ebook img

On knots in overtwisted contact structures PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On knots in overtwisted contact structures

ON KNOTS IN OVERTWISTED CONTACT STRUCTURES JOHNB.ETNYRE ABSTRACT. Weprovethateachovertwistedcontactstructurehasknottypesthatarerepresentedby infinitelymanydistincttransverseknotsallwiththesameself-linkingnumber. Insomecases,wecan evenclassifyallsuchknots.WealsoshowsimilarresultsforLegendrianknotsandprovea“folk”result 2 concerningloosetransverseandLegendrianknots(thatisknotswithovertwistedcomplements)which 1 saysthatsuchknotsaredeterminedbytheirclassicalinvariants(uptocontactomorphism).Finallywe 0 discusshowtheseresultspartiallyfillinourunderstandingofthe“geography”and“botany”problems 2 forLegendrianknotsinovertwistedcontactstructures,aswellasmanyopenquestionsregardingthese n problems. a J 3 1. INTRODUCTION ] G SinceEliashberg’sformativepaper[10]classifyingovertwistedcontactstructureson3–manifolds, S thestudyofandinterestinsuchstructureshasbeenminimal. However,inrecentyearstheyhave . h beentakingamorecentralroleduetotheirmanyinterestingapplications—suchas,theconstruc- t tionofachiralLefschetzfibrations[15]andnearsymplecticstructures[19]oncertain4–manifolds a m andtheunderstandingoftheexistenceofEngelstructureson4–manifolds[30]—aswellasthein- terestingknottheorytheysupport. ThispaperisaimedatstudyingtheLegendrianandtransverse [ knottheoryofovertwistedcontactstructures. Webeginwithabriefhistoryofthesubject. 2 A Legendrian or transverse knot in an overtwisted contact structure ξ on a 3–manifold M is v called loose if the contact structure restrictedto its complement is also overtwisted, otherwise the 5 knot is called non-loose. Though apparentlyknown to a few experts, the first explicit example of 4 7 a non-loose knot was given by Dymara in [9], where a single non-loose Legendrian unknot was 3 constructed in a certain overtwisted structure on S3. More recently, Eliashberg and Fraser [11] . gave a coarse classification of Legendrian unknots in overtwisted contact structures on S3, see 2 1 Theorem 2.2 below. (We say knots are coarsely classified if they are classified up to co-orientation 0 preservingcontactomorphism, smoothly isotopic tothe identity. We reservetheword classified to 1 refertotheclassificationuptoLegendrianisotopy, andsimilarlyfortransverseknots.) Animme- : v diate corollary of this work is that there are no non-loose transverse unknots in any overtwisted i contactstructure. X In [14] it was shown that there are knot types and overtwisted contact structures for which r a therewerearbitrarilymanydistinctnon-looseLegendrianknotsrealizingthatknottypewithfixed Thurston-Bennequininvariantandrotationnumber. Whileitiseasytoconstructnon-loosetrans- verse knots in any overtwisted contact structure (one just observes, cf. [12], thatthe complement ofthebindingofasupportingopenbookdecompositionistight),twonon-loosetransverseknots withthe sameself-linkingnumberswerefirstproducedbyLisca,Ozsva´th, StipsiczandSzabo´,in [27],usingHeegaard-FloerinvariantsofLegendrianandtransverseknots. TherehavebeenveryfewresultsconcerningtheclassificationofLegendrianortransverseknots inovertwisted contactstructure(asopposed tothecoarseclassification),buttherehasbeensome workgiving necessaryconditions forthe existenceof aLegendrianisotopy, seeforexample[6, 8, 11]. Leaving the history of the subject for now we begin by recalling a version of the Bennequin boundfornon-looseknots. Thisresultfirstappearedin[8]whereitwasattributedtoS´wia¸tkowski. Proposition1.1 (S´wia¸tkowski, see [8]). Let (M,ξ) be an overtwistedcontact 3–manifoldand L a non- looseLegendrianknotinξ. Then −|tb(L)|+|r(L)|≤−χ(Σ) foranySeifertsurfaceΣforL. 1 2 JOHNB.ETNYRE We sketch a simple proof of this result below. We now observe a relation between non-loose transverseknotsandtheirLegendrianapproximationsaswellasnon-looseLegendrianknotsand theirtransversepush-offs. Proposition1.2. IfT isanon-loosetransverseknotthenanyLegendrianapproximationofT isnon-loose. IfLisanon-looseLegendrianknotthenthetransversepush-offofLmayormaynotbenon-loose. TheprevioustworesultsimplythataversionoftheBennequinboundfortransverseknotsina tight contactstructure alsoholds for non-loose transverseknots. This isin starkcontrastto what happensforLegendrianknotsasProposition1.1indicatesandEliashbergandFraser’scoarseclas- sificationofunknots,giveninTheorem2.2below,confirms. Proposition1.3. Let(M,ξ)beacontact3–manifoldandK atransverseknotinξwithSeifertsurfaceΣ. If sl(K)>−χ(Σ) then K is loose (and, of course, ξ is overtwisted). In particular any non-loose knot K in an overtwisted contactstructuresatisfiestheBennequininequality sl(K)≤−χ(Σ). 