ebook img

On High-Contrast Characterization of Nearby, Short-Period Exoplanets with Giant Segmented-Mirror Telescopes PDF

0.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On High-Contrast Characterization of Nearby, Short-Period Exoplanets with Giant Segmented-Mirror Telescopes

Astronomy&Astrophysicsmanuscriptno.aa (cid:13)c ESO2013 January25,2013 On High-Contrast Characterization of Nearby, Short-Period Exoplanets with Giant Segmented-Mirror Telescopes IanJ.M.Crossfield Max-PlanckInstitu¨tfu¨rAstronomie,Ko¨nigstuhl17,69117,Heidelberg,Germany e-mail:[email protected] A&AAccepted,24.Jan2013. ABSTRACT Measurementsofthefrequencywithwhichshort-periodplanetsoccuraroundmainsequencestarsallowsadirectpredictionofthe 3 numberandtypesofsuchplanetsthatwillbeamenabletocharacterizationbyhigh-contrastinstrumentsonfuturegiantsegmented- 1 mirrortelescopes(GSMTs).Adoptingconservativeassumptions,Ipredictoforder10planetswithradiiR “1´8R andequilibrium 0 P C temperatures(cid:46) 400Kshouldbeaccessiblearoundstarswithin8pcoftheSun.Thesenumbersareroughlythesameforbothnear- 2 infraredobservationsofscatteredstarlightandmid-infraredobservationsofplanetarythermalemission,withthelatterobservations n demonstratinggreaterrelativesensitivitytosmallerandcoolerplanets.AdoptingtheconservativeassumptionthatplanetswithR “ P a 1´2R and2´4R occurwithequalfrequency,Ipredicta40%chancethataplanetwithR “1´2R andequilibriumtemperature C C P C J 200–250Kwillaccessibletohigh-contrastthermalinfraredcharacterization;thiswouldbeacompellingobjectforfurtherstudy.To 4 validatethesepredictions,moredetailedanalysesareneededoftheoccurrencefrequenciesoflow-massplanetsaroundMdwarfs,both 2 intheKeplerfieldandinthesolarneighborhood.Severalplanetsalreadydiscoveredbyradialvelocitysurveyswillbeaccessibleto near-infraredhigh-contrastGSMTobservations,includingthelow-massplanetsαCenBband(dependingontheiralbedos)GJ139c ] andd,GJ876bandc,andτCetb,c,andd;τCetfwouldbeamenabletothermalinfraredcharacterization.Furthereffortstomodel P thenear-infraredreflectanceandmid-infraredemissionoftheseandothershort-periodplanetsareclearlywarranted,andwillpave E thewayfortheinterpretationoffuturehigh-contrastcharacterizationofavarietyofplanetsaroundtheneareststars. . h Key words. Planets and satellites: general — Planets andsatellites: detection — Instrumentation: adaptive optics — Techniques: p highangularresolution—Methods:numerical - o r t 1. Introduction fluxesmaketheseplanetsthemostamenabletoremotecharac- s a terizationoftheiratmosphericand/orsurfacecompositions. [ In recent years much effort has been devoted to preparing A 1.1 Earth-mass (M ) planet candidate has been announced C for observations of potential Earth analogues transiting cool M 1 around α Centauri B (Dumusque et al., 2012), and a family v of five candidates with minimum masses 2–10M has been dwarf using, e.g., JWST (Deming et al., 2009; Kaltenegger & C 4 announced around τ Ceti (Tuomi et al., 2012). If confirmed, Traub, 2009). However, because even short period planets are 8 unlikely to transit, the nearest accessible transiting planets will the discovery of so many low-mass planets around stars very 8 be around rather fainter, more distant stars. The durations of neartheSunwouldbeastrongsignthatsuchplanetsarecom- 5 these transits will be short and their signal to noise low, so mon. Such a conclusion would be consistent with early results 1. from the Kepler mission, which indicate that the frequency of tens or hundreds of observations will be necessary for signifi- 0 planet candidates increases sharply toward smaller planetary cant atmospheric measurements. Phase curve observations pro- 3 radii(R (cid:46) 4R )fororbitalperiods P ă 250d(Howardetal., vide higher duty cycles and may be able to characterize small, P C 1 non-transitingplanetsaroundstarsclosertotheSun(Selsisetal., 2012;Dong&Zhu,2012;Fressinetal.,2013).TheseKeplerre- : 2011; Maurin et al., 2012). Spacecraft capable of making such v sultsalsosuggestadramaticincreaseinthefrequencyofsmall measurements have been proposed (e.g., Vasisht et al., 2008; i planets(radiiR “2´4R )orbitingcoolerstars(Howardetal., X P C Swain, 2010; Tinetti et al., 2012), but these observations will 2012).Becausesuchstarsaremorenumerousthansun-likestars, r there should be many such planets in the Solar neighborhood. require extremely stringent spectrophotometric stability (better a than10´4overperiodsofdays).Consideringthesevariouslimi- BecausemostoftheseplanetsorbitMdwarfs,theirequilibrium tations,itisreasonabletoexplorealternativemodesofexoplan- temperaturesT arequitecool:typically200–400K. eq etarycharacterization. Theprospectofnumeroustemperate,small,low-massplan- In this paper I present the first quantitative estimates of ets orbiting nearby stars is an exciting one. Such planets may thelocalexoplanetpopulationaccessibletoground-basedhigh- lieintheirhoststars’“habitablezones”andbecapableofsup- contrastobservations,andadiscussionofhowsuchobservations portingliquidwateronanysolidsurface(Huang,1959;Kasting candirectlyconstrainthedemographicsofthelocalplanetpop- et al., 1993; Pierrehumbert & Gaidos, 2011). These planets ulation. Though it has been appreciated for at least a decade around nearby stars are also the only ones for which in situ that the next generation of ground-based giant segmented- exploration could be even remotely feasible in the foreseeable mirror telescopes (GSMTs) can characterize small, cool plan- future (e.g., Crawford, 2011, and references therein). For now, etsviasuchobservations(Angel,2003;Hawardenetal.,2003), theproximityofnearbysystemsandtheirattendanthighphoton Kepler’sabilitytomeasureplanetfrequencyasafunctionof P, 1 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets RP,andstellareffectivetemperatureTeffwithunprecedentedpre- sion. Such a homogeneous stellar characterization effort would cisionpermitsthefirstinformedestimateofthenumberofshort- behighlydesirable,andwouldreducetheneedfortheassump- periodplanetsthatwillbeaccessibletofuturelarge-aperturefa- tionsaboutstellarparametersdescribedabove. cilities. Sec. 2 discusses simulations of statistically representative 2.2. ModelingtheLocalExoplanetPopulation planetary systems around nearby stars and an assessment of high-contrast GSMT instruments’ ability to characterize these I estimate the distribution of the local exoplanet population us- planets.Sec.3thenpresentsthenumberofplanetsaccessibleto ingananalysisofplanetfrequencyasafunctionofTeff, P,and suchcharacterizationundervariousassumptionsofplanetaryoc- R from the Kepler planet candidate sample derived from the P currencefrequencyandinstrumentalcapabilities,anddiscusses firstthreequartersofKeplerobservations(Boruckietal.,2011; the consequences of these assumptions. The main results are Howardetal.,2012).Althoughthesefrequenciesarecomputed summarizedinTable1.Inbrief,oforder10planetsarepredicted forplanetcandidatesandnotfullyvalidatedplanets,theoccur- to