ebook img

On gravitational lensing by deflectors in motion PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On gravitational lensing by deflectors in motion

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) On gravitational lensing by deflectors in motion M. Sereno1,2,3⋆ 1DipartimentodiScienzeFisiche,Universita`degliStudidiNapoli‘FedericoII’,ViaCinthia,MonteS.Angelo,80126Napoli,Italia 2IstitutoNazionalediAstrofisica-OsservatorioAstronomicodiCapodimonte,SalitaMoiariello,16,80131Napoli,Italia 3IstitutoNazionalediFisicaNucleare,Sez.Napoli,ViaCinthia,MonteS.Angelo,80126Napoli,Italia 5 0 0 January10,2005 2 n a ABSTRACT J Gravitationallensingbyaspinningdeflectorintranslationalmotionrelativetotheobserveris 7 discussedintheweakfield,slowmotionapproximation.Theeffectofrotation,whichgener- 2 atesanintrinsicgravito-magneticfield,separatesfromthatduetoradialmotion.Corrections tothelensequation,deflectionangleandtimedelayarederived. 1 v Keywords: gravitation–gravitationallensing–relativity 5 0 6 1 0 1 INTRODUCTION tion. Whereas theeffect due toa translational motion isaconse- 5 quence of the existence of the standard gravito-electric field plus 0 Gravitationallensingisawellrecognizedpracticaltoolinmodern localinvariance,theproblemoflightdeflectionbyadeflectorwith / astrophysics.Itisisoneofthemostdeeplyinvestigatedphenom- h angular momentum is related to the existence of the dragging of ena of gravitation and progressive development of technological p inertial frames and of the related gravito-magnetic field. In order capabilitiesdemandstoleadafullanalysisonthebasisofhigher- - toshowthatintrinsicgravito-magnetismandthelocalLorentzin- o ordereffects(Sereno2003b).Correctionsduetothemotionofthe variance on a static background are two fundamentally different r deflectordeserve particularattentiononboththeoretical andphe- t phenomena, space-time curvature by mass-energy currents rela- s nomenological sides. The motion of the lens might play a role tivetoother masscanbepreciselycharacterizedbyaframe-and a in various astrophysical systems (Frittelli 2003b; Sereno 2003a; : coordinate-independentmethod,basedonspace-timecurvaturein- v Sereno&Cardone2002;Sereno2004).Themeasurementofanef- variants(seeCiufolini&Wheeler1995,Section6.11). i fectontimedelayofluminoussignals,duetoatranslationalmo- X In this letter, we address the problem of light deflection by tionofthedeflector,wasrecentlyclaimedinFomalont&Kopeikin anextended lenswithangular momentum intranslationalmotion r (2003) but a debate about correct theory and analysis behind the a on a static background. To this aim, we adopt the usual frame- experimentisstillunderway(Samuel2004;Kopeikin2005).Be- work of gravitational lensing theory, i.e. i) weak field and slow sidestranslationalmotiononastaticbackground,mass-energycur- motion approximation for the lens and ii) thin lens hypothesis rentsrelativetoother massesgeneratespace-timecurvature. This (Schneideretal. 1992; Pettersetal. 2001). The paper is as fol- phenomenon, knownasintrinsicgravito-magnetism,isanewfea- lows. In Sec. 2, gravitational lensing in a stationary space-time tureof general theory of relativityand other conceivable theories isreviewed. In Sec. 3, we discuss the combined effect of a roto- of gravity and is still waiting for an experimental confirmation translationalmotionofthedeflectorontimedelay.Section4isde- (Ciufolini&Wheeler1995). votedtothediscussionofthebendingangleandtothewritingof Various authors have investigated the problem of light de- thelensequation.Section5containssomefinalconsiderations. flection