1.1. ThecoarseclassificationoflooseLegendrianandtransverseknots. Thefollowingtwotheo- remsmakeprecisethewell-known“folk”theoremsthatloose Legendrianortransverseknotsare coarselyclassifiedbytheirclassicalinvariants. Theorem1.4. Let (M,ξ)beanovertwistedcontactmanifold. Foreachnull-homologousknottypeKand eachpairofintegers(t,r)satisfyingt+risodd,thereisaunique,uptocontactomorphism,looseLegendrian knotLintheknottypeKwithtb(L)=tandr(L)=r. Recall that for any Legendrian knots L we must have tb(L) + r(L) odd, so the above theorem saysanypossiblepairofintegersisrealizedbyauniquelooseLegendrianknotinanyovertwisted contactstructure. Fortransverseknotswehavethefollowingresult. Theorem1.5. Let (M,ξ)beanovertwistedcontactmanifold. Foreachnull-homologousknottypeKand eachoddintegersthereisaunique,uptocontactomorphism,loosetransverseknotT intheknottypeKwith sl(T)=s. Againrecallthattheself-linkingnumberofanytransverseknotmustbeoddandthusthetheorem saysthatanypossibleintegerisrealizedbyauniqueloosetransverseknotinanovertwistedcontact structure. ThesetwotheoremsfollowdirectlyfromEliashberg’sclassificationofovertwistedcontactstruc- turesandacarefulanalysisofhomotopyclassesofplanefieldsonmanifoldswithboundary,which wegiveinSection4. Theorem1.4alsoappearsin[11]thoughthedetailsofthe homotopy theory werenotdiscussed,andwhilethesedetailsarefairlystraightforwardtheydonotseemobviousto theauthor. Inparticular,whenstudyingthehomotopyclassesofplanefieldsthereisbotha2and 3-dimensionalobstruction tobeingabletohomotope one planefield toanother. The factthatthe 3-dimensional obstruct is determined by the Thurston-Bennequin invariant and rotation number seems, atfirst, a little surprising until one carefullycomparesthe Pontryagin–Thom construction with a relativeversion of the Pontryagin–Thom construction. Geigesand independently, Klukas, in private communication, informed the author of another way to deal the the homotopy issues and prove the above theorems. Similar theorems, with extra hypotheses, concerning Legendrian isotopywereprovenin[6,8]. In [28] Chernov defined relative versions of the rotation number for all (not necessarily null- homologous)Legendrianknotsaslongastheambientmanifoldisirreducibleandatoroidalorthe Eulerclassofthecontactstructureisatorsionclass(orthecontactstructureistight).In[1,28]hede- finedrelativeversionsoftheselflinkinginvariant(nottobeconfusedwiththeself-liningnumber ofatransverseknot)forall(notnecessarilynull-homologous)framedknotsinatoroidalandother manifolds. This gives the definition of the relative Thurston-Bennequin number for Legendrian knotsincontactmanifoldsofsuchtopologicaltype. Thereshouldbetheoremsanalogoustothose abovefornon-null-homologousknotsinthissituation,buttheprecisestatementswouldnecessar- ilybemorecomplicated. Itwouldbeinterestingtoseethepreciseextensionoftheabovetheorems ONKNOTSINOVERTWISTEDCONTACTSTRUCTURES 3 toallnon-null-homologousknotsinallovertwistedcontactmanifolds. See[6,8]forpartialresults alongtheselines. 1.2. Non-loosetransverseknotsandthecoarseclassificationoftransversefiberedknotsrealizing theBennequinbound. In[5],Colin,GirouxandHondaprovedthatifonefixesaknottypeinan atoriodal3–manifoldandatightcontactstructureonthemanifoldthenthereareonlyfinitelymany LegendrianknotswithgivenThurston-Bennequininvariantandrotationnumber. Whilethisdoes notimplythesamefinitenessresultfortransverseknots,itseemslikelythatsuchafinitenessresult is true for such knots too. Surprisingly this finiteness result is far from true in an overtwisted contact structure. We begin with some notation and terminology. We call the open book for S3 withbindingtheunknotthetrivialopenbookdecompositionandsayanopenbookdecompositionis non-trivialifitisnotdiffeomorphictothetrivialopenbookdecomposition. If (M,ξ) is a contact 3–manifold and K is a topological knot type we denote by T(K) the set ofalltransverseknotsintheknottypeKuptocontactomorphism (co-orientationpreservingand smoothly isotopic to the identity). (We note thatinsome contexts, one mightwantthis todenote the transverse knots up to transverse isotopy, but in this paper we will only consider the coarse classificationofknots.) Ifnisanintegerthen T (K)={T ∈T(K): sl(T)=n} n isthesetoftransverseknotsintheknottypeKwithself-linkingnumbern. Given a null-homologous knot K we will denote the maximalEuler characteristic for a Seifert surfaceforK byχ(K). Theorem 1.6. Let (B,π) be a non-trivialopenbook decompositionwith connected binding of a closed 3– manifoldM andletξ bethecontactstructureitsupports. Denotebyξthecontactstructureobtainedfrom B ξ by a full Lutz twist along B. Then T (B) contains infinitely many distinct non-loose transverse B χ(B) − knotsuptocontactomorphism(andhenceisotopytoo). Thistheoremgivesthefirstknownexampleofaknottypeandcontactstructurewhichsupports aninfinitenumberoftransverseknotswiththesameself-linkingnumber. Wehaveasimilarresult usinghalf-Lutztwists. Theorem 1.7. Let (B,π) be a non-trivialopenbook decompositionwith connected binding of a closed 3– manifoldM andletξ bethecontactstructureitsupports. Denotebyξthecontactstructureobtainedfrom B ξ byahalfLutztwistalongB. ThenT (B)containsinfinitelymanydistinctnon-loosetransverseknots B χ(B) uptocontactomorphism(andhenceisotopytoo). Finallywehavethefollowinglessspecificbutmoregeneraltheoremalongtheselines. Theorem1.8. LetKbeanull-homologousknottypeinaclosedirreducible3-manifoldM withSeifertgenus g > 0. ThereisanovertwistedcontactstructureforwhichT (K)isinfiniteandadistinctovertwisted 2g 1 − contactstructureforwhichT (K)isinfinite. 2g+1 − Remark 1.9. We note that as mentioned above, and proven in Corollary 2.3 below, any trans- verse unknot in an overtwisted contact manifold is loose. Hence the previous theorem implies that the unknot is the unique null-homologous knot in any (irreducible) manifold that does not have non-loose transverse representativesin some overtwisted contactmanifold (in factall other null-homologousknotshavenon-loosetransverserepresentativesinatleasttwoovertwistedcon- tactmanifolds).Thereasonforthisissimplythattheunknotistheuniqueknotwhosecomplement hascompressibleboundary. Since, as noted above, Legendrianapproximations of non-loose transverse knots arealso non- loose, we see that all null-homologous knots have non-loose Legendrian representativesin some overtwistedcontactstructure. (cid:3) Usingresultsfrom[18] we canrefineTheorem1.6for hyperbolic knots togive the coarse clas- sification of transverse knots in a fibered hyperbolic knot type that realize the upper bound in Proposition1.3. 4 JOHNB.ETNYRE Theorem1.10. Let(B,π)beanopenbookdecompositionwithconnectedbindingofaclosed3–manifoldM andletξ bethecontactstructureitsupports. Denotebyξ thecontactstructureobtainedfromξ byafull B B LutztwistalongB. IfB isahyperbolicknotthen T (B)={K }∪{K } , χ(B) i i A − ∗ ∈ whereA=Nifξ istightandA=N∪{0}ifnot;andifξ isanyovertwistedcontactstructurenotisotopic B ′ toξthen T (B)={K }. χ(B) − ∗ Moreover • K is loose and the knot K is non-loose and has Giroux torsion i along a torus parallel to the i ∗ boundaryofaneighborhoodofK . i • TheHeegaard-FloerinvariantsofallknotsinT (B)vanishexceptforK ,whichonlyexistsif χ(B) 0 − ξ isovertwisted. B • AllknotsinT (B),exceptpossiblyK ,ifitexists,becomelooseafterasinglestabilization. χ(B) 0 − We note that K in this theorem might or might not be loose after a single stabilization, but it 0 willcertainlybecomelooseafterasufficientlylargenumberofstabilizations. Remark 1.11. We note that while Theorem 1.7 does allow us to conclude that for the binding of anopenbook thereisatleastone overtwisted contactstructuresuch thatT (B) isinfinite, the χ(B) technologyin[18]doesnotappearstrongenoughtoprovearesultssimilartoTheorem1.10inthis case. (cid:3) 1.3. Non-looseLegendrianknotsandthecoarseclassificationofLegendrianknots. Wecanuse thecoarseclassificationoftransverseknotstounderstandsomeLegendrianknotsinthesameknot types.If(M,ξ)isacontact3–manifoldandKisatopologicalknottype,thenwedenotebyL(K)the