be amenable to such characterization at either near-infrared rence of false positives in the sample is below 15% (Morton & (NIR,ă 2.5µm)ormid-infrared(MIR,„ 10µm)wavelengths, Johnson,2011;Fressinetal.,2013).Furthermore,planetcandi- andthisnumbervariesbynomorethanafactorof2underrather dates with radii R “ 2´4R (the targets most accessible to P C moreoptimisticorpessimisticassumptions.Inaddition,thereis high-contrastcharacterization)haveacontaminationfractionof significant likelihood (at least 40%, and probably „4ˆ higher) ă 7%(Fressinetal.,2013).ThustheKeplerfalsepositiverate that such observations will be able to characterize an Earth or hasatmostaminoreffectontheresultspresentedhere. Venusanalogue(RP “ 1´2RC,Teq “ 200´250K).Finally, Hot Jupiters are only half as frequent in the Kepler sample I summarize the results of this work and suggest useful future as observed by radial velocity surveys (Howard et al., 2012). workinSec.4. Theauthorsattributethisdiscrepancytothelowermetallicityof theKeplersample,underwhichconditionsfewermassiveplan- ets should be expected (Santos et al., 2004; Fischer & Valenti, 2. Methods 2005).Ifthisdiscrepancyisconfirmed,thenthesimulationspre- sented here underestimate the frequency of large planets by as 2.1. DefiningtheLocal,ObservableStellarPopulation muchasafactorof2;theseplanetsareintrinsicallyrare,sothis To construct an observable sample of nearby stars, I take the is a small effect. The frequency of Neptune-mass and smaller 8pc sample of Kirkpatrick et al. (2012) and remove all white planetsdependslessstronglyonstellarmetallicitythandoesthe dwarfsandspectraltypeslaterthanM7(toavoidbrowndwarfs). frequencyofJupiter-massobjects(Sousaetal.,2008;Buchhave Whiteandbrowndwarfsmayhavelowmassplanets,andthese et al., 2012); since I show below that smaller planets comprise planetscouldevenbetemperate(Andreeshchev&Scalo,2004; the bulk of the planet population accessible to high-contrast Monteiro,2010),butatpresentthefrequencyofplanetsinsuch characterization,differencesbetweentheKeplerandlocalstellar systemsremainsverypoorlyconstrained.Becausehigh-contrast populationsshouldnotstronglyaffecttheseresults(thisassump- observations have difficulty attaining the contrast necessary for tionwillbetestedinthefuturebyhigh-precisionradialvelocity planet characterization in the presence of nearby bright point surveys). sources (mitigation strategies exist but require customized in- IbeginbydeterminingthefrequencyofplanetsofgivenR P struments;seee.g., Creppetal.,2010;Cadyetal.,2011),Ire- for each star, based on its Teff. I assume that binary stars have move all known binaries with apparent separations (cid:46) 5”. Stars planetfrequenciesconsistentwiththoseofsinglestars,andthat with fainter companions (e.g., Procyon A and Sirius A) are re- 4´8R and8´32R planetsoccurwithfrequenciesof1.7% C C tained.ForobjectslistedbyKirkpatricketal.(2012)witharange and 0.79%, respectively (see Figure 8 of Howard et al., 2012). ofspectraltypes,Itakethemeanofthespecifiedrange.SomeM For 2 ´ 4R planets, I compute a frequency using Eq. 9 of C dwarfsarelistedwithoutanyspectraltype,andfortheseItake Howardetal.(2012),whichwasdefinedusingTeff intherange thespectraltypesspecifiedbyRojas-Ayalaetal.(2012).Thefi- 3600–7100K.IextendthisrelationtolowerandhigherTeff by nallistcontains92,20,6,2,and4starsoftypesM,K,G,F,and assumingthatbeyondthespecifiedrangethefrequencydistribu- A,respectively. tionofplanetsisuniformandeverywherecontinuous.InSec.3.2 Accurate stellar parameters are not known for all these ob- I quantify the effect of this assumption. Howard et al. (2012)’s jects, so I adopt a homogeneous approach and assign Teff and planet statistics are incomplete for RP ă 2RC, but their results stellarradiiusingempirical,interferometrically-determinedval- suggest 1´2R planets are at least as common as 2´4R C C ues (Boyajian et al., 2012a,b) for each spectral type. Apparent planets. I conservatively assume that planets in these two size V-band magnitudes are taken from the UCAC4 Catalogue rangesoccurwithequalfrequency,consistentwithmorerecent (Zachariasetal.,2012),convertedtoabsoluteVmagnitudesus- analyses(Dong&Zhu,2012;Fressinetal.,2013).Throughout ing the parallax values in Kirkpatrick et al. (2012), and con- thiswork,Iassumeauniformdistributionofplanetsizeswithin verted to stellar masses using the mass-luminosity relationship eachoftheR rangesnotedabove. P ofHenry&McCarthy(1993);usingtheKbandrelationshipof Theprecedingstepsdeterminethenumberofplanetsofvary- Delfosseetal.(2000)affectsthemassesthusderivedbyroughly ing R expected around a given star for P ă 50 d. In each of P 15%,butthisdoesnotsignificantlyaffectmyresults.Finally,a 104 trials I assign to each star either no planet or a planet in BT-Settlstellarmodel(Allardetal.,2011)isgeneratedbyinter- one of the four R bins listed above, with the appropriate fre- P polatinginloggandTeff tothestellarparameters,andaccount- quencies.IthenassumethatPineachradiusrangefollowsthat ingforthestar’ssizeanddistancefromtheSun. givenbyEq.8andTable5ofHowardetal.(2012).Thoughtheir Note that this 8 pc sample is sufficiently small that high- planet population statistics are limited to P ă 50 d, even over qualityspectracouldbeobtainedforallthesetargetswithrela- thissmallrangethefrequencyofplanetsincreasesinlnPspace tiveease.Spectraatlowresolutionwouldprovideausefulabso- for P ą 10 d. I conservatively assume that planet frequency is lutefluxcalibration,andspectraathighresolutionwouldpermit flat for P ą 50d (see also Dong & Zhu, 2012). Letting planet stellar parameters and abundances to be derived at high preci- frequencyincreasetowardlongerperiodsonlyslightlyincreases 2 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets the number of accessible planets, because the planets most ac- rors, sensed via a Mach-Zehnder pupil plane wavefront sensor. cessibletohigh-contrastcharacterizationlieonshort-periodor- The wavefront sensing and science wavelengths are assumed bits(seeSec.3.2).Futurestudiesshouldcharacterizeplanetfre- to be identical to minimize chromatic contrast errors (Guyon, quency at longer orbital periods (this is a primary goal of the 2005).The relationsusedcompute rawcontrast andnotthe ef- Kepler mission) and should explore the dependence of planet fectivecontrastlimitsfordetection;Ithereforeassumethatob- frequencyonTeff ingreaterdetail. servationalandpost-processingtechniquescansuppressthein- The result of this process is a planet population that pro- stantaneous PSF contrast by a factor of 30 at all angular sepa- vides a direct estimate of the frequency of planets with R and rations;currenttechniques achievesuppressionfactorsof20 to P P around each star in the 8 pc sample. Planetary systems may severalhundredatseparationsassmallas4.5λ{D(Maroisetal., be more diverse than predicted by this simple model: for ex- 2008;Creppetal.,2011;Vogtetal.,2011),sothevalueassumed