ebook img

On Galois coverings and tilting modules PDF

0.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Galois coverings and tilting modules

On Galois overings and tilting modules ∗† Patri k Le Meur 7 February 2, 2008 0 0 2 n Abstra t a A k T J Let be a basi onne ted (cid:28)nite dimensional algebra over an algebrai ally losed (cid:28)eld . Let be A G 2 a basi tilting -modulewith arbitrary (cid:28)niteprojAe tive dimensioGn. For a (cid:28)xed group we omparethe 1 set of iso lasses of onne ted Galois overings of with group and th→−e set of iso lasses of onne ted End (T) G K Galois overings of A with group . Using the Hasse diagram A (see [17℄ and [23℄) of basi A T ] tilting -modules, we give su(cid:30) ient onditions on under whi h there is a bije tion between these two T A sets (these onditions are always veri(cid:28)ed when is of (cid:28)nite representation type). Then we apply these R A EndA(T) results to studywhenthesimple onne tednessof impliestheone of (see [5℄). Finally, using . h an argument due to W. Crawley-Boevey, we prove that the type of any simply onne ted tilted algebra t is a tree and that its (cid:28)rst Ho hs hild ohomology group vanishes a m Introdu tion [ k A k 4 Let be an algebrai ally losed (cid:28)eld and let be a (cid:28)nite dimensional -algebra. In order to study the mod(A) A A v ategory of (cid:28)nite dimensional (left) -modules we may assume that is basi and onne ted. mod(A) T 7 In the study of , tilting theory has proved to be a powerful tool. Indeed, if is a basi tilting A B = End (T) A B 4 -module and if we set A , then and have many ommon properties: Brenner-Butler mod(A) mod(B) 6 Theorem establishes an equivalen e between ertain sub ategories of and (see [10℄, [16℄ 9 A B and[21℄), and haveequivalentderived ategories (see[14℄) and(inparti ular) theyhaveisomorphi 0 Grothendie k groups and isomorphi Ho hs hild ohomologies. In this text we will study the following 6 A B problem relating and : 0 A B (P ) / is it possible to ompare the Galois overings of and those of ? 1 h A=kQ Q T at Asanexample,if x Qwith a(cid:28)niteBqu=ivkeQrw′ ithoutQor′iented y leandifQ isanAPR-tiltingmodule m asso iatedtxoasink of (sQee[6℄)Qth′en where isobtainedfrom byreverAsingallthearrows endings at . In parti ular and have the same underlying graph and therefore has a onne ted G B : v Galois overing with group if and only if the sameholAds for . A k i Re all that in order to onsider Galois overings of we always onsider as a - ategory. When X C →A mod(A) C isaGalois overing,itispossibletodes ribepartof intermsof -modules(seeforexample mod(C) mod(A) C r [9℄and[12℄). Thisdes riptionisusefulbe ause iseasiertostudythan ,espe iallywhen a A issimply onne ted(thislastsituationmayo urwhen isof(cid:28)niterepresentationtype,see[12℄). Noti e that simple onne tedness and tilting theory have already been studied together through the following onje ture formulated in [5℄: A =⇒ B (P ) 2 is simply onne ted is simply onne ted A T More pre isely, the above impli ation is true if: is of (cid:28)nite representation type and is of proje tive A=kQ Q B dimensionat mostone(see [2℄),or if: (with a quiver)and istame(see [5℄,see also [3℄for a (P ) (P ) A 1 2 generalisationtothe