setofallLegendrianknotsintheknottypeKuptocontactomorphism(co-orientationpreserving andsmoothlyisotopictotheidentity). Ifmandnaretwointegersthen L (K)={L∈L(K):r(L)=mand tb(L)=n} m,n isthesetofLegendrianknotsintheknottypeKwithrotationnumbermandThurston-Bennequin invariantequalton. Theorem1.12. Let(B,π)beanopenbookdecompositionwithconnectedbindingofaclosed3–manifoldM andletξ bethecontactstructureitsupports. Denotebyξ thecontactstructureobtainedfromξ byafull B B LutztwistalongB. IfB isahyperbolicknotthenthereisanm∈Z∪{∞}dependingonlyonB suchthat foreachfixedintegernwehave L (B)={L }∪{L } , χ(B)+n,n ∗ n,i i∈An whereA =Nifξ istightorn>mandA =N∪{0}ifnot;andifξ isanyovertwistedcontactstructure n B n ′ notisotopictoξthen L (B)={L }. χ(B)+n,n ∗ SeeFigure1. Moreover • L is loose and the knot L is non-loose and has Giroux torsion i along a torus parallel to the n,i ∗ boundaryofaneighborhoodofL . n,i • TheHeegaard-FloerinvariantsofallknotsinL (B)vanishexceptforL , whichisnon- χ(B)+n,n n,0 zero. (RecallL onlyexistsifξ isovertwistedandn≤m.) n,0 B • All knots in L (B), except possibly L , if it exists, become loose after a single positive χ(B)+n,n n,0 stabilization. • ThenegativestabilizationofL isL . n,i n 1,i − As we noted in the transverse case, this theorem provides the first examples of a knot type andcontactstructurethatsupportaninfinitenumberofLegendrianknotswiththesameclassical invariants. WealsoremarkthatifthehypothesisonB beingahyperbolicknotisdroppedthen,as inTheorem1.6fortransverseknots,onecanstillconcludethatthereareinfinitelymanyLegendrian knotswithfixedinvariantsasinthetheorem,butwecannotnecessarilygiveaclassificationofthese Legendrianknots. ONKNOTSINOVERTWISTEDCONTACTSTRUCTURES 5 tb A n A n A n A n r A n A n A n FIGURE 1. The knots discussed in Theorem 1.12. A dot at (m,n) indicates there is a non-loose knot with rotation number m and Thurston-Bennequin invariant n. The subscript on the dot indicatesthe setthatindexes the familyof non-loose Legendrian knots with invariants given by the coordinates. The line is given by −m+n=−χ(B). Wenoticenowthatif−B andB aresmoothlyisotopicthenwecanextendtheaboveclassifica- tion. Theorem1.13. GiventhehypothesisandnotationofTheorem1.12,supposethat−B issmoothlyisotopic toB,where−BdenotesB withitsorientationreversed. Thenforeachfixedintegernwehave L (B)={L }∪{L } , −χ(B)−n,n ∗ n,i i∈An whereA =Nifξ istightorn>mandA =N∪{0}ifnot;andifξ isanyovertwistedcontactstructure n B n ′ notisotopictoξthen L (B)={L }. χ(B) n,n − − ∗ ReflectingFigure1aboutther=0linedepictstheknotsdescribedhere. Moreover • L is loose and the knot L is non-loose and has Giroux torsion i along a torus parallel to the n,i ∗ boundaryofaneighborhoodofL . n,i • TheHeegaard-FloerinvariantsofallknotsinL (B)vanishexceptforL ,whichisnon- χ(B) n,n n,0 − − zero. (RecallL onlyexistsifξ isovertwistedandn≤m.) n,0 B • All knots in L (B), except possibly L if it exists, become loose after a single negative χ(B) n,n n,0 − − stabilization. • ThepositivestabilizationofL isL . n,i n+1,i Remark1.14. ThereisanamusingcorollaryofTheorems1.12and1.13. Consider the setL (B), r,t wherethetildeindicatesthatweareconsideringLegendrianknotsuptoisotopynotjustcontacto- e morphism(co-orientationpreservingandisotopictotheidentity).Thereisanaturalsurjectivemap L (B)→L (B). Whileitissuspectedthatthismapisnotinjectiveingeneral(thoughsometimes r,t r,t itis,forexamplewhentheambientcontactmanifoldisS3withitsstandardcontactstructure),itis e difficultto come byspecific non-injective examples. Inthe following paragraphwe show how to useTheorems1.12and1.13toconstructthefirstsuchexamples;thatis,exampleswhereoneknows thereisadifferencebetweentheclassificationLegendrianknotsuptoisotopyandtheclassification uptocontactomorphism(isotopictotheidentity). Wealsonotethatthisfactprovesthatthespace of contact structures on M has a non-trivial loop based at the contact structure considered in the theorem. 