by lenses in motion. The effect of a translational mo- tion of the deflector on a static background has been widely discussed (Pyne&Birkinshaw 1993; Kopeikin&Scha¨fer 1999; Frittelli 2003b,a; Heyrovsky 2004; Wucknitz&Sperhake 2004) 2 STATIONARYSPINNINGLENSES and an early disagreement on the correction factor of first or- Weareinterestedinthegravitational fieldbyaweakdeflector in der in velocity has been solved (see Wucknitz&Sperhake 2004, slowmotion. Mattervelocitiesaremuch lessthanc,thespeedof and references therein). Gravitational lensing by spinning de- lightinthevacuum,andmatterstressesarealsosmall.Themetricis flectors has been also addressed with very different approaches asymptoticallyflatanddeviatesonlyslightlyfromtheMinkowski (Epstein&Shapiro 1980; Iba´n˜ez&Martin 1982; Iba´n˜ez 1983; one. Up to leading order in c−3, such a metric can be written in Dymnikova 1986; Glicenstein1999; Ciufolinietal. 2003; Sereno Cartesiancoordinatesxα≡{t,x}1as 2004,2002,2003b,a;Sereno&Cardone2002).Thetwophenom- enaarereallydifferentsincetheintrinsicangularmomentumofa φ V·dx φ ds2≃ 1+2 c2dt2−8cdt − 1−2 dx·dx, (1) bodycannot begenerated oreliminatedbyaLorentztransforma- c2 c3 c2 (cid:16) (cid:17) (cid:16) (cid:17) ⋆ E-mail:[email protected] 1 Greekindecesrunfrom0to3whereasLatinonesfrom1to3. 2 M. Sereno where adot represents the Euclideanscalar product between two whereξ0 isalengthscaleinthelensplaneandΣistheprojected three-dimensionalvectors.Letusconsiderastationaryspace-time. surfacemassdensityofthedeflector, Here,φreducestotheNewtonianpotential, φs(x)≃−GZℜ3 |xρ(−x′x)′|d3x′, (2) Σth(eξg)r≡aviZtolo-msρa(gξn,elt)icdlc;orrection to the potential time delay, u(p11to) whereρisthemassdensityandGisthegravitationalconstant,and theorderv/c,canbeexpressedas(Sereno2002) V is a vector potential taking into account the gravito-magnetic ′ fieldproducedbymasscurrents, ∆TsGRM≃ 8cG4 Zℜ2d2ξ′Σ(ξ′)hv·einilos(ξ′)ln|ξ−ξ0ξ |, (12) Vs(x)≃−GZℜ3 (|ρxv−)(xx′′|)d3x′ (3) wehe,roefhthve·ecionmilposonisenttheofwtheeigvhetleodciatvyevraagleo,nagloeng,the line of sight in in wherevisthevelocityfieldofthemasselementsofthedeflector. Intermsofanangularvelocityω,v=ω×x. hv·einilos(ξ)≡ R(v(ξ,l)·Σe(inξ))ρ(ξ,l)dl. (13) Inaconformallystationaryspace-time,actuallightrayscanbe determinedthroughtheFermat’sprinciple(Schneideretal.1992), Inthethinlensapproximation,theonlycomponentsoftheveloci- whichstatesthatlighttraversesapathwhoseopticallengthissta- tiesparalleltothelineofsightentertheequationsofgravitational tionarycomparedwithneighbouringpaths(Rossi1957).Acurved lensing.Weremindthatthetimedelayfunctionisnotanobserv- space-timeembeddedwithastationarymetriccanbeinterpretedas able,butthetimedelaybetweentwoactualrayscanbemeasured. aflatonewithaneffectiveindexofrefraction,ns(Schneideretal. In the above expressions for the time delays, we have neglected 1992;Sereno2003b).Alightsignalemittedatthesourcewillarrive somenotrelevantadditiveconstants. after 1 ∆T = nsdl, (4) cZ 3 TIMEDELAYBYSHIFTINGANDSPINNINGLENSES γ whereγ isthe spatial projection of thelight curve. TheFermat’s Wewantnowtoconsideranadditionaltranslationalmotionofthe principlecanbeexpressedas deflector.Thecorrespondingmetriccanbeobtainedbyapplyinga coordinatetransformationtothemetricofthesamedeflectorwith δ nsdl=0. (5) thecenter ofmassat rest,whichisexpressedbyEq.(1)withthe Z potentialsinEqs.(2,3).Welimittoamotionwithslowvelocity, For a stationary, slowly rotating, weak lens, the effective u ∼ O(v),andnegligibleacceleration.Hereafter,inthissection, refraction index, ns, is given by (Schneideretal. 