aseofquasi-tiltedalgebras). Thetwoproblems and arerelatedbe ause C →A C issimply onne ted if and onlyif thereisnoproper Galois overing with onne tedandlo ally bounded (see [19℄). (P ) T 1 In order to study the question we will exhibit su(cid:30) ient onditions for to be of the (cid:28)rst kind F C −→ A T F w.r.t. a (cid:28)xed Galois overing . Indeed, if is of the (cid:28)rst kind w.r.t. , then it is possible to B T onstru t a Galois overing of . Under additional hypotheses on ,theequivalen e lass of this Galois ∗ adress: DépartementdeMathématiques,E olenormalesupérieuredeCa han,61avenueduprésidentWilson,94235Ca han, Fra†n e e-mail: plemeurdptmaths.ens- a han.fr 1 F Fo:veCri→ngAis uniqFu′e:lyC′d→eteArmined by the equivalen e lass of . Here we say that two Galokis overings and areequivalentif andonlyifthereexistsa ommutativesquareof - ategories k and -linear fun tors: C ∼ // C′ F F′ (cid:15)(cid:15) (cid:15)(cid:15) A ∼ // A wherehorizontalarrowsareisomorphismsandwherethebottomhorizontalarrowrestri tstotheidentity A A B map on the set of obje ts of . For simpli ity, let us say that and have the same onne ted Galois G Gal (G) Gal (G) Gal (G) A B A overingswithgroup ifthereexistsabije tionbetweenthesets and where Gal (G) C →A C →B B (resp. ) stands for the set of equivalen e lasses of Galois overings (resp. ) with G C group andwith onne tedandlo allybounded. Withthisde(cid:28)nition,weprovethefollowingtheorem (P ) 1 whi h is themainresult of this textand whi h partially answers : T A B =End (T) G A Theorem 1. Let be a basi tilting -module, let and let be group. →− →− T′ ∈ K K T End (T) End (T′) A A A A 1. If lies in the onne ted omponent of ontaining , then and G have the same onne ted Galois overings with group . →− T K A DA A B A 2. If lies in the onne ted omponent of ontaining or , then and have the same G onne ted Galois overings with group . →− K A A B A In parti ular, if is onne ted (whi h happens when is of (cid:28)nite representation type) then and G G have the same onne ted Galois overings with group , for any group . →− K T A A A Here is the Hasse diagram asso iated with the poset of basi tilting -modules (see [17℄ and A A [23℄). Re all(see[12℄)thatwhen isof(cid:28)niterepresentationtype, admitsa onne tedGalois overing G G π (A) 1 with group if and only if is a fa tor groupof thefundamental group of theAuslander-Reiten A A B quiver of with its mesh relations. Theorem 1 allows us to get the following orollary when and are of (cid:28)niterepresentation type. We thankIbrahimAssemfor having pointedoutthis orollary. T A B = End (T) A B A Corollary 1. Let be a basi tilting -module and let . If both and are of (cid:28)nite A B representation type, then and have isomorphi fundamental groups. (P ) 2 Theorem 1 also allows us to prove thefollowing orollary related to . T A B=End (T) A Corollary 2. (see [2℄ and [3℄) Let be a basi tilting -module and let . →− →− T′ ∈ K K T End (T) A A A 1. If lieEsnindth(eT ′o)nne ted omponentof ontaining ,then: issimply onne ted A if and only if is simply onne ted. →− T K A DA A A 2. If liesin the onne ted omponent of ontaining or then: issimply onne ted ifand B only if is simply onne ted. →− K A A A In parti ular, f is onne