ample, the M dwarf GJ 876 has multiple massive planets (e.g., here may be somewhat conservative. Finally, following Lunine Baluev,2011)whileshort-periodplanetsofevenverylowmass et al. (2008) I impose an absolute contrast floor of 5 ˆ 10´9 have been excluded around the low-mass Barnard’s Star and in all cases. The result is a simulation of high-contrast perfor- Proxima Centauri (Endl & Ku¨rster, 2008; Zechmeister et al., mance with the phenomenologically correct dependencies on 2009; Choi et al., 2012). Nonetheless the modeling approach wavelength,telescopesize,stellarflux,andotherparameters2. described above has the advantages of being relatively simple In these performance estimates I also crudely account for andofprovidingestimatesacrossabroadrangeofplanetaryand the effect of finite stellar sizes, which are significant for sev- stellarparameterspacethatdecentlyapproximatetheplanetde- eralofthenearestandlargeststars.Forexample,bothαCenA mographics presented by Howard et al. (2012). Future efforts andSiriusAhaveangulardiametersθ “ 8mas,comparableto shouldstrivetoquantifyplanetfrequencyoverasbroadarange the diffraction-limited angular resolution (λ{D) of a 30m tele- aspossibleofTeff,P,andRPtoobviatetheneedforsomeofthe scopeobservingat1.2µm.Resolvedsourcescausetheeffective assumptionsmadeabove. throughput of high-contrast observations to decrease markedly at the smallest separations (Guyon et al., 2006), though the attainable contrast is not adversely affected for proper choice 2.3. EstimatingHigh-ContrastInstrumentPerformance of coronagraph or other starlight suppression system (Crepp Adaptiveoptics(AO)systemsdesignedtoprovideveryhighim- etal.,2009).Iapproximatethedeleteriouseffectsoffinitestel- age quality are often termed “high contrast” systems, a name larsizebyimposingaminimuminnerworkingangle(IWA)of which emphasizes their sensitivity to faint objects located near p2.2`0.4log10rθpλ{Dq´1sqλ{D,arelationwhichapproximates much brighter ones; see Oppenheimer & Hinkley (2009) and the 50% throughput limit of an ideal coronagraph operating at Mawetetal.(2012)forrecentreviewsonthistopic.Atleastone 10´10 contrast (Guyon et al., 2006). This minimum separation high-contrastsystemisalreadyoperatingon-skyatthe5mHale increasesforlargerθ,moreextremecontrastlevels,andlessop- telescopeandreachingcontrastlevelsof„10´7 (Oppenheimer timal coronagraph designs. In this work finite stellar size only etal.,2012),andevenmorecapableinstrumentsareundercon- affectsafewstarsystems(thosewiththelargestθ),andonlyin struction for existing 8m telescopes (Macintosh et al., 2006a; the2λ{DIWAcasedescribedinSec.3.3.1.Futurehigh-contrast Beuzitetal.,2006).End-to-endsimulationsandtestingofthese observationsprobingnearorwithin1λ{D(Serabynetal.,2010) latter instruments suggest they may reach final contrasts of shouldconsidertheseeffectsingreaterdetail. roughly 10´8 (Mesa et al., 2011; Thomas et al., 2011; Wildi etal.,2011).Atthislevelofperformance,short-periodexoplan- 2.4. EstimatingtheObservabilityofShort-PeriodPlanets etswilllikelyremainbeyondthereachofsuchinstruments(see Sec.3.3.1). I assess the accessibility of each simulated planet to high- The next generation of GSMTs will have diameters rang- contrastobservationsbyconsideringbothscatteredstarlightand ing from 25m (GMT; Johns, 2008) to 30m (TMT; Nelson & thermalemissionfromtheplanet.Iassumethatallplanetswill Sanders,2008)to39m(E-ELT;Gilmozzi&Spyromilio,2007), be observed at quadrature, since radial velocity measurements andallareprojectedtorelyheavilyonAO-assisted,diffraction- will allow optimal phasing of most interesting targets. I fur- limitedobservationstomaximizethesciencegainsofthesenew ther assume that all planets are on circular orbits and exhibit facilities. High-contrast NIR instruments have been proposed Lambertianscatteringprofiles,andthattheobservatorycanob- and studied for all these telescopes (Macintosh et al., 2006b; serve all stars in the target sample (under currently published Matsuo & Tamura, 2010; Brandl et al., 2010; Kasper et al., plansGSMTswillbelocatedinbothhemispheres). 2010).Theseinitialstudiessuggestthatwithmoderateandrea- I assign a Bond and wavelength-independent geometric sonabletechnologicaladvances,suchinstrumentswillbesensi- albedo (A and A , respectively) to each planet by drawing a B g tive to objects at separations and contrast levels unprecedented value from a uniform random distribution spanning 0.0–0.4, a foroptical/infraredtelescopes. rangewhichisaroughlyrepresentativeforsolarsystemplanets High contrast instruments generally require highly special- (seealsoHuetal.,2012).AlthoughA andA describedifferent B g izeddesignstoachievetheirgoals,andtheirperformancevaries physical quantities (A determines the strength of scattering at g across different targets, telescopes, and wavelengths. I estimate agivenwavelength,whileA determinesaplanet’sequilibrium B the performance of a generic GSMT high-contrast instrument temperature T , and thus its thermal blackbody emission; see eq using the analytic relations of Guyon (2005) and adopting the e.g.,Seager,2010),forsimplicityIusethesamevalueforeach parametersinTable4ofthatworkunlessnotedotherwise(vari- planet’sA andA .Thisequalityholdstowithinafactoroftwo B g ationsofinstrumentparametersarediscussedinSec.3.3)1.The for planets in the Solar System. At NIR wavelengths most ob- instrument is assumed to correct both phase and amplitude er- servableplanetsinthesimulationsbelowareonlyaccessiblein 1 Note that Eqs. 16 and 17 of Guyon (2005) contain an error: the 2 A Python software module used to calculate these quantities is coefficient0.484shouldbe0.0484(O.Guyon,privatecommunication, availablefromtheauthor’swebsite,located(asofpublication)athttp: Jan2013). //www.mpia.de/homes/ianc/ 3 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets reflected light, so higher or lower albedos will respectively in- 10-3 ctlherneeagestffheseo.crTtodiseecraercevhaesrpeselatdhneefotsrIizoaeblssooefravtshasetiigoanncscaeahstsetiahbtelerrempdaliaslntirenitbfrupatorieopdnulwfaataicovtone-r; 10-4 8421−−−−38422RRRREEEE 2><032000−0030KK0K (f; Seager, 2010) drawn from a uniform random distribution st 10-5 spanningtherange(0.25,0.66),wheretheextremaofthisrange ntra respectively indicate zero and full redistribution of the incident o 10-6 C stellarflux.Theredistributionfactordoesnotsignificantlyaffect ar thedetectabilityofplanetsinreflectedlight,butwouldaffectthe et/st 10-7 thermalinfraredobservationsdescribedinSec.3.3.2. n a UsingA , f,andthephysicalsystemparametersIthencom- Pl 10-8 B puteT foreachplanet,andIassumethattheplanetradiatesas eq ablackbodywiththistemperature.Finally,theplanettostarflux 10-9 contrastinagivenbandpassistheratioofthesumoftheplanet’s reflected and thermal photon flux to the photon flux from the 10-1100-2 10-1 100 host star. The planet is assumed to be observable if its contrast Separation [arcsec] liesabovethesensitivitylimitscomputedinSec.2.3. Fig.1 SimulatedplanetpopulationsforαCenBinthebaseline 3. SimulationResults scenario outlined in Sec. 3.1, observing at 1.2µm with an in- strument similar to TMT/PFI or TMT/SEIT. Planets above and InthissectionIdiscussthelocalpopulationofplanetsaccessible to the right of the dashed line would be accessible to high- to characterization by high-contrast observations under a num- berofdifferentassumptionsaboutplanetpopulationparameters contrast spectroscopic characterization. The star symbol indi- catesαCenBb(assumingaradiusof1.1R ).Eachcircle’ssize and instrumental configurations. I begin by presenting a set of C andcolorreferstoasimulatedplanet’sR andT ,asindicated baselineastrophysicalandobservationalparametersinSec.3.1. P eq Sec. 3.2 discusses the effects of varying the parameters of the inthelegend.Mostofthesimulatedplanetsshownaredetected inscatteredstarlight,thoughthermalemissioncontributestothe localplanetarypopulation,andSec.3.3discussestheimpactof shortest-periodplanets(includingαCenBb). various telescope and instrument design choices. For all cases discussed,thenumberofplanetsofvariousR andT accessi- P eq bletohigh-contrastcharacterizationislistedinTable1. 10-3 8 32R 3T.h1e.bBaasseelilnineeoSbsceernvaartiioonal parameters are a 30m telescope ca- 10-4 421−−−−842RRREEEE 2><032000−0030KK0K pableofobservingdowntoanIWAof3λ{D:thisinstrumentis ast 10-5 analogoustoTMT’sPFIorSEITinstruments(Macintoshetal., ntr 2006b;Matsuo&Tamura,2010),butwithbetterwavefrontsen- ar Co 10-6 stioornpmerifdowrmayanbceetw.Tehenistbhaes2e5linmeGcaMseTparonvdid3e9smanEa-EngLuTl.aIrardesoopltua- et/st 10-7 n baselineobservingwavelengthof1.2µm(Jband),wherefuture Pla 10-8 AOsystemsshouldachievegoodcorrectionandwhichprovides good angular resolution. Observations at J band are also inter- 10-9 estingbecauseoftheirpotentialtodescrythe1.27µmO band 2 10-10 expected in oxygen-rich planetary atmospheres (e.g., Turnbull 10-2 10-1 100 et al., 2006; Kawahara et al., 2012). In terms of astrophysical Separation [arcsec] parameters, the baseline scenario assumes that 1 ´ 2R and C 2 ´ 4R planets occur with equal frequencies (as described C Fig.2 SameasFig.1,butfortheMdwarfGJ876.Fromleftto inSec.2.2,thismaybeaconservativeunderestimate),andthat right,thestarsymbolsanderrorbarsshowthecontrastexpected planet frequency is flat in lnP space for P ą 50 d (the longest forplanetsc,b,andeovertherangeofalbedosandrecirculation periodsconsideredbyHowardetal.,2012). parametersdescribedinSec.2.4.Planetsbandcwillbeaccessi- Fig. 1 shows a representative planet sample and the com- bletocharacterizationinscatteredlightifA pR {R q2 (cid:38)19and putedsensitivitylimitsasappliedtoαCenB.Itisnotablethat g P C 6,respectively. the recently discovered low-mass planet candidate α Cen Bb (Dumusqueetal.,2012)presentsacontrastof10´7 andisemi- nentlyobservableinthisbaselinescenario(assumingaradiusof 1.1RC,obtainedbyconvertingmsinitoRPviaEq.1of Lissauer Ag (cid:38) 0.4),andtheplanetcandidatesτCetb,c,anddcouldbe et al., 2011). A simulation of the GJ 876 system is shown in characterizedforA pR {R q2 (cid:38)0.08,0.4,and1.2,respectively g P C Fig. 2; despite the worse contrast achieved on this fainter star, (A ą0.04,0.14,and0.35).Theoreticaleffortstomodelallthese g themassiveplanetsGJ876bandc(Delfosseetal.,1998;Marcy planets’NIRreflectanceareclearlywarranted. et al., 1998, 2001; Baluev, 2011) can be directly characterized The number of accessible planets in this baseline scenario if A pR {R q2 (cid:38) 19 and 6, respectively (A (cid:38) 0.02, with radii are shown in Fig. 3 as a function of T and R , and these re- g P C g eq P estimatedasdescribedpreviously).Thoughnotshown,thecur- sults are summarized in the first row of Table 1. In all results I rentlyknownplanetsGJ139candd(Pepeetal.,2011)canalso sorttheplanetsbysize(intherangesdescribedpreviously)and becharacterizedifA pR {R q2 (cid:38)0.9and1.8,respectively(i.e. according to whether T is below, within, or above the range g P C eq 4 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets appearsthatthisrelationdoesnotapplytoR ă2R ;nonethe- P C less, Table 1 shows that approximately equal numbers of plan- etsinthetwosmallestsizerangeswouldbeaccessibletochar- acterization if the trend held to smaller radii (i.e., if Kepler’s completeness is significantly overestimated for R ă 2R ; P C Howard et al., 2012; Dong & Zhu, 2012; Fressin et al., 2013). However, because the smaller planets must be closer to their hoststarstopresentthesamecontrastratioasthelargerplanets, theadditional1´2R planetshaveratherwarmertemperatures C (T „400K)thanthebaselinepopulation. eq Mybaselinescenarioconservativelyassumesthatplanetfre- quencyflattensoutfor P ą 50d,consistentwithrecentresults usingadditionalKeplerdata(Dong&Zhu,2012).Arecentanal- ysis of the first six quarters of Kepler data extends planet fre- quencyestimates(Dong&Zhu,2012).Thatworkindicatesthat the frequency of planets in lnP space for P ă 250 d appears flat for R ă 4R , but continues to increase for larger plan- P C ets; this is consistent with radial velocity surveys, which show that the frequency of massive planets continues to increase out to2000d(Cummingetal.,2008).Iinvestigatetheimpactmore Fig.3 Predictednumberofplanets(asafunctionofR andT ) frequentplanetoccurrenceonlongerperiodsbylettingHoward P eq expectedtobecharacterizedinthebaselinehigh-contrastGSMT etal.(2012)’splanetfrequencyrelationsincreaseatlongerperi- observingscenariooutlinedinSec.3.1.Thecolorsandthesmall ods (instead of arbitrarily flattening the distributions). Table 1 numbers in each cell both indicate the expectation value for shows that compared to the baseline scenario, two additional that combination of R and T , and the histograms show the planets (one each with sizes 4 ´ 8R and 8 ´ 32R ) would P eq C C marginalizeddistributions.Notethatthebaselinescenariosimu- be accessible to high-contrast characterization in this scenario. latedhereconservativelyassumesthatplanetsinthetwosmallest Because these additional planets occur on longer periods, they R rangesoccurwithequalfrequency(seeSecs.2.2and3.2). arerathercooler(T ă200K)thanthebaselinepopulation. P eq Perhaps the least conservative assumption in my baseline 200–300 K (a range which corresponds crudely to the Teq of scenario is the decision to assign planets to stars with Teff ă Mars and a low-albedo Venus). Fig. 3 shows that the planets 3600 K, below the range explored by Howard et al. (2012). detected in the baseline scenario typically have T ă 400 K Large-scale radial velocity campaigns have been conducted for eq and RP ă 4RC: these planets are visible mainly via scattered afewsuchstarsandhavefoundnoplanetsdownto„10MC in starlight and not intrinsic thermal emission. Although Howard short periods (e.g. Proxima Centauri and Barnard’s Star; Endl et al. (2012) show that planets with R ă 4R are most fre- & Ku¨rster, 2008; Zechmeister