1992; Sereno theprimedcoordinateswillrefertotherestframe.Arigidmotion 2003b) along a path γ can be accounted for by a change of coordinates x′ → x = x′ +γ(t′) (Frittelli 2003a). Limiting to negligible 2 4 ns ≃1− c2φs+ c3Vs·e, (6) athcacteldetra=tiondto′f+theγ˙·pdaxth′,/cth2e(cFhraitnteglelii2n0t0h3eat)i.mTehceomoredtirnicatteakisessutchhe where e ≡ dx/dl is the unit tangent vector of a ray and dl ≡ sameforminEq.(1)with δijdxidxj is the Euclidean arc length. The total travel time is p(Sereno2002,2003b) φ(x,t) = φs(x−γ(t)) (14) u ∆Ts ≃∆Tsgeo+∆TsSh+∆TsGRM (7) V(x,t) = Vs(x−γ(t))+ cφs(x−γ(t)), (15) whereTgeoisthegeometricaltimedelay,∆TShistheShapirotime whereu≡γ˙. s s delay,i.e.thegravitationaldelayatthepost-Newtonianorder, ThemetricinEq.(1)withthepotentialsgiveninEq.(14,15) isnomorestationaryandFermat’sprinciplecannot beappliedas 2 ∆TsSh≡−c3 Zγφsdl (8) dpountaetioinnSoefct.h(e2g).raHvoitwateivoenra,lulenndseirngsuqituaabnletitaiesssucmanptpioroncs,eethdenceoamrly- inthesameway.Infact,inusualastrophysicalsystems,thetransit and∆TGRMisthegravito-magnetictimedelay s timethroughthedeflectorcanbeconsideredsmallwithrespectto 4 thetotaltraveltime(Schneideretal.1992).Wecanassumethatin- ∆TsGRM≡ c4 Z Vs·edl. (9) teractionhappensinstantaneouslyatthemomentwhenthephoton γ passesthelens,t .Thepositionofthecenterofmassofthelens d Asusual,thelensisassumedtobethinandweak.Theactualpath att = 0locatestheoriginofthecoordinate system.Duringthe d of the photon deviates negligibly from the undeflected path. It is transittime,thevelocitiesareapproximatelyconstant.So,wecan usefultoemploythespatialorthogonalcoordinates(ξ1,ξ2,l),cen- considerthecomponents ofthemetrictensorfixedatt = td and tredonthelensandsuchthatthel-axisisalongtheincominglight proceedasinthestationarycase.Thecorrespondingadhocrefrac- raydirectionein andthevectorξ spansthelensplane.So,inthe tionindexiswrittensolvingfordttheequationds2=0,andprop- integrandfunctions,wecanusex = lein+ξin.Theunperturbed erlyconsideringthedifferencebetweentheproperarc-lengthina photonimpactsthelensplaneinξin.Themaincontributiontothe curved space-time and the Euclidean arc length (Sereno 2003b). potentialtimedelayis(Schneideretal.1992) Weobtain ∆TSh≃−4G d2ξ′Σ(ξ′)ln|ξ−ξ′|, (10) n ≃ 1− 1−2ulos(td) 2φs(x−γ(td)) s c3 Zℜ2 ξ0 (cid:18) c (cid:19) c2 Onthemotionofa gravitationallens 3 + 4V (x−γ(t )), (16) 4 LENSEQUATION c3 s,los d Just as for a stationary space-time, where the Fermat’s principle where again the subscript los denotes the component of a vector exactlyholds,evenifthelensisinslowmotion,thebendingangle along the line of sight. The index of refraction in Eq. (16) can α andthegravitationaltimedelay,∆Tpot = ∆T −∆Tgeo,can be also obtained from the index in the stationary case, through a berelatedbyagradient(Frittelli2003a), Lorentztransformation.AsfirstdemonstratedbyFizeauintheclas- sicexperimentoflighttraversingamovingfluid,itis α=−∇⊥(c∆Tpot), (24) 1 1 ucosϑ 1 ≃ − 1− , (17) n ns c (cid:16) n2s(cid:17) where∇⊥ ≡∇−ein(ein·∇).Thebendingangleturnsouttobe where ϑ isthe angle between the direction of propagation of the ′ lightTanhdetchoemvpeulotactiitoynoofftthheemtiemdeiu-dme,laiy.ec.auncboespϑer=fourmloesd. bydefin- α(ξ) ≃ 4cG2 Zℜ2d2ξ′(cid:26)|ξξ−−ξξ′|2Σ(ξ′−u⊥td) (25) inganewintegrationvariable,q(Frittelli2003b), × 1− ulos + 2hv·einilos(ξ′−u⊥td) . q≡l−ein·γ(td); (18) (cid:16) c c (cid:17)o intermsofthisvariable Onceagain,threetermscontributetoα.Themaintermisdueto the static, gravito-electric field of the corresponding lens at rest. x−γ(td)=qein+ξin−u⊥td (19) Thesecondtermderivesfromthespinandtakethesameformas whereu⊥istheprojectedvelocityofthedeflectorinthelensplane, forastationarylenswithangular momentum. Thethirdeffect on i.e.transversetothelineofsight,and thebendingangle,duetoatranslationalmotionofthedeflector,can beinterpretedintermsofstandardaberrationoflightinanoptically dq=(1−u /c)dl. (20) los activemediumwithaneffectiveindexofrefractioninducedbythe Thetimedelaybyamoving,spinningdeflectorcanbeexpressedin gravitationalfieldofthelens(Frittelli2003a).Thebendingangle termsofthesamestationarydeflector.Bychangingtheintegration byapoint-likemovinglenscarriesapre-factor(1−ulos/c)with variable,wefind respecttothebendingangleinthestaticcase(Frittelli2003a).For a stationary spinning deflector, the path of the light-ray does not ∆T ≃∆Tgeo− 1− ulos 2φsdq+ 4Vsdq. (21) stayonaplane(Sereno2003a),asitisforasphericallysymmetric (cid:16) c (cid:17)Zγ c3 Zγ c4 lens.However,sinceinourapproximations,deviationsinducedby Solvingtheintegralsunderthehypothesisofathinlens,weget theangularmomentumofthelensaresmall,thesamearguments basedonaberrationcanbeappliedasinFrittelli(2003a),providing u ∆T ≃∆Tsgeo + 1− clos ∆TsSh(ξin−u⊥td) anindependentconfirmationtoEq.(25)asfarasaradialmotionis (cid:16) (cid:17) concerned. + ∆TsGRM(ξin−u⊥td) (22) Letusfinallywritethelensequation.Weintroducetheangu- The translational motion of the lens enters in two distinct ways. lar position of the source in the plane of the sky, β, and the an- TheradialmotionaffectstheShapirotimedelaythroughanoverall gular position of the image in the lens plane θ = ξ/Dd, where multiplicative factor, so that the correction to the time delay due Dd isthe angular diameter distance from the observer to the de- tothetransversalmotionis∆Ttra =−(u /c)∆TSh.Thetrans- flector. For a system of point-like lenses, velocity effects do not los s verse motion affectsonly the relativeangular separation between alter the form of the lens equation with respect to the static case thelensandthesource,i.etheimpactparameter,whichisnowtime (Kopeikin&Scha¨fer1999;Heyrovsky2004).Forthegeneralcase dependent. of a spinning and shifting deflector, the lens equation takes the Theweakfieldhypothesisandslowmotionapproximationare form, enough to face almost all astrophysical systems (Schneideretal. D 1992).Infact,peculiarvelocitiesofhighredshiftgalaxiesareonly β=θ− dsα(θ), (26) atinyperturbationsontheHubbleflow,oforderof∼ 10−3c.Let Ds usconsiderabackgroundquasarwhichislensedbyaforeground whereandDsandDdsaretheangulardiameterdistancesfromthe galaxy. We can model the lens as a singular isothermal sphere observertothesourceandfromthedeflectortothesource,respec- (Sereno2004).AnapproximaterelationholdsbetweentheShapiro tively.Withrespecttothestaticcase,thepositionofthelensistime timedelayandthegravito-magnetictimedelay(Sereno2004), dependentandthebendingangleiscorrectedforfactorsduetothe ∆TGRM≃−9sinγ σv λ∆TSh, (23) radialmotionandtheangularmomentumofthedeflector. (cid:16) c (cid:17) s Inthelimitofslowvelocities,translationalandrotationalmo- whereγ istheanglebetweentheprojectionoftherotationaxisin tionsareseparatedandaddtogethertocorrectlensingquantities.In the plane of the sky and the line trough the two nearly collinear general,thisisnottrue.Tofirstorderindeflection,thedeflection images,λisthespinparameter,givinganestimateofthetotalan- anglefor alenswitharelativistictranslational motion canbedi- gular momentumof thelens,andσv isthevelocitydispersionof rectlyobtainedfromthestationarydeflectionanglecausedbyalens thegalaxy.Correctionsduetorotationandtranslationalmotionare