ted (e.g. is of (cid:28)nite representation type, see [17℄), then: is simply B onne ted if and only if is simply onne ted. →− K A A Theorem1usestheHassediagram →−inordertoprove(inparti ular)thatabasi tilting -module K A lyinginaspe i(cid:28) onne ted omponentof isofthe(cid:28)rstkindw.r.t. agiven onne tedGalois overing A A of . OMn the other hand, aEnxta1rg(Mum,eMnt)d=ue0to W. Crawley-Boevey (see [13℄) proves that any rAigid - module (i.e. su h that A ) is of the (cid:28)rst kind w.r.t. any Galois overing of with Z car(k)=0 Z/pZ car(k)=p p group if (resp. if , prime). Using this argumentwe are able to prove the (P ) 2 following proposition. Itgivesapartialanswer to andtoA.Skwro«ski'squestionin[24, Problem1℄ wetheritistruethatatriangularalgebraissimply onne tedifandonlyifits(cid:28)rstHo hs hild ohomology group vanishes. A = kQ Q T Proposition 1. (see [3℄, [5℄) Assume that with a quiver without oriented y le. Let be a A B=End (T) B Q A basi tilting -moduleandlet (hen e, istiltedoftype ). Thenthefollowingimpli ation holds: B =⇒ Q HH1(B)=0 is simply onne ted is a tree and B B Re all thatthe impli ation of Proposition 1 has beenprovedin [5℄ for tametilted and in [3℄ for tamequasi-tilted. The text is organised as follows. In Se tion 1 we will give the de(cid:28)nition of all the notions mentioned aboveandwhi hwillbeusedfortheproofofFT′heoBrem1. InSe tion2wewilldetailtFhe: Con→strAu tioAnand give some properties of the Galois overing of starting from a Galois overing of and 2 A T A aTba1si Ttilting -module . In thisFstudy, we will introdFu′ e the fol2lowingChypotheseFs.oTn the -module T: ) is of the (cid:28)rst kind w.r.t. (this ensures thatF′ exists), ) theF-module ob3taψin.eNd ≃froNm by restri ting the s alaNrs is bTasi (this ensures that is ψo:nAne −∼→tedAif is onne ted) ) for any dire t summand of and for any automorphismF′ whi h restri ts to the identity map on obje ts (this ensures that the equivalen e lass of does depend only on the equivalen e lass F of ). These three hypotheses la k of simpli ity, therefore, Se tion 3 is devoted to (cid:28)nd simple su(cid:30) ient A T onditionsforthebasi tilting -modu→−le toverifythese. Inparti ular,wewillprovethatthe ondition T K A A (cid:16) lies in the onne ted omponent of ontaining (cid:17) (cid:28)ts ourrequirements. Sin eourmainobje tive A is to establish a orresponden e between the equivalen e lasses of the onne ted Galois overin→−gs of B T K A →a−nd those of , we will need to (cid:28)nd onditions for to lie in both onne ted omponents of and K A B T B B ontaining and respe tively (re all that →−is also a→−basi tilting -module). This will be done K K in Se tion4 where we→− omparetheHasse diagrams A and B. Inparti ular, we will prove thatth→−ere K A T K A B is an oriented path in starting at and ending at if and only if there is an oriented path in B T starting at and ending at . This equivalen e will be used in Se tion 5 in order to prove Theorem 1, Corollary 1 and Corollary 2. Finally, in Se tion 6, we prove Proposition 1. Iwouldliketoa knowledgeEduardoN.Mar osforhisstimulatingremarks on erningtheimpli ation (P ) 2 during theCIMPA s hool Homologi al methods and representations of non- ommutative algebras in Mar del Plata, Argentina (February2006). 