Mon.Not.R.Astron.Soc.000,000–000(0000) Printed2February2008 (MNLATEXstylefilev2.2) On gravitational lensing by deflectors in motion M. Sereno1,2,3⋆ 1DipartimentodiScienzeFisiche,Universita`degliStudidiNapoli‘FedericoII’,ViaCinthia,MonteS.Angelo,80126Napoli,Italia 2IstitutoNazionalediAstrofisica-OsservatorioAstronomicodiCapodimonte,SalitaMoiariello,16,80131Napoli,Italia 3IstitutoNazionalediFisicaNucleare,Sez.Napoli,ViaCinthia,MonteS.Angelo,80126Napoli,Italia 5 0 0 January10,2005 2 n a ABSTRACT J Gravitationallensingbyaspinningdeflectorintranslationalmotionrelativetotheobserveris 7 discussedintheweakfield,slowmotionapproximation.Theeffectofrotation,whichgener- 2 atesanintrinsicgravito-magneticfield,separatesfromthatduetoradialmotion.Corrections tothelensequation,deflectionangleandtimedelayarederived. 1 v Keywords: gravitation–gravitationallensing–relativity 5 0 6 1 0 1 INTRODUCTION tion. Whereas theeffect due toa translational motion isaconse- 5 quence of the existence of the standard gravito-electric field plus 0 Gravitationallensingisawellrecognizedpracticaltoolinmodern localinvariance,theproblemoflightdeflectionbyadeflectorwith / astrophysics.Itisisoneofthemostdeeplyinvestigatedphenom- h angular momentum is related to the existence of the dragging of ena of gravitation and progressive development of technological p inertial frames and of the related gravito-magnetic field. In order capabilitiesdemandstoleadafullanalysisonthebasisofhigher- - toshowthatintrinsicgravito-magnetismandthelocalLorentzin- o ordereffects(Sereno2003b).Correctionsduetothemotionofthe variance on a static background are two fundamentally different r deflectordeserve particularattentiononboththeoretical andphe- t phenomena, space-time curvature by mass-energy currents rela- s nomenological sides. The motion of the lens might play a role tivetoother masscanbepreciselycharacterizedbyaframe-and a in various astrophysical systems (Frittelli 2003b; Sereno 2003a; : coordinate-independentmethod,basedonspace-timecurvaturein- v Sereno&Cardone2002;Sereno2004).Themeasurementofanef- variants(seeCiufolini&Wheeler1995,Section6.11). i fectontimedelayofluminoussignals,duetoatranslationalmo- X In this letter, we address the problem of light deflection by tionofthedeflector,wasrecentlyclaimedinFomalont&Kopeikin anextended lenswithangular momentum intranslationalmotion r (2003) but a debate about correct theory and analysis behind the a on a static background. To this aim, we adopt the usual frame- experimentisstillunderway(Samuel2004;Kopeikin2005).Be- work of gravitational lensing theory, i.e. i) weak field and slow sidestranslationalmotiononastaticbackground,mass-energycur- motion approximation for the lens and ii) thin lens hypothesis rentsrelativetoother massesgeneratespace-timecurvature. This (Schneideretal. 1992; Pettersetal. 2001). The paper is as fol- phenomenon, knownasintrinsicgravito-magnetism,isanewfea- lows. In Sec. 2, gravitational lensing in a stationary space-time tureof general theory of relativityand other conceivable theories isreviewed. In Sec. 3, we discuss the combined effect of a roto- of gravity and is still waiting for an experimental confirmation translationalmotionofthedeflectorontimedelay.Section4isde- (Ciufolini&Wheeler1995). votedtothediscussionofthebendingangleandtothewritingof Various authors have investigated the problem of light de- thelensequation.Section5containssomefinalconsiderations. flection by lenses in motion. The effect of a translational mo- tion of the deflector