et al., 2009; Choi et al., 2012). P C quently found around cooler stars, I find that few planets or- Table 1 shows that even if all cool stars have zero planets, biting M dwarfs are accessible at distances (cid:38)3.5 pc as a result roughlyfiveplanetswouldstillremainforfuturestudies. of these stars’ intrinsic faintness, and the consequent degrada- tionofachievablecontrast.Finally,Iestimatea6%chancethat The immediately preceding assumption is of course overly in this baseline scenario an Earth/Venus analogue (1 ´ 2R , C pessimistic, since planets with msini ą 10M have been dis- T “ 200´250K)canbeobserved.Thisprobabilityislikely C eq coveredaroundanumberofMdwarfs(e.g.,Butleretal.,2004; an underestimate for the reasons described in Sec. 2.2; such a Bonfilsetal.,2005,2007,2012).Furthermore,asystematicra- planetwouldmostlikelybefoundaroundProxima Centaurior Barnard’s Star. The probability increases to ą 50% when con- dial velocity survey of a large number of cool (Teff ă 3600 K) hasrecentlyindicatedaplanetoccurrencefrequencyofroughly sidering planets with R “ 1´4R ; these temperate planets P C 90%formsini“1´100M ,Pă100d(Bonfilsetal.,2013). alsomostlikelytobefoundaroundnearbyMdwarfs. C UsingtheplanetpopulationstatisticsreportedinTable11ofthat survey(insteadofextendingtheHowardetal.,2012frequencies) 3.2. AbilitytoQuantifytheLocalExoplanetaryDemographics for stars with Teff ă 3600 K, I predict numbers and types of planetsamenabletohigh-contrastcharacterizationnearlyidenti- Several assumptions were made in Sec. 2.2 to extrapolate the caltothatpredictedbythebaselinescenario(seeTable1).Inthis KeplerpopulationstatisticsofHowardetal.(2012)tolongeror- simulationIassumelog-uniformfrequenciesof2.7%and3%for bitalperiodsandcoolerstars,andinthissectionItesttheeffects planetswith102´103and10´102M ,respectively,whilethe C of these assumptions. The results of these tests are all listed in leastmassiveplanets(1´10M )havefrequenciesof36%for C thesecondsectionofTable1. P“1´10dand52%forlongerperiods.IconvertmsinitoR P Howardetal.(2012)findroughlyequaloccurrencefrequen- asinSec.3.1(Lissaueretal.,2011),andimposeamaximumra- cies for 1´2RC and 2´4RC planets. The baseline scenario diusof1.3RJ.Thecloseagreementbetweenthissimulationand describedinSec.3.1conservativelyassumesthat2´4RCplan- thebaselinescenarioofSec.3.1hintsthattheresultsofHoward ets and 1 ´ 2RC planets occur with equal frequency, an as- et al. (2012) and Bonfils et al. (2013) are consistent for small sumptionalsoconsistentwithmorerecentresults(Dong&Zhu, planetsorbitinglow-massstarsunderfairlysimpleassumptions. 2012;Fressinetal.,2013).Forlargerradii,Howardetal.(2012) Aconclusivetestofsuchaclaimis,however,beyondthescope find a planet frequency 9R´2 (around sun-like stars). It now ofthiswork. P 5 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets 3.3. EffectsofInstrumentalCapabilities bothdecrease.Nonetheless,Table1suggeststhatseveralplanets shouldexistwhichareaccessibletocharacterizationacrossfrom In this section I examine how the accessible exoplanet popula- at least 1´2.2µm. The number of Earth/Venus analogues ex- tiondependsonvariousobservationalparameters:telescopedi- pectedtoaccessibletocharacterizationisamaximumat1.6µm, ameterD,innerworkingangle(IWA),andobservingwavelength a value which presumably represents a tradeoff between angu- λ.Theresultsofallthesetestsarelistedinthebottomsectionof larresolutionandthestellarfluxavailableforwavefrontsensing Table1. andcorrection. Intriguingly, thermal-infrared observations appear to be 3.3.1. AngularResolution:DiameterandInnerWorking more attractive than observations at intermediate wavelengths Angle such as 3.5µm. All three GSMT projects have proposed AO- assisted MIR instruments (Brandl et al., 2010; Tokunaga et al., AsdiscussedinSec.2.3,severalGSMTdesignshavebeenpro- 2010; Okamoto et al., 2010; Hinz et al., 2012). The longer posed,eachwithdifferentdiametersD.Thebaselineinstrument wavelengths at which these instruments would operate roughly used in this work has an IWA defined as 3λ{D, so the angu- correspond to the Wien peak of cool planets’ blackbody emis- lar magnitude of this IWA decreases as D increases. Planets at sion, thereby providing a method to measure radiometric radii thesmallestseparationshavethehighestobservablecontrast(in (Morrison, 1973), the surface compositions of airless planets bothscatteredlightandthermalemission),sonaturallyTable1 (Huetal.,2012),andthepotentialtodetectexoplanetaryozone showsthatthenumberofaccessibleplanetsincreases(bynearly (e.g.,Rugheimeretal.,2012, andreferencestherein). a factor of two) when D increases from 30m (TMT) to 39m The MIR instrument simulated here is not conservative in (E-ELT). The number decreases by a similar factor when D is onerespect:asinthiswork’sothersimulations,Iassumethatthe reducedto25m(GSMT). instrument’swavefrontsensorandscienceinstrumentoperateat Table1alsoshowsthatatmostasingleshort-periodplanet thesamewavelength.Currentdesignsforsuchinstrumentstypi- ispredictedtobeaccessibletohigh-contrastinstrumentsoncur- callyrelyonfacilityAOsystems,whosewavefrontsensorsoper- rent8mtelescopes,ifinstrumentsonthesetelescopescanreach ateatshorterwavelengths.Undersuchastrategy,chromaticef- contrastlevelsof5ˆ10´9.Inthiscase,theworkpresentedhere fectsmaydegradetheachievablecontrasttothepointthatshort- predictsaą1%chanceofaccessibleplanetsforonlyfourstars: period planets become inaccessible (Guyon, 2005). Instrument αCenAB(15–20%each),ProcyonA(5%),andSiriusA(3%). designersshouldthereforeconsiderthefeasibilityofMIRwave- These expectation values drop by only a factor of 2 if such fa- front sensing for these instruments, either with a separate MIR cilities can only achieve contrasts of 10´8. These star systems wavefront sensor or (to minimize non-common wavefront er- should therefore be high-priority targets for deep observations rors) via phase retrieval and correction using the main science inimminent8mhigh-contrastsurveys. camera(e.g.,Malbetetal.,1994;Borde´ &Traub,2006). Similarly, using a narrower or wider IWA than the baseline Fig.4showstheplanetpopulationexpectedaroundτCetand scenarioofSec.3.1respectivelyincreasesordecreasesthenum- theexpectedsensitivitylimitsforanE-ELT/METIS-likeinstru- ber of accessible planets, as expected (see Table 1). However, ment(λ “ 10µm,D “ 39m,andaconservativeminimumcon- varying IWA has a weaker impact than varying D, even when trastof10´7;Brandletal.,2012).Notethattheplanetcandidate theangularscaleoftheIWAisheldconstant.Thisresultmayat τCetf(Tuomietal.,2012)wouldbeamenabletohigh-contrast firstseemsurprising:2λ{Dona30mtelescopegivesasmaller characterizationat10µm,assumingareasonablealbedo((cid:46)0.7). angularseparationthandoes3λ{Dona39mtelescope,yetmore Ahigh-contrastMIRinstrumenthasamuch-reducedangular planets are accessible for characterization under the latter con- resolutioncomparedtoNIRobservations,butplanetarythermal