1 Basi de(cid:28)nitions and preparatory lemmata k k C Reminder on - ategories (see [9℄ for more details). A - ategory is small ategory su h that for x,y∈Ob(C) C x y k y x any theset ofmorphismsfrom to isa -ve torspa e andsu hthatthe omposition C k k C of morphisms in is -bilinear. A - ategory is alled onne ted if and only if there is no non trivial Ob(C)=E⊔F C = C =0 x∈E,y∈F y x x y partition sku h that for anyk F. : E → B F′: E′ → B All fun tors bketween - ategorieFs are Fsu′pposed to be -linear. If and are fun torsbetween - ategories, then and are alledequivalentifthereexistsa ommutativediagram: E ∼ //E′ F F′ (cid:15)(cid:15) (cid:15)(cid:15) B ∼ //B wherehorizontalarrowsareisomorphismsandwherethebottomhorizontalarrowrestri tstotheidentity Ob(B) k k C mapon . A lo ally bounded - ategory is a - ategory verifyingthe following onditions: C . distin tobje ts in are not isomorphi , x∈Ob(C) k C C . for any ,the -ve torspa es y∈Ob(C) y x and y∈Ob(C) x y are (cid:28)nite dimensional, L L x∈Ob(C) k C x x . for any ,the -algebra is lo al. A k A For example, let be a basi (cid:28)nite dimensional -algebra (basi means that is the dire t sum of A {e ,...,e } 1 n pairwise non-isomorphi inde omposable proje tive -modules)and let bea ompleteset of A k pairwise orthogonal primitive idempotents. Then an be viewed as a lo ally bounded - ategory as e ,...,e A e e e Ae i,j 1 n i j j i follows: aretheobje tsof ,thespa eofmorphismsfrom to isequalto forany A and the omposition of morphismsis indu ed by the produ t in . Noti e that di(cid:27)erent hoi es for the e ,...,e k 1 n primitiveidempotents giverisetoisomorphi - ategories. Inthistextweshallalways onsider A k su h an algebra as a lo ally bounded - ategory. k C k C k M: C → Modules over - ategories. If is a - ategory, a (left) -module is a -linear fun tor MOD(k) MOD(k) k C M → N where is the ategory of -ve tor spa es. A morphism of -modules is a k C MOD(C) -linear natural transformation of fun tors. The ategory of -modulesis denotedby . C M M(x) A -module is alled lo ally (cid:28)nite dimensional (resp. (cid:28)nite dimensional) if and only if is x∈Ob(C) M(x) (cid:28)nitedimensionalforany (resp. x∈Ob(C) is(cid:28)nitedimensional). The ategoryoflo ally LC Mod(C) mod(C) (cid:28)nite dimensional (resp. (cid:28)nite dimensional) -modules is denoted by (resp. ). Noti e C =A Mod(C)=mod(C) thatif as above, then . IND(C) Ind(C) ind(C) MOD(C) We shall write (resp. , resp. ) for the full sub ategory of (resp. of Mod(C) mod(C) C M =N ... N N ∈ind(C) 1 t i ,resp. of )ofinde omposable -modules. Finally,if with i M N1,...,Nt L L for any , then is alled basi if and only if are pairwise non isomorphi . 3 A k A Tilting modules. Let be a basi (cid:28)nite dimensional -algebra. A tilting -module (see [10℄, [16℄ T ∈mod(A) and [21℄) is a module verifying thefollowing onditions: (T1) T pd (T)<∞ A has (cid:28)niteproje tive dimension (i.e. ), (T2) Exti (T,T)=0 i>0 T A for any (i.e. is selforthogonal), (T3) mod(A) 0→A→T →...