on a static background has been widely discussed (Pyne&Birkinshaw 1993; Kopeikin&Scha¨fer 1999; Frittelli 2003b,a; Heyrovsky 2004; Wucknitz&Sperhake 2004) 2 STATIONARYSPINNINGLENSES and an early disagreement on the correction factor of first or- Weareinterestedinthegravitational fieldbyaweakdeflector in der in velocity has been solved (see Wucknitz&Sperhake 2004, slowmotion. Mattervelocitiesaremuch lessthanc,thespeedof and references therein). Gravitational lensing by spinning de- lightinthevacuum,andmatterstressesarealsosmall.Themetricis flectors has been also addressed with very different approaches asymptoticallyflatanddeviatesonlyslightlyfromtheMinkowski (Epstein&Shapiro 1980; Iba´n˜ez&Martin 1982; Iba´n˜ez 1983; one. Up to leading order in c−3, such a metric can be written in Dymnikova 1986; Glicenstein1999; Ciufolinietal. 2003; Sereno Cartesiancoordinatesxα≡{t,x}1as 2004,2002,2003b,a;Sereno&Cardone2002).Thetwophenom- enaarereallydifferentsincetheintrinsicangularmomentumofa φ V·dx φ ds2≃ 1+2 c2dt2−8cdt − 1−2 dx·dx, (1) bodycannot begenerated oreliminatedbyaLorentztransforma- c2 c3 c2 (cid:16) (cid:17) (cid:16) (cid:17) ⋆ E-mail:[email protected] 1 Greekindecesrunfrom0to3whereasLatinonesfrom1to3. 2 M. Sereno where adot represents the Euclideanscalar product between two whereξ0 isalengthscaleinthelensplaneandΣistheprojected three-dimensionalvectors.Letusconsiderastationaryspace-time. surfacemassdensityofthedeflector, Here,φreducestotheNewtonianpotential, φs(x)≃−GZℜ3 |xρ(−x′x)′|d3x′, (2) Σth(eξg)r≡aviZtolo-msρa(gξn,elt)icdlc;orrection to the potential time delay, u(p11to) whereρisthemassdensityandGisthegravitationalconstant,and theorderv/c,canbeexpressedas(Sereno2002) V is a vector potential taking into account the gravito-magnetic ′ fieldproducedbymasscurrents, ∆TsGRM≃ 8cG4 Zℜ2d2ξ′Σ(ξ′)hv·einilos(ξ′)ln|ξ−ξ0ξ |, (12) Vs(x)≃−GZℜ3 (|ρxv−)(xx′′|)d3x′ (3) wehe,roefhthve·ecionmilposonisenttheofwtheeigvhetleodciatvyevraagleo,nagloeng,the line of sight in in wherevisthevelocityfieldofthemasselementsofthedeflector. Intermsofanangularvelocityω,v=ω×x. hv·einilos(ξ)≡ R(v(ξ,l)·Σe(inξ))ρ(ξ,l)dl. (13) Inaconformallystationaryspace-time,actuallightrayscanbe determinedthroughtheFermat’sprinciple(Schneideretal.1992), Inthethinlensapproximation,theonlycomponentsoftheveloci- whichstatesthatlighttraversesapathwhoseopticallengthissta- tiesparalleltothelineofsightentertheequationsofgravitational tionarycomparedwithneighbouringpaths(Rossi1957).Acurved lensing.Weremindthatthetimedelayfunctionisnotanobserv- space-timeembeddedwithastationarymetriccanbeinterpretedas able,butthetimedelaybetweentwoactualrayscanbemeasured. aflatonewithaneffectiveindexofrefraction,ns(Schneideretal. In the above expressions for the time delays, we have neglected 1992;Sereno2003b).Alightsignalemittedatthesourcewillarrive somenotrelevantadditiveconstants. after 1 ∆T = nsdl, (4) cZ 3 TIMEDELAYBYSHIFTINGANDSPINNINGLENSES γ whereγ isthe spatial projection of thelight curve. TheFermat’s Wewantnowtoconsideranadditionaltranslationalmotionofthe principlecanbeexpressedas deflector.Thecorrespondingmetriccanbeobtainedbyapplyinga coordinatetransformationtothemetricofthesamedeflectorwith δ nsdl=0. (5) thecenter ofmassat rest,whichisexpressedbyEq.(1)withthe Z potentialsinEqs.(2,3).Welimittoamotionwithslowvelocity, For a stationary, slowly rotating, weak lens, the effective u ∼ O(v),andnegligibleacceleration.Hereafter,inthissection, refraction index, ns, is given by (Schneideretal. 