ditionsthanundertheformer.Theincreasedsensitivityatlarger emissionbooststheplanet/starcontrastratiossignificantlyabove DforconstantangularIWAresultsfromtheD´1dependenceof thevaluesseenatshorterwavelengths;consequently,compara- PSF speckle amplitude on phase and amplitude errors (Guyon, blenumbersofplanetsareexpectedtobeaccessibletoNIRand 2005). Thus for two high-contrast instruments with equal IWA MIR characterization. Fig. 5 shows the accessible local planet (inangularunits),theinstrumentwiththelargerprimarymirror populationasafunctionofR andT forthethermalimaging P eq canreachbettercontrastlevels. simulation,andthelastrowofTable1summarizestheseresults. High-contrast thermal-IR instruments thus offer the poten- tialtodirectlymeasurethermalemissionfromshort-periodplan- 3.3.2. ObservingWavelength:ScatteredStarlightand ets down to very small planetary radii. Thermal imaging shifts ThermalEmission the distribution of sampled planets to substantially cooler T eq The choice of observing wavelength λ has a number of impor- (ă200K)ascomparedtotheNIRbaselinescenarioofSec.3.1 tant consequences: with D it sets the angular scale of the IWA (which is sensitive to rather hotter planets at smaller separa- (typically specified in λ{D), it determines the stellar flux avail- tions). The number of 1 ´ 2R planets accessible to thermal C able for sensing and correction of phase and amplitude errors, infraredcharacterizationiscomparabletothenumberexpected anditmodifiestheplanet/starfluxcontrast(inthiswork,byde- intheNIRbaselinescenario.However,eventheseconservative termining the planet’s thermal blackbody emission). Naturally, planetarypopulationstatisticsimplya40%chanceoffindingan observationsatmultipleinfraredwavelengthsarealsodesirable Earth/Venus analogue (R “ 1´2R , T “ 200´250 K); P C eq toobservespectralfeaturesofdifferentmolecularspeciesand/or thisprobabilityderivesmainlyfromK-typestarswithTeff inthe surfacecompositions(e.g.,Kuiperetal.,1947;Huetal.,2012). range3900–5500K,andsomaybelesssensitivetotheassump- Table1showsthatthenumberofplanetsaccessibletohigh- tionsmadeinSec.2.2forplanetfrequenciesaroundcoolerstars. contrast characterization drops steadily as the observing wave- As discussed in Secs. 2.2 and 3.2, if 1´2R planets are 4ˆ C lengthincreasesfrom1.0µmto3.5µm.Thedetectedplanetsare morefrequentthan2´4R planetsthentheexpectationvalue C coolandseeninreflectivelight,sotheirplanet/starcontrastre- increases to 1.6. Thus it may be considered likely that such an mainsapproximatelyconstantevenasangularresolutionandthe object will be found; such an event would excite considerable photon flux available for AO wavefront sensing and correction interest. 6 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets 4. ConclusionsandFutureWork 10-3 These simulation of a mostly generic high-contrast instrument 10-4 indicatethat,withreasonableextrapolationsofplanetfrequency rates from the Kepler mission and/or radial velocity surveys st 10-5 (Howard et al., 2012; Bonfils et al., 2013), of order 10 short- a ntr period planets will be accessible to characterization via high- Co 10-6 contrast imaging and spectroscopy from the next generation of ar ground-based giant segmented-mirror telescopes (GSMTs). In et/st 10-7 Table 1, the accessible planet population is summarized and n Pla 10-8 showntobeinsensitivetomoderatechangesintheassumptions 8 32R made about planet frequencies (see Sec. 3.2) and future instru- 10-9 421−−−−842RRREEEE 2><032000−0030KK0K menTtaalrgceatpsafboirlitfiuetsur(eseheigShe-cc.o3n.3tr)a.stcharacterizationarealready 10-10 knowntoday.Atwavelengthsnear1.2µm,theplanetsGJ876b 10-2 10-1 100 andc(seeFig.2)andplanetcandidatesαCenBb(seeFig.1)and Separation [arcsec] τCetbshouldbedetectabletotheNIRbaselineinstrumentcon- sideredinSec.3.1.GJ139canddandτCetcanddshouldalso Fig.4 SameasFig.1butforτCetinthethermalimagingsce- bedetectableiftheirgeometricalbedosareą 0.15´0.4.Thus nariodescribedinSec.3.3.2,observingat10µmwithaninstru- perhaps a half-dozen suitable planets with a range of masses ment similar to E-ELT/METIS. The planets here are detected (andpresumablyradii)arealreadyknown;thisnumberislarge mainly via their thermal emission. From left to right, the star enough that one suspects the modest predictions presented in symbols and error bars show the contrast expected for planets thisworkmayunderestimatethetruesizeoftheaccessibleexo- candidates b, c, d, e, and f (Tuomi et al., 2012) over the range planet population. This could be the case if the local exoplanet ofalbedosandrecirculationparametersdescribedinSec.2.4.If population differs substantially from that observed by Kepler, confirmed,planetfwouldbeamenabletodirectcharacterization oriftheassumptionsmadeinSec.2.2areshowntobeinvalid. ofitsthermalemission. Futurehigh-precisionradialvelocityobservations,especiallyof Mdwarfs,willenablefurthertestsofthesepredictions. Thermal infrared observations will be desirable, because they offer the possibility to directly characterize the thermal emissionspectraandenergybudgetsoftheseshort-periodplan- ets,andthus(viaradiometricradii)breaktheradius-albedode- generacy inherent in reflected light observations. In particular, thermalinfraredobservationssignificantlyimprovethechances offindingEarthorVenusanalogues(planetswithR “1´2R P C andT “200´250K;seeTable1,andcf.Figs.3and5).The eq planetcandidateτCetf(seeFig.4)istheonlycurrentlyknown planetwhichcouldbecharacterizedbythesemid-infraredobser- vations,andradialvelocitysurveysseemlikelytoprovideaddi- tionaltargetsinthecomingdecade. Theopportunitytoobserveandcharacterizetheatmospheres of relatively small (R ă 4R ) and cool (T ă 300 K) plan- P C eq ets is an exciting one, not least because such planets could be similar to Earth and are particularly compelling objects in the study of exoplanetary habitability. A useful avenue for future study will be to examine in more detail what discernible dif- ferencesmightbeusedtodistinguishEarth-likeandVenus-like planets(whichexhibitsimilarinfraredemissionspectra)onthe basisofmid-infraredobservations.Oneinitialavenuemightbe toextendplanetclassificationeffortsusingopticalcolors(Crow Fig.5 Predictednumberofplanets(asafunctionofR andT ) P eq etal.,2011;Hegde&Kaltenegger,2012)tolongerwavelengths. expectedtobecharacterizedforthe10µmimagingscenariode- Future, more detailed simulations are required to estimate scribedinSec.3.3.2.Thecolorsandthesmallnumbersineach the signal to noise with which the accessible planets discussed cell both indicate the expectation value for that combination of herecanbecharacterized.Kawaharaetal.