→T →0 T ,...,T ∈add(T) 1 r 1 r thereisanexa tsequen e in : with (this T ,...,T T 1 r last propertymeansthat are dire tsums of dire tsummandsof ). (T1) (T2) A module whi h satis(cid:28)es onditions and above is alled an ex eptional module. Assume that T A T End (T) f.t = f(t) A is a tilting -module. Then, is also a tilting -module for the following a tion: f ∈End (T) t∈T T A A for and . Assume moreover that is basi as an -module and (cid:28)x a de omposition T =T ⊕...⊕T T ,...,T ∈ind(A) End (T) 1 n 1 n A with . This de(cid:28)nesa de omposition oftheunitof into a B :=End (T) k A sumofprimitivepairwise orthogonalidempotentssothat isalo allybounded - ategory {T ,...,T } i,j B as follows: the set of obje ts is 1 n and for any the spa e of morphisms Tj Ti is equal to Hom (T ,T ) x∈Ob(A) T(x) B A i j . For any , is aninde omposable -module: B → MOD(k) T ∈Ob(B) 7→ T (x) i i u∈ B 7→ T (x)−u−→x T (x) Tj Ti i j T = T(x) k and x∈Ob(A) . Finally, thefollowing fun tor is an isomorphismof - ategories: L ρ : A −→ End (T) A B x∈Ob(A) 7−→ T(x)∈Ob(End (T)) B T(u) u∈ A 7−→ T(x)−−−→T(y) y x End (T) A For more details on the above properties and for a more general study of , we refer the reader to [10℄, [14℄, [16℄ and [21℄. T A T A A Let bethesetofbasi tilting -modulesuTp∈toTisomorphism. Then isendowedwTit⊥hapTartialorder A introdu edin [23℄ and de(cid:28)nedas follows. If , theright perpendi ular ategory of is de(cid:28)ned by(see [7℄): T⊥ ={X ∈mod(A) | (∀i>1) Exti (T,X)=0} A ′ T′ ∈T T 6 T′ T⊥ ⊆ T ⊥ If A is another basi tilting module, we write provided that . In parti ul→−ar, we T 6A T ∈T K A A have forany . In→−[17℄,D.HappelandL.UngerhaveprovedthattheHassed→−iagram of T K T T →T′ K A A A A Tis=asXfollowTs. TheXve∈rtii neds(iAn) T′a=reYtheeTlementsYin∈inda(nAd)thereisanarrow in ifandonly if: u vwith , with andthereexistsanonsplitexa tsequen e 0 → X −→LM −→ Y → 0 mod(A) LM ∈ add(T) u v in with . In su h a→−situation, (resp. ) is the left (resp. add(T) X Y K A right) -approximationof (resp. ). Formoredetailson ,wereferthereaderto[17℄and[18℄. k G G k E Galois overingsof - ategories. Let beagroup. Afree - ategoryisa - ategory endowed G→Aut(E) G Ob(E) with amorphismofgroups su hthattheindu eda tion of on isfree. Inthis ase, E →E/G E G k there exists a (unique)quotient of by in the ategory of - ategories. With this property, B G F: E →B aGalois overingof withgroup isbyde(cid:28)nitionafun tor endowedwithagroupmorphism G→Aut(F)={g∈Aut(E)|F ◦g=F} and verifying thefollowing fa ts: G→Aut(F)֒→Aut(E) E G . thegroup morphism endows with a stru ture of free - ategory, F E/G−→B F . thefun tor indu edby is an isomorphism. G→Aut(F) This de(cid:28)nition implies that thEe group morphism isxon∈e-Otob(-oBn)e (a tualFly−o1n(xe) an show that this is an isomorphismFwhenx is onne tFed−)1.(FM(oxr)e)o=verGf.oxr any x∈Ob(Eth)e set is non empty and alled the(cid:28)ber of at . It veri(cid:28)es for any . Were allthatGalois overingsareparti ular asesof overingfun tors(see[9℄). A overingfun tor k F: E → B x,y ∈ E F 0 is a -linear fun tor su h that for any , the following mappings indu ed by are bije tive: y′Ex→ F(y)BF(x) yEx′ → F(y)BF(x) and y′∈FM−1(F(y)) x′∈FM−1(F(x)) Remarkthata overingfun toris notsupposedto restri t to a surje tive mappingonobje ts. However, k a overing fun tor is an isomorphism of - ategories if and only if it restri ts to a bije tive mapping on obje ts. Using basi linear algebra