atrestbyapplyingaLorentztransformation(Wucknitz&Sperhake nearly of the same order for usual systems. For a typical lensing 2004).Thestationarydeflectionanglecanbewrittenasasumofthe galaxy at zd = 0.5 withσv ∼ ulos ∼ 10−3, and a background gravito-electricandthegravito-magneticterms,αGRE +αGRM. source at zs = 2.0, the time delay is ∼ 200 days for a source Forarelativistictranslationalvelocity, nearlyinthemiddleoftheEinsteinradius,whereasthecorrections are ∆Ttra ∼ 0.2 days and ∆TGRM ∼ 0.1-0.2×sinγ days for 1−u /c α(u)= los αGRE+αGRM (27) λ∼0.05-0.1. r1+u /c los (cid:0) (cid:1) 4 M. Sereno Thescalingfactor inEq.(27),whichreduces to1−u /cfora Schneider P.,EhlersJ., FalcoE. E.,1992, Gravitational Lenses. los slowmotion,appliesinthesamewaytothemaintermandtothe Springer-Verlag,Berlin gravito-magneticcorrection. SerenoM.,2002,Phys.Lett.A,305,7 SerenoM.,2003a,MNRAS,344,942 SerenoM.,2003b,Phys.Rev.D,67,064007 5 CONCLUDINGREMARKS SerenoM.,2004,MNRAS,inpress;astro-ph/0412108 SerenoM.,CardoneV.F.,2002,A&A,396,393 Wehaveconsideredtheeffectsongravitationallensingofboththe WucknitzO.,SperhakeU.,2004,Phys.RevD,69,063001 translationalmotiononastaticbackgroundandofanintrinsican- gular momentum of the deflector. In the weak-field, slow motion approximationtheeffectsonbendingandtimedelayoflightrays areseparatedandaddstogether.Onlytheradialmotionofthecen- tre of mass enters the corrections, whereas the transverse motion hastobeconsideredonlywhendeterminingthelenspositionand therelativeseparationbetweenlensandsource.Theradialandthe angularvelocityenterthecorrectionswithadifferentscaling.The internalrotationalvelocitymustbeweightedalongthelineofsight andcarriesanextrafactor2withrespecttotheradialvelocity,that mustbeevaluatedatthetimethephotonpassesthelens.Thisshows thatresultsinSereno(2002);Sereno&Cardone(2002),whichre- fertospinninglenses,arecorrect,differentlyfromwhatclaimedin Wucknitz&Sperhake (2004). However, results in Sereno (2002) cannotbeappliedtoaradialmotion. Thanks to usual approximations, our analysis does not limit to point-like lenses and extended deflector have been consid- ered. The internal velocity fieldenters the equations. Thisallows to solve the question whether the gravito-magnetic correction to the deflection of light can probe the inner structure of a lens (Wucknitz&Sperhake2004).Evenifthemaincontributionfora light ray propagating outside the lens is due to the total angular momentum,lightrayscrossingtheinnerstructureofthedeflector probeonlya“partial”angularmomentum. ACKNOWLEDGMENTS Iwishtothankananonymousrefereeforthedetailedsuggestions. REFERENCES CiufoliniI.,KopeikinS.,MashhoonB.,RicciF.,2003,Phys.Lett. A,308,101 CiufoliniI.,WheelerJ.,1995, Gravitationandinertia.Princeton Univ.Press,Princeton Dymnikova I. G., 1986, in Kovalevsky J., Brumberg V.A., eds, Proc.IAUSymp.114,RelativityinCelestialMechanicsandAs- trometry.Kluwer,Dordrecht.p.411 EpsteinR.,ShapiroI.I.,1980,Phys.RevD,22,2947 FomalontE.B.,KopeikinS.,2003,ApJ,598,704 FrittelliS.,2003a,MNRAS,344,L85 FrittelliS.,2003b,MNRAS,340,457 GlicensteinJ.F.,1999,A&A,343,1025 HeyrovskyD.,2004,astro-ph/0410183 Iba´n˜ezJ.,1983,A&A,124,175 Iba´n˜ezJ.,MartinJ.,1982,Phys.Rev.D,26,384 KopeikinS.M.,2005,gr-qc/0501001 KopeikinS.M.,Scha¨ferG.,1999,Phys.Rev.D,60,124002 PettersA.O.,LevineH.,WambsganssJ.,2001,Singularitytheory andgravitationallensing.Birkha¨user,Boston PyneT.,BirkinshawM.,1993,ApJ,415,459 RossiB.,1957,Optics.Addison-Wesley,Reading SamuelS.,2004,Int.J.Mod.Phys.D,13,1753

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.