectivemod- ulesasgeneralizationsofM-injectivemodulesandgivesomeresultsaboutthem. Definition3.1. LetM,Q∈R-Mod. AmoduleQissaidtobeL-M-injective,ifeverydiagram (cid:31)(cid:127) i (cid:47)(cid:47) N M f (cid:15)(cid:15) Q with (M,N,f,Q)∈L, can be completed to a commutative diagram. A module Q is said to be L-quasi-injective,ifQisL-Q-injective. Remarks3.2. (1) It is clear that an R-module Q is L-injective if and only if Q is L-M-injective for all M∈R-Mod. (2)IfL satisfiesconditions(α)and(µ),thenbyTheorem2.12wehavethatanR-moduleQis L-injectiveifandonlyifQisL-R-injective. (3)Asaspecialcaseof(2),wehavethatforanytwoP-filtersρ andρ ,thenanR-moduleQ 1 2 isL -injectiveifandonlyifQisL -R-injective. (ρ1,ρ2) (ρ1,ρ2) For any nonempty subclass L of M and for any R-module M, we will denote by L the M subclassL ={(B,A,f,Q)∈L | B=M}. M Remark3.3. LetM,Q∈R-Mod. ThenQisL-M-injectiveifandonlyifQisL -injective. M It is clear that if L satisfies condition (α), then L does also. Thus, immediately from Re- M mark3.3and[16,Theorem1.3,p. 623],wehavethefollowingcorollary. Corollary3.4. LetM,Q∈R-ModandletL satisfycondition(α). Thenthefollowingfivecondi- tionsareequivalent: (1)QisL-M-injective; (2)QisadirectsummandineachextensionN⊇QsuchthatN⊆Q+rL (E(N),Q); M (3)rL (Q)⊆Q; M (4)everydiagram (cid:31)(cid:127) i (cid:47)(cid:47) A B f (cid:15)(cid:15) Q withB⊆A+rL (E(B),A,f,Q),canbecompletedtoacommutativediagram; M (5)sL (Q)⊆Q. M LetM,Q∈R-Mod,itiswell-knownthatamoduleQisM-injectiveifandonlyif f(M)≤Q,for everyhomomorphism f :E(M)→E(Q)[20,Lemma1.13,p. 7]. ForananalogousresultforL-M-injectivitywefirstfixthefollowingcondition. (EL): Let L be a subclass of M. Then a module M satisfies condition (EL) if M has an L-injectiveenvelopewhichisuniqueuptoM-isomorphismand(EL(M),N,f,Q)∈L whenever (M,N,f,Q)∈L. Thenexttheoremisthefirstmainresultinthissectioninwhichwegiveageneralizationof[20, Lemma1.13,p. 7]and[8,Theorem2.1,p. 34]. Theorem 3.5. Let M,Q∈R-Mod and let L satisfy conditions (α), (β) and (γ). Consider the followingtwoconditions (1)QisL-M-injective. (2) f(M)≤Q, for all f ∈HomR(EL(M),EL(Q)) with (M,L,f(cid:22)L,Q)∈L where L={m∈ M | f(m)∈Q}=M(cid:84)f−1(Q). Then(1)implies(2)and,ifMsatisfiescondition(EL),then(2)implies(1). 