argumentsit is easy to prove thefollowing useful lemma: 4 p,q k q◦p p,q q◦p Lemma 1.1. Let be -linear fun tors su h that the omposition is de(cid:28)ned. Then and are overing fun tors as soon as two of them are so. F: E →B G B E If isaGalois overingwithgroup andwith onne tedthen neednotbe onne ted. In E = E E E i i i su ha ase, if wherethe 'sarethe onne ted omponentsof ,thenforea h ,thefollowing i‘∈I fun tor: F :E ֒→E →B i i is a Galois overing with group: G :={g∈G | g(Ob(E ))∩Ob(E )6=∅}={g∈G| g(Ob(E ))=Ob(E )} i i i i i i,j ∈ I G G G i j Moreover, if then the groups and are onjugated in and there exists a ommutative diagram: Ei? ∼ //Ej ?? (cid:127)(cid:127) ? (cid:127) ? (cid:127) Fi ??(cid:31)(cid:31) (cid:127)(cid:127)(cid:127)(cid:127)(cid:127) Fj B G {E |i∈I} i wherethehorizontalarrowisanisomorphism. Thisimpliesthat a tstransitivelyontheset E B of the onne ted omponentsof . Noti e thatall these fa ts maybe false if is not onne ted. B Two Galois overingsof are alledequivalentifandonlyif theyareisomorphi as fun torsbetween k - ategories (see above, this implies thatthe groups of the Galois overings are isomorphi ). The equiv- F [F] alen e lass of a Galois overing will be denoted by . Finally, we shall say for short that a Galois E →B E B overing is onne ted if and only if is onne ted and lo ally bounded(this impliesthat is onne ted and lo ally bounded,see [12, 1.2℄). k B k Simply onne ted lo ally bounded - ategories. Let be a lo ally bounded - ategory. Then B B is alled simply onne ted if and only if there is no proper onne ted Galois overing of (proper meanswithnontrivialgroup). Thisde(cid:28)nitionisequivalenttotheoriginalone(see[20℄forthetriangular B ase and [19, Prop. 4.1℄ for the non-triangular ase) whi h was introdu ed in [1℄: is simply onne ted π (Q ,I)=1 kQ /I ≃B B 1 B B ifandonlyif foranyadmissiblepresentation of (see[20℄forthede(cid:28)nitionof π (Q ,I) 1 B ). F:E →B Basi notions on overing te hniques(see [9℄ and[22℄). Let bea Galois overingwith G G E G MOD(E) M ∈MOD(E) g∈G ggMrou:p= F. ◦Tgh−e1 ∈-aM tiOonDo(nE) gives risetoFana tion of on : ifF : MOD(E) →anMdOD(B), then λ . Moreover, de(cid:28)nes two additive fun tors (the F.: MOD(B) → MOD(E) push-down fun tor) and (the pull-up fun tor) with the following properties (for more details we refer thereader to [9℄): F.M =M◦F M ∈MOD(B) . for any , . if M ∈ MOD(E), then (FλM)(x) = x′∈F−1(x)M(x′) for any x ∈ Ob(B). If u ∈ yEx, then the (F M)(F(u)) M(g.x)L g.x∈F−1(F(x))=G.x M(g.u): M(g.x)→ λ restri tion of to (for )isequalto M(g.y) , F F. λ . and are exa tand sendproje tive modules to proje tive modules, F E ≃ B F.B ≃ E E B E x 7→ E . λ g∈G and , where (resp. ) is the -module y∈Ob(E) y x (resp. the B-moduLle x7→ y∈Ob(B) yBx), L F.F = LgId . λ g∈G MOD(E) X ∈MLOD(B) X ≃F Y Y ∈MOD(E) F F.X ≃ X . if veri(cid:28)es λ for some , then λ g∈G , F (mod(E))⊆mod(B) F (Mod(E))⊆Mod(B) F.(Mod(B))⊆Mod(E) L λ λ . , , , D◦F.=F.◦D D◦F ≃F ◦D D=Hom (?,k) λ|mod(E) λ |mod(E) k . and where is theusual duality, F F. λ . is left adjoint to , D◦F ◦D F. Hom (F.M,N)≃ λ E . isrightadjointto (inparti ular, thereisa fun torialisomorphism Hom (M,F N) M ∈MOD(B) N ∈mod(E) B λ for any and any ). M,N ∈MOD(E) F λ . for any , thefollowing mappingsindu edby are bije tive: Hom (gM,N)→Hom (F M,F N) Hom (M, gN)→Hom (F M,F N) E B λ λ E B λ λ and gM∈G gM∈G 5 These properties give the following result whi h will be usedmanytimes in this text: M ∈MOD(E) M ∈MOD(B) F M λ Lemma1.2. If (resp. ) has(cid:28)niteproje tive dimension,thensodoes F.