6 JOHNB.ETNYRE Under the hypothesis of Theorem 1.13, given the non-loose Legendrian L ∈ L (B) χ,i 0, χ(B) − − fromTheorem1.12andthenon-looseknotL ∈L (B)fromTheorem1.13weknowL ′ χ,i 0, χ(B) χ,i and L are contactomorphic by Theorem−1.12. But−notice that they cannot be Legendrian−iso- ′ χ,i topics−inceapositivestabilizationofL willresultinalooseknotwhileapositivestabilization χ,i − of L will yield a non-loose knot. (Recall stabilization is a well-defined operation and hence ′ χ,i Lege−ndrian isotopic knots cannot have different stabilizations.) Notice that this fact concerning stabilizationsdoesnotprohibitL andL frombeingcontactomorphic sinceacontactomor- χ,i ′ χ,i phismcanreversethesenseofsta−bilization.−(Toclarifythislaststatement,wenoticefromtheproof ofTheorem1.13thatL =−L . NowletN beastandardneighborhoodofaLegendrianknot ′ χ,i χ,i LandletN ⊂N beas−tandardn−eighborhoodofastabilizationofL.TheregionN\N =T2×[0,1] ′ ′ isabasicslice,see[24]moreonthisterminology,andthesignofthebasicsliceisdeterminedbythe signofthestabilization.Moreover,thesignofthestabilizationisalsodeterminedbytheorientation onL.ThuswhenconsideringacontactomorphismfromL to−L =L wegetaninduced χ,i χ,i ′ χ,i contactomorphism of their complements. Stabilizingone−will add−abasic s−lice to itscomplement and since the contactomorphism under consideration reverses the orientation on the underlying knotitwillreversethesignofthebasicsliceandhencethesenseofthestabilization. Wenoticethat thecontactomorphismofthecomplementsofL andL extendstoaco-orientationreversion ′ χ,i χ,i contactomorphismofthecomplementsoftheir−stabilizati−ons. Wealsonoticethatthisphenomena canonlyhappensince,asplanefields,ξand−ξareisotopicandtherotationnumbersoftheknots inquestionarezero.) (cid:3) RecallthattwoLegendrianknotswiththesameclassicalinvariantswilleventuallybecomeiso- topicaftersufficientlymanypositiveandnegativestabilizations.Tryingtounderstandexactlyhow manyisaninterestingquestion. Wehavethefollowingpartialresults. Proposition1.15. Let(B,π)beanopenbookdecompositionwithconnectedbindingofaclosed3–manifold M and let ξ be the contact structure it supports. Assume that ξ is tight and −B is not isotopic to B. B B (Here−B denotesB withthereversedorientation.) Considerthecontactstructureξ obtainedfromξ bya B fullLutztwistalongB. IfaknotL∈L(B)satisfies tb(L)−r(L)>−χ(B) thenitbecomeslooseafter 1(−χ(B)−tb(L))orfewerpositivestabilizations. 2 There is a similar statement for the case when B is isotopic to −B. In the next subsection we discussthe“geographyproblem”forLegendrianknotsandinparticularattheendofthesection wediscussthesignificanceofthisproposition. Remark 1.16. We notice that examining the proof of Propostion 1.15 allows one to drop the hy- pothesisthat−B isnotisotopictoB iftb(L)+r(L)6=−χ(B). (cid:3) 1.4. The geographyfor non-looseknots. LetK be aknot type on a contactmanifold (M,ξ). We havethemap Φ:L(K)→Z×Z:L7→(r(L),tb(L)). DeterminingwhichpairsofintegersareintheimageofΦiscalledtheLegendriangeographyproblem. The image if Φ is frequently called the Legendrian mountain range of K because in the case that ξ is the tight contact structure on S3 the image resembles the silhouette of a mountain range. This structurecomesfromthefactsthatwhenξisthetightcontactstructureonS3weknowthat(1)the imageissymmetric,(2)theThurston-Bennequininvariantisboundedabove,and(3)positiveand negativestabilizationsshowthatthepairs(m−k,n+l),wherek ≥0,|l|≤k,andl+kiseven,are intheimageif(m,n)is. (RecallthatforanyLegendrianknotLwemusthavethattb(L)+r(L)is odd,so(3)saysallpossiblepairsofpointsintheconewithwithsidesofslope±1andtopvertex (m,n) are realized by Legendrian knots that are stabilizations of the given knot.) For a general contactstructureweonlyhave(3)andifthestructureistight(2). OnceoneunderstandtheLegendriangeographyproblemforaknottypeKthentheclassifica- tionofLegendrianknotswillbecompletewhenoneunderstandsthepreimageofeachpairofin- tegers. DeterminingΦ 1(m,n)isknownasthebotanyproblemforK. Theweakbotanyproblemasked − ONKNOTSINOVERTWISTEDCONTACTSTRUCTURES 7 todetermineifΦ 1(m,n)isempty,finiteorinfiniteforeachpair(m,n). AsmentionedaboveifK − isahyperbolicknotandξistightthenthepreimageofany(m,n)iseitheremptyorfinite. If ξ is overtwisted then everypair of integers (m,n)for which m+n is odd is in the image of Φ. Thusthegeneralgeographyproblemisnotinterestingforovertwistedcontactstructuresandso weneedtorestrictourattentiontonon-looseknots. LetLnl(K)bethesetofnon-looseLegendrian