1992; Sereno theprimedcoordinateswillrefertotherestframe.Arigidmotion 2003b) along a path γ can be accounted for by a change of coordinates x′ → x = x′ +γ(t′) (Frittelli 2003a). Limiting to negligible 2 4 ns ≃1− c2φs+ c3Vs·e, (6) athcacteldetra=tiondto′f+theγ˙·pdaxth′,/cth2e(cFhraitnteglelii2n0t0h3eat)i.mTehceomoredtirnicatteakisessutchhe where e ≡ dx/dl is the unit tangent vector of a ray and dl ≡ sameforminEq.(1)with δijdxidxj is the Euclidean arc length. The total travel time is p(Sereno2002,2003b) φ(x,t) = φs(x−γ(t)) (14) u ∆Ts ≃∆Tsgeo+∆TsSh+∆TsGRM (7) V(x,t) = Vs(x−γ(t))+ cφs(x−γ(t)), (15) whereTgeoisthegeometricaltimedelay,∆TShistheShapirotime whereu≡γ˙. s s delay,i.e.thegravitationaldelayatthepost-Newtonianorder, ThemetricinEq.(1)withthepotentialsgiveninEq.(14,15) isnomorestationaryandFermat’sprinciplecannot beappliedas 2 ∆TsSh≡−c3 Zγφsdl (8) dpountaetioinnSoefct.h(e2g).raHvoitwateivoenra,lulenndseirngsuqituaabnletitaiesssucmanptpioroncs,eethdenceoamrly- inthesameway.Infact,inusualastrophysicalsystems,thetransit and∆TGRMisthegravito-magnetictimedelay s timethroughthedeflectorcanbeconsideredsmallwithrespectto 4 thetotaltraveltime(Schneideretal.1992).Wecanassumethatin- ∆TsGRM≡ c4 Z Vs·edl. (9) teractionhappensinstantaneouslyatthemomentwhenthephoton γ passesthelens,t .Thepositionofthecenterofmassofthelens d Asusual,thelensisassumedtobethinandweak.Theactualpath att = 0locatestheoriginofthecoordinate system.Duringthe d of the photon deviates negligibly from the undeflected path. It is transittime,thevelocitiesareapproximatelyconstant.So,wecan usefultoemploythespatialorthogonalcoordinates(ξ1,ξ2,l),cen- considerthecomponents ofthemetrictensorfixedatt = td and tredonthelensandsuchthatthel-axisisalongtheincominglight proceedasinthestationarycase.Thecorrespondingadhocrefrac- raydirectionein andthevectorξ spansthelensplane.So,inthe tionindexiswrittensolvingfordttheequationds2=0,andprop- integrandfunctions,wecanusex = lein+ξin.Theunperturbed erlyconsideringthedifferencebetweentheproperarc-lengthina photonimpactsthelensplaneinξin.Themaincontributiontothe curved space-time and the Euclidean arc length (Sereno 2003b). potentialtimedelayis(Schneideretal.1992) Weobtain ∆TSh≃−4G d2ξ′Σ(ξ′)ln|ξ−ξ′|, (10) n ≃ 1− 1−2ulos(td) 2φs(x−γ(td)) s c3 Zℜ2 ξ0 (cid:18) c (cid:19) c2 Onthemotionofa gravitationallens 3 + 4V (x−γ(t )), (16) 4 LENSEQUATION c3 s,los d Just as for a stationary space-time, where the Fermat’s principle where again the subscript los denotes the component of a vector exactlyholds,evenifthelensisinslowmotion,thebendingangle along the line of sight. The index of refraction in Eq. (16) can α andthegravitationaltimedelay,∆Tpot = ∆T −∆Tgeo,can be also obtained from the index in the stationary case, through a berelatedbyagradient(Frittelli2003a), Lorentztransformation.AsfirstdemonstratedbyFizeauintheclas- sicexperimentoflighttraversingamovingfluid,itis α=−∇⊥(c∆Tpot), (24) 1 1 ucosϑ 1 ≃ − 1− , (17) n ns c (cid:16) n2s(cid:17) where∇⊥ ≡∇−ein(ein·∇).Thebendingangleturnsouttobe where ϑ isthe angle between the direction of propagation of the ′ lightTanhdetchoemvpeulotactiitoynoofftthheemtiemdeiu-dme,laiy.ec.auncboespϑer=fourmloesd. bydefin- α(ξ) ≃ 4cG2 Zℜ2d2ξ′(cid:26)|ξξ−−ξξ′|2Σ(ξ′−u⊥td) (25) inganewintegrationvariable,q(Frittelli2003b), × 1− ulos + 2hv·einilos(ξ′−u⊥td) . q≡l−ein·γ(td); (18) (cid:16) c c (cid:17)o intermsofthisvariable Onceagain,threetermscontributetoα.Themaintermisdueto the static, gravito-electric field of the corresponding lens at rest. x−γ(td)=qein+ξin−u⊥td (19) Thesecondtermderivesfromthespinandtakethesameformas whereu⊥istheprojectedvelocityofthedeflectorinthelensplane, forastationarylenswithangular momentum. Thethirdeffect on i.e.transversetothelineofsight,and thebendingangle,duetoatranslationalmotionofthedeflector,can beinterpretedintermsofstandardaberrationoflightinanoptically dq=(1−u /c)dl. (20) los activemediumwithaneffectiveindexofrefractioninducedbythe Thetimedelaybyamoving,spinningdeflectorcanbeexpressedin gravitationalfieldofthelens(Frittelli2003a).Thebendingangle termsofthesamestationarydeflector.Bychangingtheintegration byapoint-likemovinglenscarriesapre-factor(1−ulos/c)with variable,wefind respecttothebendingangleinthestaticcase(Frittelli2003a).For a stationary spinning deflector, the path of the light-ray does not ∆T ≃∆Tgeo− 1− ulos 2φsdq+ 4Vsdq. (21) stayonaplane(Sereno2003a),asitisforasphericallysymmetric (cid:16) c (cid:17)Zγ c3 Zγ c4 lens.However,sinceinourapproximations,deviationsinducedby Solvingtheintegralsunderthehypothesisofathinlens,weget theangularmomentumofthelensaresmall,thesamearguments basedonaberrationcanbeappliedasinFrittelli(2003a),providing u ∆T ≃∆Tsgeo + 1− clos ∆TsSh(ξin−u⊥td) anindependentconfirmationtoEq.(25)asfarasaradialmotionis (cid:16) (cid:17) concerned. + ∆TsGRM(ξin−u⊥td) (22) Letusfinallywritethelensequation.Weintroducetheangu- The translational motion of the lens enters in two distinct ways. lar position of the source in the plane of the sky, β, and the an- TheradialmotionaffectstheShapirotimedelaythroughanoverall gular position of the image in the lens plane θ = ξ/Dd, where multiplicative factor, so that the correction to the time delay due Dd isthe angular diameter distance from the observer to the de- tothetransversalmotionis∆Ttra =−(u /c)∆TSh.Thetrans- flector. For a system of point-like lenses, velocity effects do not los s verse motion affectsonly the relativeangular separation between alter the form of the lens equation with respect to the static case thelensandthesource,i.etheimpactparameter,whichisnowtime (Kopeikin&Scha¨fer1999;Heyrovsky2004).Forthegeneralcase dependent. of a spinning and shifting deflector, the lens equation takes the Theweakfieldhypothesisandslowmotionapproximationare form, enough to face almost all astrophysical systems (Schneideretal. D 1992).Infact,peculiarvelocitiesofhighredshiftgalaxiesareonly β=θ− dsα(θ), (26) atinyperturbationsontheHubbleflow,oforderof∼ 10−3c.Let Ds usconsiderabackgroundquasarwhichislensedbyaforeground whereandDsandDdsaretheangulardiameterdistancesfromthe galaxy. We can model the lens as a singular isothermal sphere observertothesourceandfromthedeflectortothesource,respec- (Sereno2004).AnapproximaterelationholdsbetweentheShapiro tively.Withrespecttothestaticcase,thepositionofthelensistime timedelayandthegravito-magnetictimedelay(Sereno2004), dependentandthebendingangleiscorrectedforfactorsduetothe ∆TGRM≃−9sinγ σv λ∆TSh, (23) radialmotionandtheangularmomentumofthedeflector. (cid:16) c (cid:17) s Inthelimitofslowvelocities,translationalandrotationalmo- whereγ istheanglebetweentheprojectionoftherotationaxisin tionsareseparatedandaddtogethertocorrectlensingquantities.In the plane of the sky and the line trough the two nearly collinear general,thisisnottrue.Tofirstorderindeflection,thedeflection images,λisthespinparameter,givinganestimateofthetotalan- anglefor alenswitharelativistictranslational motion canbedi- gular momentumof thelens,andσv isthevelocitydispersionof rectlyobtainedfromthestationarydeflectionanglecausedbyalens