(2012)havepresented R and T , and the histograms show the marginalized distri- P eq an excellent first step toward this goal with their recent deter- butions. Compared to the planet population accessible in the minationthatGSMTswillallowlow-resolutionspectroscopyof baseline NIR case shown in Fig. 3, thermal infrared observa- smallplanetsat1.27µminjustafewhours.Furthersuchworkat tionsmainlydetectthermalemissionfromcoolerplanetsaround bothshorterandlongerwavelengthswillhelpdeterminewhether warmer stars. Note that the scenario simulated here conserva- spectroscopy will be possible, or whether characterization will tivelyassumesthatplanetsinthetwosmallestR rangesoccur P belimitedtobroadbandphotometry.Suchestimateswouldalso withequalfrequency(seeSecs.2.2and3.2). permitpredictionsoftheprecisionwithwhichhigh-contrastob- servationscouldmeasureshort-periodplanets’orbitalproperties (via astrometry), radiometric radii (via MIR observations), and perhapseventuallymeasurerotationperiods(Fordetal.,2001), 7 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets variationsinclimate(Cowanetal.,2012),andperhapsexoplane- Borucki,W.J.etal.2011,ApJ,736,19,ADS,1102.0541 tarysatellites(Robinson,2011;Go´mez-Lealetal.,2012).Future Boyajian,T.S.etal.2012a,ApJ,746,101,ADS,1112.3316 efforts would also be useful to extend the work presented here —.2012b,ApJ,757,112,ADS,1208.2431 Brandl, B. R. et al. 2012, in Society of Photo-Optical Instrumentation toobservationsinpolarizedlight(Zuggeretal.,2010).Finally, Engineers (SPIE) Conference Series, Vol. 8446, Society of Photo-Optical another interesting project would be an assessment of the de- InstrumentationEngineers(SPIE)ConferenceSeries,ADS tectabilityofextrasolarcomets(Jura,2005). Brandl, B. R. et al. 2010, in Society of Photo-Optical Instrumentation By the end of the current decade, JWST may obtain trans- Engineers (SPIE) Conference Series, Vol. 7735, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS mission spectra of a few temperate, 1–3R planets around M C Buchhave,L.A.etal.2012,Nature,486,375,ADS dwarfs (Deming et al., 2009; Kaltenegger & Traub, 2009), but Butler,R.P.,Vogt,S.S.,Marcy,G.W.,Fischer,D.A.,Wright,J.T.,Henry, becausetransmissionspectroscopyprobesthehighestpressures G.W.,Laughlin,G.,&Lissauer,J.J.2004,ApJ,617,580,ADS,arXiv:astro- suchobservationscannotprobedeeplyintotheatmosphere–es- ph/0408587 peciallyifopaque,high-altitudehazesareasubiquitousasthey Cady,E.,McElwain,M.,Kasdin,N.J.,&Thalmann,C.2011,PASP,123,333, ADS,1103.3275 seem to be in the atmospheres of hotter planets (Bean et al., Choi,J.,McCarthy,C.,Marcy,G.W.,Howard,A.W.,Fischer,D.A.,Johnson, 2011; Berta et al., 2012; Pont et al., 2012; Benneke & Seager, J.A.,Isaacson,H.,&Wright,J.T.2012,ArXive-prints,ADS,1208.2273 2012).Nonetheless,occultationmeasurementswillbeessential Cowan,N.B.,Voigt,A.,&Abbot,D.S.2012,ApJ,757,80,ADS,1205.5034 to inform models of short-period planetary atmospheres and to Crawford,I.A.2011,ActaAstronautica,68,691,ADS,1010.4823 Crepp,J.,Serabyn,E.,Carson,J.,Ge,J.,&Kravchenko,I.2010,ApJ,715,1533, placefuturehigh-contrastGSMTobservationsinabroadercon- ADS,1004.2932 text. Crepp,J.R.,Mahadevan,S.,&Ge,J.2009,ApJ,702,672,ADS,0909.2259 Future observational efforts are necessary to extend the Crepp,J.R.etal.2011,ApJ,729,132,ADS,1012.4016 planet demographics measured by Kepler’s initial planet can- Crow,C.A.etal.2011,ApJ,729,130,ADS didate sample (Howard et al., 2012) to smaller planetary radii, Cumming,A.,Butler,R.P.,Marcy,G.W.,Vogt,S.S.,Wright,J.T.,&Fischer, D.A.2008,PASP,120,531,ADS,0803.3357 cooler stars, and (less importantly for this paper) longer or- Delfosse,X.,Forveille,T.,Mayor,M.,Perrier,C.,Naef,D.,&Queloz,D.1998, bital periods, and indeed such efforts are already being pub- A&A,338,L67,ADS,arXiv:astro-ph/9808026 lished(Dong&Zhu,2012;Fressinetal.,2013).Focusedhigh- Delfosse,X.,Forveille,T.,Se´gransan,D.,Beuzit,J.-L.,Udry,S.,Perrier,C.,& precisionradialvelocitycampaignsofthetypeusedtodiscover Mayor,M.2000,A&A,364,217,ADS,arXiv:astro-ph/0010586 Deming,D.etal.2009,PASP,121,952,ADS,0903.4880 planet candidates around α Cen B and τ Cet (Dumusque et al., Dong,S.,&Zhu,Z.2012,ArXive-prints,ADS,1212.4853 2012; Tuomi et al., 2012) should be undertaken for the cool Dumusque,X.etal.2012,Nature,490 stars nearest the sun, both to compare the frequency of plan- Endl,M.,&Ku¨rster,M.2008,A&A,488,1149,ADS,0807.1452 etsinthesolarneighborhoodtothatobservedbyKepler,andto Fischer,D.A.,&Valenti,J.2005,ApJ,622,1102,ADS discover additional planets for high-contrast GSMT characteri- Ford, E. B., Seager, S., & Turner, E. L. 2001, Nature, 412, 885, ADS, arXiv:astro-ph/0109054 zation.High-precisionspectraofallstarswithin8pcoftheSun Fressin,F.etal.2013,ArXive-prints,ADS,1301.0842 should also be obtained to characterize their stellar properties, Gilmozzi,R.,&Spyromilio,J.2007,TheMessenger,127,11,ADS andthusbetterestimatethelikelihoodthattheyhostplanets. Go´mez-Leal,I.,Palle´,E.,&Selsis,F.2012,ApJ,752,28,ADS,1205.5010 PlannedGSMTswillhavethepotentialtomeasureNIRalbe- Guyon,O.2005,ApJ,629,592,ADS,arXiv:astro-ph/0505086 Guyon,O.,Pluzhnik,E.A.,Kuchner,M.J.,Collins,B.,&Ridgway,S.T.2006, dos, MIR emission, and consequently the molecular chemistry, ApJS,167,81,ADS,arXiv:astro-ph/0608506 energybudgets,andradii,ofsignificantnumbersofsmall,tem- Hawarden, T. G. et al. 2003, in Society of Photo-Optical Instrumentation perate, and potentially Earthlike planets around both M dwarfs Engineers (SPIE) Conference Series, Vol. 4840, Society of Photo-Optical and solar-type stars. Given these positive prospects, continued InstrumentationEngineers(SPIE)ConferenceSeries,ed.J.R.P.Angel& efforts toward a more comprehensive theoretical understanding R.Gilmozzi,299–308,ADS Hegde, S., & Kaltenegger, L. 2012, in EGU General Assembly Conference oftemperateexoplanetatmospheresiscertainlywarranted. Abstracts, Vol. 14, EGU General Assembly Conference Abstracts, ed. A.Abbasi&N.Giesen,13743,1209.4098,ADS Acknowledgements. I thank B. Macintosh and O. Guyon for useful infor- Henry,T.J.,&McCarthy,Jr.,D.W.1993,AJ,106,773,ADS mation, advice, and discussions while conducting this study, and the anony- Hinz, P. et al. 2012, in Society of Photo-Optical Instrumentation Engineers mous referee for useful comments. This research has made use of the (SPIE) Conference Series, Vol. 8446, Society of Photo-Optical Exoplanet Orbit Database at http://www.exoplanets.org, the Extrasolar InstrumentationEngineers(SPIE)ConferenceSeries,ADS Planet Encyclopedia Explorer at http://www.exoplanet.eu, and free and Howard,A.W.etal.2012,ApJS,201,15,ADS,1103.2541 open-sourcesoftwareprovidedbythePython,SciPy,andMatplotlibcommu- Hu,R.,Ehlmann,B.L.,&Seager,S.2012,ApJ,752,7,ADS,1204.1544 nities. Huang,S.