knotsintheknottypeK. DeterminingΦ(Lnl(K))willbecalledtheLegendriangeographyproblem whenξisovertwisted,whichiswhatweconsiderfromthispointon. Similarlywhenwediscussthe weakbotanyproblemforovertwistedcontactmanifoldswewillonlybeconsideringthepreimage of(m,n)thatlieinΦ(Lnl(K))(sincebyTheorem1.4weknowthepreimagecontainsexactly1loose Legendrianknotifn+misoddandnoneifitiseven). We now summarize what we know about the geography problem for non-loose knots. First, Proposition1.1impliesthat(assumingtheknotunderconsiderationisnottheunknot!) theimage of Φ (when restricted to non-loose knots) is contained in the region shown in Figure 2. The four blacklinesl ,...,l ,arethelines 1 4 ±tb(L)±r(L)=−χ(Σ) (where allcombinations of ± areconsidered). The region is brokeninto 7 subregions, R ,...,R 1 7 asindicatedinthefigure,bythefourlines. TheregionsR areopenregions,whendiscussingthe i correspondingclosedregionswewillofcourseusthenotationsR . i tb l l 3 1 l l 4 R 2 1 R R 4 5 R 3 r R R 6 7 R 2 FIGURE 2. A non-loose knot mustmap tothe greyregionunder the mapΦ. The blacklines, labeledl ,...,l , breakthe greyregioninto7subregionsasindicated 1 4 inthefigure. TheregionsR areopenregions(thatisnotincludingthepointson i theblacklines). Question1. Cantherebeanon-looseknotwithimageinR orR ? 1 2 Whilewebelievetheanswertothisquestionislikely“yes”,itseemsfairlylikelythattheanswer tothenext,related,questionsis“no”. Question2. Cantherebea(m,n)∈R ∪R withΦ 1((m,n))infinite? 1 2 − 8 JOHNB.ETNYRE WeknowfromColin,GirouxandHonda[5]thatifyoufixatightcontactstructureonamanifold, a knot type and two integers, there are finitely many Legendrian knots in the given knot type realizingtheintegersastheirThurston-Bennequininvariantandrotationnumber. Thisseemsclose toprovingtheanswertothefollowingquestionis“yes”. Question3. GivenaknottypeKinamanifoldM arethereonlyfinitelymanyovertwistedcontactstruc- turesonM suchthatKcanhavenon-looserepresentatives? Infacttheanswertothisquestionwouldbe“yes”ifthefollowinggeneralquestionaboutLeg- endrianknotscouldbeansweredintheaffirmative. Question4. GivenaknottypeKinM isthereanumbernsuchthatifLisanyLegendrianrepresentative inanycontactstructureonM withtb(L)<nthenLdestabilizes? Of course this question is also very interesting if one first fixes the contact structure and then asksfortheintegern. IfthismorerestrictedquestionhadapositiveanswerthentheColin-Giroux- Hondaresultwouldimplythatforanyfixedtightcontactstructureξ onamanifoldM theLegen- drianknotsinagivenknottypeKwouldbe“finitelygenerated”,bywhichwemeantherewould beafinite numberofnon-destabilizableLegendrianknots inL(K)suchthatallother elementsin L(K)wouldbestabilizationsofthese. Thiswouldalsobetrueinovertwistedcontactstructuresup toLutztwistingalongtheknot. WethinkitisverylikelytheanswertothefollowingweakerversionofQuestion3is“yes”. Question5. GivenaknottypeK inamanifoldM arethereonlyfinitelymanyovertwistedcontactstruc- turesonM suchthatΦcanhaveinfinitepreimageatsomepoint?(Maybeevenatmosttwosuchstructures.) WiththenotationestablishedforFigure2wediscussProposition1.15. Thepropositionsaysthat ifLisaLegendrianrepresentativewithinvariantsintheregionR ∪R ,thenonceitispositively 1 4 stabilizedintoregionR orR itwillbeloose. Thisissurprisinggiventhataccordingtothebounds 5 3 giveninProposition1.1aknotwithinvariantsinR couldtheoreticallybestabilizedpositivelyan 4 arbitrarynumberoftimesandstaynon-loose. Acknowledgments: Theauthor thanksAmeyKolati, LennyNg, andBulentTosunforusefuldis- cussionsande-mailexchangesduringthepreparationofthiswork. HealsothanksThomasVogel foragreeingtoallowthe inclusion ofTheorem2.2thatheandthe authorworked outsome years ago. The author also thanks Hansjo¨rg Geiges and Mirko Klukas for interesting discussions con- cerning the classification of loose Legendrianknots. The author is also gratefulto the refereesof thispaperwhomadevaluablecommentsthathelpedclarifymanypointsinthepaper. Thiswork waspartiallysupportedbyNSFgrantDMS-0804820. 