thegalaxy.Correctionsduetorotationandtranslationalmotionare atrestbyapplyingaLorentztransformation(Wucknitz&Sperhake nearly of the same order for usual systems. For a typical lensing 2004).Thestationarydeflectionanglecanbewrittenasasumofthe galaxy at zd = 0.5 withσv ∼ ulos ∼ 10−3, and a background gravito-electricandthegravito-magneticterms,αGRE +αGRM. source at zs = 2.0, the time delay is ∼ 200 days for a source Forarelativistictranslationalvelocity, nearlyinthemiddleoftheEinsteinradius,whereasthecorrections are ∆Ttra ∼ 0.2 days and ∆TGRM ∼ 0.1-0.2×sinγ days for 1−u /c α(u)= los αGRE+αGRM (27) λ∼0.05-0.1. r1+u /c los (cid:0) (cid:1) 4 M. Sereno Thescalingfactor inEq.(27),whichreduces to1−u /cfora Schneider P.,EhlersJ., FalcoE. E.,1992, Gravitational Lenses. los slowmotion,appliesinthesamewaytothemaintermandtothe Springer-Verlag,Berlin gravito-magneticcorrection. SerenoM.,2002,Phys.Lett.A,305,7 SerenoM.,2003a,MNRAS,344,942 SerenoM.,2003b,Phys.Rev.D,67,064007 5 CONCLUDINGREMARKS SerenoM.,2004,MNRAS,inpress;astro-ph/0412108 SerenoM.,CardoneV.F.,2002,A&A,396,393 Wehaveconsideredtheeffectsongravitationallensingofboththe WucknitzO.,SperhakeU.,2004,Phys.RevD,69,063001 translationalmotiononastaticbackgroundandofanintrinsican- gular momentum of the deflector. In the weak-field, slow motion approximationtheeffectsonbendingandtimedelayoflightrays areseparatedandaddstogether.Onlytheradialmotionofthecen- tre of mass enters the corrections, whereas the transverse motion hastobeconsideredonlywhendeterminingthelenspositionand therelativeseparationbetweenlensandsource.Theradialandthe angularvelocityenterthecorrectionswithadifferentscaling.The internalrotationalvelocitymustbeweightedalongthelineofsight andcarriesanextrafactor2withrespecttotheradialvelocity,that mustbeevaluatedatthetimethephotonpassesthelens.Thisshows thatresultsinSereno(2002);Sereno&Cardone(2002),whichre- fertospinninglenses,arecorrect,differentlyfromwhatclaimedin Wucknitz&Sperhake (2004). However, results in Sereno (2002) cannotbeappliedtoaradialmotion. Thanks to usual approximations, our analysis does not limit to point-like lenses and extended deflector have been consid- ered. The internal velocity fieldenters the equations. Thisallows to solve the question whether the gravito-magnetic correction to the deflection of light can probe the inner structure of a lens (Wucknitz&Sperhake2004).Evenifthemaincontributionfora light ray propagating outside the lens is due to the total angular momentum,lightrayscrossingtheinnerstructureofthedeflector probeonlya“partial”angularmomentum. ACKNOWLEDGMENTS Iwishtothankananonymousrefereeforthedetailedsuggestions. REFERENCES CiufoliniI.,KopeikinS.,MashhoonB.,RicciF.,2003,Phys.Lett. A,308,101 CiufoliniI.,WheelerJ.,1995, Gravitationandinertia.Princeton Univ.Press,Princeton Dymnikova I. G., 1986, in Kovalevsky J., Brumberg V.A., eds, Proc.IAUSymp.114,RelativityinCelestialMechanicsandAs- trometry.Kluwer,Dordrecht.p.411 EpsteinR.,ShapiroI.I.,1980,Phys.RevD,22,2947 FomalontE.B.,KopeikinS.,2003,ApJ,598,704 FrittelliS.,2003a,MNRAS,344,L85 FrittelliS.,2003b,MNRAS,340,457 GlicensteinJ.F.,1999,A&A,343,1025 HeyrovskyD.,2004,astro-ph/0410183 Iba´n˜ezJ.,1983,A&A,124,175 Iba´n˜ezJ.,MartinJ.,1982,Phys.Rev.D,26,384 KopeikinS.M.,2005,gr-qc/0501001 KopeikinS.M.,Scha¨ferG.,1999,Phys.Rev.D,60,124002 PettersA.O.,LevineH.,WambsganssJ.,2001,Singularitytheory andgravitationallensing.Birkha¨user,Boston PyneT.,BirkinshawM.,1993,ApJ,415,459 RossiB.,1957,Optics.Addison-Wesley,Reading SamuelS.,2004,Int.J.Mod.Phys.D,13,1753