8 Proof. (1)⇒(2) Let f ∈HomR(EL(M),EL(Q) with (M,L,f(cid:22)L,Q)∈L where L={m∈M | f(m)∈Q}=M(cid:84)f−1(Q). Defineg:L→Qbyg(a)= f(a), ∀a∈L. (i.e., g= f(cid:22)L). Itisclear thatgisahomomorphism. Thuswehavethefollowingdiagram (cid:31)(cid:127) i (cid:47)(cid:47) L M g (cid:15)(cid:15) (cid:127)(cid:127) h Q with(M,L,g,Q)∈L.ByL-M-injectivityofQ,thereexistsahomomorphismh:M→Qsuchthat (h(cid:22)L)=g.WewillprovethatQ(cid:84)(f-h)(M)=0.Letx∈Q(cid:84)(f-h)(M),thusthereexistsm∈Msuch thatx=(f-h)(m)= f(m)-h(m)∈Q. Thus f(m)=x+h(m)∈Qandthisimpliesthatm∈L. Thus f(m)=g(m)=h(m)andhencex=0. ThusQ(cid:84)(f-h)(M)=0. SinceQisanessentialsubmodule ofEL(Q)(by[16,Theorem1.19,p. 627])andsince(f-h)(M)≤EL(Q),thus(f-h)(M)=0and thisimpliesthat f(M)=h(M)≤Q. (2)⇒(1)LetMsatisfycondition(EL)andconsiderthefollowingdiagram: (cid:31)(cid:127) i (cid:47)(cid:47) N M f (cid:15)(cid:15) Q with (M,N,f,Q)∈L. Since M satisfies condition (EL), thus (EL(M),N,f,Q)∈L. Since L satisfiescondition(β),thus(EL(M),N,if,EL(Q))∈L. Thuswehavethefollowingdiagram (cid:31)(cid:127) i (cid:47)(cid:47) N EL(M) f (cid:15)(cid:15) Q h i (cid:15)(cid:15) (cid:3)(cid:3) EL(Q) with(EL(M),N,if,EL(Q))∈L. ByL-injectivityofEL(Q), thereexistsahomomorphismh: EL(M)→EL(Q)suchthath(n)= f(n), ∀n∈N. LetL={m∈M | h(m)∈Q}. Wewillprove that (M,L,g,Q)∈L, where g=h(cid:22)L. Let x∈N, thus h(x)= f(x)∈Q and hence x∈L. Thus N ≤L and (g(cid:22)N)= f. Thus (M,N,f,Q)(cid:22)(M,L,g,Q). Since L satisfies condition (α), thus (M,L,g,Q)∈L. Byhypothesis,wehavethath(M)≤Qandhenceh(cid:48)=h(cid:22)M:M→Qissuchthat (h(cid:48)(cid:24)N)= f. ThusQisanL-M-injectivemodule. Corollary3.6. LetM,Q∈R-Modandletρ andρ beanytwoP-filters. IfM satisfiescondition 1 2 (EL ),thenthefollowingtwoconditionsareequivalent. (ρ1,ρ2) (1)QisL -M-injective; (ρ1,ρ2) (2) f(M)≤Q, for all f ∈HomR(EL (M),EL (Q)) with (M,L,f(cid:22)L,Q)∈L where (ρ1,ρ2) (ρ1,ρ2) L={m∈M | f(m)∈Q}=M(cid:84)f−1(Q). Proof. ByLemma2.11andTheorem3.5. Thefollowinglemmaiseasilyproved. Lemma3.7. IfL =M,thenthefollowingconditionsaresatisfied. (1)AmoduleMisinjectiveifandonlyifMisL-injective. (2)EL(M)=E(M),forallM∈R-Mod. (3)Everymodulesatisfiescondition(EL). Lemma3.8. Ifτ isahereditarytorsiontheory,thenthefollowingconditionsaresatisfied. (1)AmoduleMisτ-injectiveifandonlyifMisL -injective. τ (2)ELτ(M)=Eτ(M),forallM∈R-Mod. (3)Everymodulesatisfiescondition(EL ). τ (4) For any M,Q∈R-Mod, if f ∈HomR(ELτ(M),ELτ(Q)), then (M,L,f(cid:22)L,Q)∈Lτ, where L={m∈M | f(m)∈Q}. 9 Proof. (1),(2)and(3)areclear. (4) Let M,Q∈R-Mod and let f ∈HomR(ELτ(M),ELτ(Q)). Let L={m∈M | f(m)∈Q}. Define g:(M/L)→(E (Q)/Q) by g(m+L)= f(m)+Q, ∀m∈M. It is clear that g is a well- τ defined R-monomorphism. Since Q is a τ-dense in EL (Q)), (EL (Q)/Q) is a τ-torsion. Since τ τ g(M/L)≤(EL (Q)/Q)and(M/L)(cid:39)g(M/L),thusM/Lisaτ-torsion. HenceLisaτ-denseinM. τ Thus(M,L,f(cid:22)L,Q)∈L . τ In the special case L =M is the result [20, Lemma 1.13, p. 7] mentioned earlier and the followingcorollaryisageneralizationof[8,Theorem2.1,p. 