2. BACKGROUND CONCEPTS WeassumethereaderisfamiliarwithconvexsurfacetheoryandLegendrianknots, seeforex- ample [13, 16]. For convenience we recallsome of the keyfeaturesof Legendrianand transverse knots used in this paper in Subsection 2.1. In the following subsection we recall Eliashberg and Fraser’s classification of non-loose Legendrian unknots. We sketch a simple proof of this result thatT.Vogelandtheauthorhadworkedout,andobservetheimmediatecorollaryconcerningnon- loose transverse unknots. In Subsetction 2.3 we recall the definition of Giroux torsion and make severalobservationsnecessaryfor the proofsof our main results. In the last subsection we recall thenotionofquasi-convexityintroducedin[18]. 2.1. NeighborhoodsofLegendrianandtransverseknots. RecallthataconvextorusT inacontact manifold(M,ξ)willhaveanevennumberofdividingcurvesofsomeslope.Wecalltheslopeofthe dividingcurvesonaconvextorusthedividingslopeofthetorus. Iftherearejusttwodividingcurves then using the Legendrian realization principle of Giroux we can arrange that the characteristic foliation has two lines of singularities parallel to the dividing curves, these are called Legendrian divides, and the rest of the foliation is by curves of some slope not equal to the dividing slope. These curves are called ruling curves and their slope is called the ruling slope. Any convex torus withsuch acharacteristicfoliation willbesaid tobeinstandardform. Note thatgivenatorus in ONKNOTSINOVERTWISTEDCONTACTSTRUCTURES 9 standardformwecanperturbthefoliationtohavetwoclosedleavesparalleltothedividingcurves andtheotherleavesspiralingfromoneclosedleaftotheother. Theregularneighborhood theoremforLegendriansubmanifoldssaysthatgivenaLegendrian knotLinacontactmanifold(M,ξ)thereissomeneighborhoodN ofLthatiscontactomorphicto aneighborhoodN oftheimageofthex-axisinR3/(x 7→ x+1) ∼= S1×R2 withcontactstructure ′ ξ = ker(dz −ydx). Byshrinking N andN ifnecessarywecanassume thatN isa diskinthe std ′ ′ yz-planetimes the image of the x-axis. It is easyto see, using the model N , that ∂N is a convex ′ torus with two dividing curves of slope 1 where n = tb(L). Thus we can assume that ∂N is in n standardform. Moreover,noticethatL = {(x,±ǫ,0)}⊂ N isa(±)-transversecurve. Theimage ′ ± ofL inN iscalledthetransversepush-offofLandL iscalledthenegativetransversepush-off. One + − mayeasilycheckthatL iswell-definedandcomputethat ± sl(L )=tb(L)∓r(L). ± WenowrecallhowtounderstandstabilizationsanddestabilizationsofaLegendrianknotK in termsofthestandardneighborhood. Insidethestandardneighborhood N ofLwecanpositively ornegativelystabilizeL.DenotetheresultS (L),respectivelyS (L). LetN beaneighborhoodof + s − thestabilizationofLinsideN. AsabovewecanassumethatN hasconvexboundaryinstandard s form. Itwillhavedividingslope 1 .ThustheregionN\N isdiffeomorphictoT2×[0,1]andthe n 1 s contactstructureonitiseasilyseen−tobea“basicslice”,see[24]. Thereareexactlytwobasicslices withgivendividingcurvesontheirboundaryandastherearetwotypesofstabilizationofLwesee thatthebasicsliceN\N isdeterminedbythetypeofstabilizationdone,andviceversa.Moreover s ifN isastandardneighborhoodofLthenLdestabilizesifthesolidtorusN canbethickenedtoa solidtorusN withconvexboundaryinstandardformwithdividingslope 1 . Moreoverthesign d n+1 ofthedestabilizationwillbedeterminedbythebasicsliceN \N. d DenotebyS thesolidtorus{(φ,(r,θ))|r ≤ a} ⊂ S1×R2,where(r,θ)arepolarcoordinateson a R2 andφistheangularcoordinateonS1,withthecontactstructureξ = ker(dφ+r2dθ). Given cyl atransverseknotK inacontactmanifold(M,ξ)onemayuseastandardMosertypeargumentto showthatthereisaneighborhood N ofK inM andsome positivenumber asuchthat(N,ξ| )is ξ contactomorphictoS . Noticethatthetori∂S insideofS havelinearcharacteristicfoliationsof a b a slope −b2. Thusfor allintegerswith 1 < awe havetoriT = ∂S with linearcharacteristic √n n 1/√n foliationofslope−1.LetL bealeafofthecharacteristicfoliationofT . ClearlyL isaLegendrian n n n n curveinthesameknottypeasT andtb(L )= −n. AnyLegendrianLLegendrianisotopictoone n oftheL soconstructedwillbecalledaLegendrianapproximationofK. n Lemma2.1(Etnyre-Honda2001,[16]). IfL isaLegendrianapproximationofthetransverseknotKthen n (L ) istransverselyisotopictoK. Moreover,L isLegendrianisotopictothenegativestabilizationof n + n+1 L . (cid:3) n 2.2. Non-looseknotsinS3. Inthissectionwerecallthefollowingcoarseclassificationofunknots in overtwisted contact structures on S3. To state the theorem we recall that the homotopy class of a plane field ξ on M can be determined by computing two invariants [23]: the 2-dimensional invariant,whichisdeterminedbythespinc structures associatedtotheplanefield(ifH2(M;Z) ξ hasno2-torsionthens isdeterminedbytheEulerclasse(ξ)ofξ)andthe3-dimensionalinvariant ξ d (ξ). Inparticular,onthe3–spherethe2-dimensionalinvariantofaplanefieldvanishesandsoit 3 isdeterminedbyits3-dimensionalinvariantd (ξ)∈Z. 3 Theorem2.2(Eliashberg-Fraser2009,[11]). ThereisauniqueovertwistedcontactstructureξonS3that contains non-loose Legendrian unknots. This contact structure has d (ξ) = 1 and is shown in Figure 3. 