-s.1959,AmericanScientist,47,pp.397,ADS Johns,M.2008,inSocietyofPhoto-OpticalInstrumentationEngineers(SPIE) Conference Series, Vol. 6986, Society of Photo-Optical Instrumentation References Engineers(SPIE)ConferenceSeries,ADS Jura,M.2005,AJ,130,1261,ADS,arXiv:astro-ph/0505484 Allard,F.,Homeier,D.,&Freytag,B.2011,448,91,ADS,1011.5405 Kaltenegger,L.,&Traub,W.A.2009,ApJ,698,519,ADS,0903.3371 Andreeshchev,A.,&Scalo,J.2004,inIAUSymposium,Vol.213,Bioastronomy Kasper, M. et al. 2010, in Society of Photo-Optical Instrumentation 2002:LifeAmongtheStars,ed.R.Norris&F.Stootman,115,ADS Engineers (SPIE) Conference Series, Vol. 7735, Society of Photo-Optical Angel,R.2003,inESASpecialPublication,Vol.539,Earths:DARWIN/TPF InstrumentationEngineers(SPIE)ConferenceSeries,ADS andtheSearchforExtrasolarTerrestrialPlanets,ed.M.Fridlund,T.Henning, Kasting,J.F.,Whitmire,D.P.,&Reynolds,R.T.1993,Icarus,101,108,ADS &H.Lacoste,221–230,ADS Kawahara, H., Matsuo, T., Takami, M., Fujii, Y., Kotani, T., Murakami, N., Baluev,R.V.2011,CelestialMechanicsandDynamicalAstronomy,111,235, Tamura,M.,&Guyon,O.2012,ApJ,758,13,ADS,1206.0558 ADS,1105.4696 Kirkpatrick,J.D.etal.2012,ApJ,753,156,ADS,1205.2122 Bean,J.L.etal.2011,ApJ,743,92,ADS,1109.0582 Kuiper,G.P.,Wilson,W.,&Cashman,R.J.1947,ApJ,106,243,ADS Benneke,B.,&Seager,S.2012,ApJ,753,100,ADS,1203.4018 Lissauer,J.J.etal.2011,ApJS,197,8,ADS,1102.0543 Berta,Z.K.etal.2012,ApJ,747,35,ADS,1111.5621 Lunine,J.I.etal.2008,ArXive-prints,ADS,0808.2754 Beuzit,J.-L.etal.2006,TheMessenger,125,29,ADS Macintosh, B. et al. 2006a, in Society of Photo-Optical Instrumentation Bonfils,X.etal.2013,A&A,549,A109,ADS Engineers (SPIE) Conference Series, Vol. 6272, Society of Photo-Optical —.2005,A&A,443,L15,ADS,arXiv:astro-ph/0509211 InstrumentationEngineers(SPIE)ConferenceSeries,ADS —.2012,A&A,546,A27,ADS,1206.5307 Macintosh, B. et al. 2006b, in Society of Photo-Optical Instrumentation —.2007,A&A,474,293,ADS,0704.0270 Engineers (SPIE) Conference Series, Vol. 6272, Society of Photo-Optical Borde´,P.J.,&Traub,W.A.2006,ApJ,638,488,ADS,arXiv:astro-ph/0510597 InstrumentationEngineers(SPIE)ConferenceSeries,ADS 8 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets Malbet, F., Shao, M., & Yu, J. W. 1994, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 2201, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. M.A.Ealey&F.Merkle,1135–1144,ADS Marcy,G.W.,Butler,R.P.,Fischer,D.,Vogt,S.S.,Lissauer,J.J.,&Rivera, E.J.2001,ApJ,556,296,ADS Marcy,G.W.,Butler,R.P.,Vogt,S.S.,Fischer,D.,&Lissauer,J.J.1998,ApJ, 505,L147,ADS,arXiv:astro-ph/9807307 Marois,C.,Macintosh,B.,Barman,T.,Zuckerman,B.,Song,I.,Patience,J., Lafrenie`re,D.,&Doyon,R.2008,Science,322,1348,0811.2606 Matsuo,T.,&Tamura,M.2010,inSocietyofPhoto-OpticalInstrumentation Engineers (SPIE) Conference Series, Vol. 7735, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Maurin,A.S.,Selsis,F.,Hersant,F.,&Belu,A.2012,A&A,538,A95,ADS, 1110.3087 Mawet, D. et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8442, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,1207.5481,ADS Mesa,D.etal.2011,A&A,529,A131,ADS Monteiro,H.2010,BulletinoftheAstronomicalSocietyofBrazil,29,22,ADS Morrison,D.1973,Icarus,19,1,ADS Morton,T.D.,&Johnson,J.A.2011,ApJ,738,170,ADS,1101.5630 Nelson,J.,&Sanders,G.H.2008,inSocietyofPhoto-OpticalInstrumentation Engineers (SPIE) Conference Series, Vol. 7012, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Okamoto, Y. K. et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Oppenheimer, B. R. et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8447, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Oppenheimer,B.R.,&Hinkley,S.2009,ARA&A,47,253,ADS,0903.4466 Pepe,F.etal.2011,A&A,534,A58,ADS,1108.3447 Pierrehumbert,R.,&Gaidos,E.2011,ApJ,734,L13,ADS,1105.0021 Pont,F.,Sing,D.K.,Gibson,N.P.,Aigrain,S.,Henry,G.,&Husnoo,N.2012, ArXive-prints,ADS,1210.4163 Robinson,T.D.2011,ApJ,741,51,ADS,1110.3744 Rojas-Ayala,B.,Covey,K.R.,Muirhead,P.S.,&Lloyd,J.P.2012,ApJ,748, 93,ADS,1112.4567 Rugheimer, S., Kaltenegger, L., Zsom, A., Segura, A., & Sasselov, D. 2012, ArXive-prints,ADS,1212.2638 Santos,N.C.,Israelian,G.,&Mayor,M.2004,A&A,415,1153,ADS Seager,S.2010,ExoplanetAtmospheres:PhysicalProcesses,ADS Selsis, F., Wordsworth, R. D., & Forget, F. 2011, A&A, 532, A1+, ADS, 1104.4763 Serabyn,E.,Mawet,D.,&Burruss,R.2010,Nature,464,1018,ADS Sousa,S.G.etal.2008,A&A,487,373,ADS,0805.4826 Swain,M.R.2010,inBulletinoftheAmericanAstronomicalSociety,Vol.42, AAS/DivisionforPlanetarySciencesMeetingAbstracts#42,1064,ADS Thomas, S. J. et al. 2011, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8149, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Tinetti,G.etal.2012,ExperimentalAstronomy,34,311,ADS,1112.2728 Tokunaga, A. T. et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Tuomi,M.etal.2012,ArXive-prints,ADS,1212.4277 Turnbull,M.C.,Traub,W.A.,Jucks,K.W.,Woolf,N.J.,Meyer,M.R.,Gorlova, N.,Skrutskie,M.F.,&Wilson,J.C.2006,ApJ,644,551,ADS Vasisht,G.,Swain,M.R.,Akeson,R.L.,Burrows,A.,Deming,D.,Grillmair, C. J., & Greene, T. P. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7010, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Vogt,F.P.A.,Martinache,F.,Guyon,O.,Yoshikawa,T.,Yokochi,K.,Garrel,V., &Matsuo,T.2011,PASP,123,1434,ADS,1112.2817 Wildi, F. et al. 2011, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8151, Society of Photo-Optical InstrumentationEngineers(SPIE)ConferenceSeries,ADS Zacharias,N.,Finch,C.T.,Girard,T.M.,Henden,A.,Bartlett,J.L.,Monet, D.G.,&Zacharias,M.I.2012,VizieROnlineDataCatalog,1322,0,ADS Zechmeister, M., Ku¨rster, M., & Endl, M. 2009, A&A, 505, 859, ADS, 0908.0944 Zugger,M.E.,Kasting,J.F.,Williams,D.M.,Kane,T.J.,&Philbrick,C.R. 2010,ApJ,723,1168,ADS,1006.3525 9 Crossfield:GSMTHigh-ContrastCharacterizationofShort-PeriodExoplanets Table1. NumberofShort-PeriodPlanetsAccessibletoHigh-ContrastCharacterization PlanetSize,R {R EquilibriumTemperature,T /K P C eq SimulationParameters 1´2 2´4 4´8 ă200 200´300 ą300 N a Totalb EVA BaselineScenario(seeSec.3.1): 1˘1 5`2 1`2 2`2 2`2 4˘2 0.06 8˘3 ´3 ´1 ´1 ´1 EffectsofAstrophysicalParameters(seeSec.3.2): ManySmallPlanets(f “4f ) 4˘2 5`2 1`2 3`1 3`1 6`2 0.24 11`4 1´2RC 2´4RC ´3 ´1 ´2 ´2 ´3 ´3 MoreLonger-PeriodPlanets(forPą50d) 1˘1 5˘2 2`2 4˘2 3`1 4˘2 0.06 10`4 ´1 ´2 ´3 NoPlanetsAroundCoolStars(Teff ă3600K) 1˘1 3˘2 1˘1 0`´10 1˘1 4`´12 zero 5˘2 RVStatisticsforCoolStars(Teff ă3600K) 1`´11 4`´12 1˘1 2`´21 2˘1 4`´12 0.05 8˘3 EffectsofInstrumentalParameters(seeSec.3.3): LargerDiameter(39m) 2`2 9˘3 2`2 4˘2 4˘2 7`2 0.14 15˘4 ´1 ´1 ´3 SmallerDiameter(25m) 0`1 3`1 1˘1 1`2 1˘1 2`2 0.04 5˘2 ´0 ´2 ´1 ´1 MuchSmallerDiameter(8m) 0 0`1 0 0 0 0`1 zero 0`1 ´0 ´0 ´0 NarrowerIWA(2λ{D) 1`2 7`2 2`1 3`1 3`1 6`2 0.07 11`4 ´1 ´3 ´2 ´2 ´2 ´3 ´3 WiderIWA(4λ{D) 1`0 3`2 1˘1 2`2 2`1 3`1 0.06 6`3 ´1 ´1 ´1 ´2 ´2 ´2 ShorterWavelength(1.0µm) 1˘1 5˘2 1`2 2`1 2`2 4`3 0.05 9˘3 ´1 ´1 ´1 ´2 LongerWavelength(1.6µm) 1˘1 4˘2 1˘1 2`2 2`1 3`1 0.08 7˘3 ´1 ´2 ´2 LongerWavelength(2.2µm) 1`0 2`2 1˘1 2`1 1˘1 2`1 0.05 5˘2 ´1 ´1 ´2 ´1 LongerWavelength(3.5µm) 1`0 1`2 1`0 1˘1 1`0 2`2 zero 3`2 ´1 ´1 ´1 ´1 ´1 ´1 ThermalIR,LargerDiameter(10µm,39m,10´7) 1`2 3˘2 1˘1 3˘2 1˘1 1˘1 0.41 6`2 ´1 ´3 aExpectednumberofaccessibleEarth/Venusanalogues(R “1´2R ,T “200´250K),assumingplanetswithR “1´2R P C eq P C and2´4R occurwiththesamefrequency(seeSecs.2.2and3.2). C bBecauseofrounding,thesumofeachrow’svaluesmaynotmatchtheTotalvaluelisted. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.