34]. Corollary3.9. LetM,Q∈R-Modandletτ beanyhereditarytorsiontheory. Thenthefollowing conditionsareequivalent. (1)Qisτ-M-injective. (2)QisL -M-injective. τ (3) f(M)≤Q,foreveryhomomorphism f :E (M)→E (Q). τ τ Proof. ByLemma2.11,Lemma3.8andTheorem3.5. LetM,Q∈R-Modandletτ beanyhereditarytorsiontheory. AmoduleQiss-τ-M-injectiveif, foranyN ≤M, anyhomomorphismfromaτ-densesubmoduleofN toQextendstoahomomor- phismfromN toQ[7,Definition14.6,p. 65]. Asageneralizationofs-τ-M-injectivityandhenceofM-injectivityweintroducetheconceptof s-L-M-injectivityasfollows. Definition 3.10. Let M,Q∈R-Mod. A module Q is said to be s-L-M-injective if Q is L-N- injective,forallN≤M. AmoduleQissaidtobes-L-quasi-injectiveifQiss-L-Q-injective. Remarks3.11. (1)Itisclearthateverys-L-M-injectivemoduleisL-M-injective. (2)LetM,Q∈R-Mod. Thenthefollowingconditionsareequivalent. (a)Qiss-L-M-injective. (b)Qiss-L-N-injective,forallN≤M. (c)QisL-N-injective,forallN≤M. Fuchs in [14] has obtained a condition similar to Baer’s Criterion that characterizes quasi- injectivemodules,Blandin[6]hasgeneralizedthattos-τ-quasi-injectivemodules,andCharalam- bidesin[7]hasgeneralizedthattos-τ-M-injectivemodules. Ournextaimistogeneralizetheconditiononceagaininordertocharacterizes-L-M-injective modules. Webeginwiththefollowingcondition. (L): Let L be a subclass of M and let M be a module . Then M satisfies condition (L) if for every (B,A,f,Q)∈L, then (Rm,(A:x)m,f ,Q)∈L, for all m∈M and x∈B with (x,m) ann (m)⊆(ker(f):x), where f :(A:x)m→Q is a well-defined homomorphism defined by R (x,m) f (rm)= f(rx),forallr∈(A:x). (x,m) AsubclassL ofM issaidtobefullysubclassifeveryR-modulesatisfiescondition(L). Example3.12. AllofthefollowingsubclassesofM arefullysubclasses. (1)L whereT andF arenonemptyclassesofmodulesclosedundersubmodulesandho- (T,F) momorphicimages. (2)L =M. (3)L ,whereτ isahereditarytorsiontheory. τ (4)L ,whereρ andσ areleftexactpreradicals. (ρ,σ) Proof. (1) Let (B,A,f,Q)∈L and let m∈M,x∈B such that ann (m)⊆(ker(f):x). By (T,F) R Lemma2.11wehavethat L satisfiescondition(µ)andthisimpliesthat(B,(A:x),f ,Q)∈ (T,F) x L .Itisclearthat(R/(Im:m))(cid:39)(Rm/Im)and(R/(Jm:m))(cid:39)(Rm/Jm)whereI=(A:x)and (T,F) J=ker(f ). SinceL =L ,whereρ andρ definedbyρ ={(M,N)∈ℜ|N≤Msuch x (T,F) (ρ1,ρ2) 1 2 1 thatM/N∈T,M∈R-Mod}andρ ={(M,N)∈ℜ|N≤MsuchthatM/N∈F,M∈R-Mod},thus 2 (R,I)∈ρ and(R,J)∈ρ . SinceI≤(Im:m)≤RandJ≤(Jm:m)≤Randρ ,ρ areP-filters(by 1 2 1 2 example2.10),thus(R,(Im:m))∈ρ and(R,(Jm:m))∈ρ andthisimpliesthat(R/(Im:m))∈T 1 2 and(R/(Jm:m))∈F.SinceT andFareclosedunderhomomorphicimages,thus(Rm/Im)∈T and 10