3 EveryLegendrianunknotwithtightcomplementhastb > 0anduptocontactomorphismthereareexactly twosuchknotswithtb=n>1,theyaredistinguishedbytheirrotationnumberswhichare±(n−1),and auniquesuchknotwithtb=1. WeincludeabriefproofofthisresultthattheauthorworkedoutwithThomasVogelbutnever published. This is essentially the same as the proof in [11], though it is couched in somewhat differentlanguageandweidentifyasurgerypicturefortheminimaltbexampleinFigure3.Before giving the proof we notice two simple corollaries concerning transverse unknots and non-loose unknotsinothercontactmanifolds. 10 JOHNB.ETNYRE (+1) (+1) FIGURE 3. The two contact surgeries on the left give the contact structure ξ in Theorem2.2. ThedottedLegendrianbecomesaLegendrianunknotLwithtb = 1 inthesurgeredmanifold. ThediskLboundsisindicatedontheright. Corollary 2.3. Any transverse unknot in any overtwisted contact manifold is loose and hence coarsely determinedbyitsself-linkingnumber. Proof. Sinceanynon-looseLegendrianunknotcanbenegativelystabilizeduntilitisloose,Lemma2.1 impliesthatanytransverseunknotisthetransversepush-offofalooseLegendrian.Sincethetrans- verse push-off can be done in any C -neighborhood of the Legendrian knot it is clear that the ∞ overtwisteddiskinthecomplementoftheLegendrianisalsointhecomplementofthetransverse knot. Thus any transverse unknot in an overtwisted contact structure is loose. The rest follows fromTheorem1.5 (cid:3) Corollary2.4. Onafixed3-manifoldM withfixedspinc structuresthereisanovertwistedcontactstruc- turehavingnon-looseunknotsandassociatedspincstructuresifandonlyifthereisatightcontactstructure onM withassociatedspinc structures. Moreover,thenumberofsuchovertwistedcontactstructureassoci- atedtosisequaltothenumberoftightcontactstructuresassociatedtos. Proof. Let U be an unknot in M and U be an unknot in S3. The unique prime decomposition ′ of tight contact manifolds [2] implies that any tight contact structure on M \U comes fromtight contactstructuresonM andS3\U . Theresultfollows. (cid:3) ′ Wenowturntotheclassificationofnon-looseunknotsinS3. ProofofTheorem2.2. Letξ beanyovertwisted contactstructureonS3 andLa Legendrianunknot in(S3,ξ). WecandecomposeS3as S3 =V ∪ V 1 φ 2 whereV =S1×D2andφ:∂V →∂V isthemapgivenby i 1 2 0 1 φ= (cid:18)1 0(cid:19) in meridian-longitude coordinates on each ∂V . Moreover we can assume that V is a standard i 1 neighborhood of L with convex boundary having dividing slope 1/n where n = tb(L). If we assumethecomplementofListightthenthecontactstructureonV istight(ofcourse,thecontact 2 structure on V is alwaystight). The boundaryof V is convex and has dividingslope n. Clearly 1 2 L,uptocontactomorphism, isdeterminedbythe contactstructureonV . In[21,24]tightcontact 2 structuresonsolidtoriwereclassifiedandthisleadstothefollowingpossibilitiesfortightcontact structuresonV . Ifn<0thenthereareprecisely|n|distincttightcontactstructuresonV withthe 2 2 givendividingcurvesontheboundary.Allofthecontactstructuresarerealizedasthecomplement of a tb = n, Legendrian unknot in the standard tight contact structure on S3. Thus they never showupasthecomplementofanunknotinanovertwistedcontactstructure. Ifn =0thenV has 2 dividingslope0andhencethecontactstructuremustbeovertwisted.Thusn6=0ifthecomplement of Lis tight. Finally, if n > 1 thentherearetwotight contactstructureson V andonly one tight 2 contact structure on V when n = 1. Thus we have shown there is a unique Legendrian knot in 2 anovertwistedcontactstructureonS3 thathastb = 1andthereareatmosttwowhentb > 1. We arelefttoshowthatthesealloccurinthesamecontactstructure,thatcontactstructurehasd = 1 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.