(M) (resp. ). M ∈MOD(E) N ∈MOD(B) j >1 Let , and . There is an isomorphism of ve tor spa es: Extj(F M,N)≃Extj(M,F.N) B λ E M ∈mod(E) Moreover, if then there is an isomorphism of ve tor spa es: Extj(F.N,M)≃Extj(N,F N) E B λ F. F λ Proof: The (cid:28)rst assertion is due to the fa t that and are exa t and send proje tive modules F. F F.: D(MOD(B)) → D(MOD(E)) λ to proje tive modules. For the same reasons, and indu e and F : D(MOD(E)) → D(MOD(B)) (F ,F.) (F.,F ) λ λ λ respe tively and the adjun tions and Exatjt(tXh,eYle)v=el of module ategories give rise to adjun tions at the level of derived ategories. Sin e E Hom (Y,X[j]) (cid:4) D(MOD(E)) we get theannoun ed isomorphisms. k F Remark that an isomorphism of - ategories is a parti ular ase of Galois overing. When is an F. F λ isomorphism, and haveadditional properties as shows thefollowing lemmawhose proof isa dire t onsequen e of thede(cid:28)nition of thepush-down and pull-upfun tors. F: E → B k F.F = Id λ MOD(E) Lemma 1.3. Assume that is an isomorphism of - ategories. Then and F F.=Id λ MOD(B) . F: E → B G B M Modules of the (cid:28)rst kind. Let be a Galois overing with group . A -module is F N M alledofthe(cid:28)rstkindw.r.t. ifandonlyifforanyinde omposabledire tsummand of thereexists N ∈MOD(E) N ≃F N ind (B) mod (B) λ 1 1 su h that . We will denote by (resp. ) the full sub ategory of ind(B) mod(B) F ind (B) b (resp. of )ofmodulbesofthe(cid:28)rstkindw.r.t. . Noti ethefollowingpropertiesof 1 : M ∈ind (B) N ∈MOD(E) M ≃F N N ∈ind(E) 1 λ . if and verify , then , M ∈ind (B) N,N′ ∈MOD(E) M ≃F N ≃F N′ g∈G 1 λ λ . Nif′ ≃ gN and verify , thenthere exists su h that . B E = E E E If is onne ted and if i∈I i, where the i's are the onne ted omponents of , then an B M ‘ F inde omposable -module is of the (cid:28)rst kind w.r.t. if and only if it is of the (cid:28)rst kind w.r.t. F : E ֒→ E → B i ∈ I i i for any . More pre isely, we have the following well know lemma where we keep theestablished notations. M ∈ind(B) M ∈ind(E) F M ≃M i∈I λ Lemma 1.4. Let . If is su h that , then there is a unique su h M ∈ind(E ) M ≃(F ) M j ∈I g∈G that i . In su h a ase, wce have i λ . Morecover, if then there exists su h g(E )=E g gM ∈ind(E ) (F ) gM ≃M that c i j, and for any su h we have: c j and j λ . c c A k n Throughout this text will denote a basi and onne ted (cid:28)nite dimensional -algebra and will K (A) 0 denote therankof its Grothendie k group . 2 Galois overings asso iated with modules of the (cid:28)rst kind Throughout this se tion we will use thefollowing data: F: C →A G - a Galois overing with group T = T ... T ∈ mod(A) T ∈ ind(A) A 1 n i - (with ) a basi tilting -module of the (cid:28)rst kind w.r.t. F L L , λ : F (T )→T T ∈ind(C) i∈{1,...,n} i λ i i i - an isomorphism with ,for every . B=EndbA(T) b Let . With these data, we wish to: F G B 1. onstru ta Galois overing Ti,λi with group of , b F T λ F 2. studythedependen eoftheequivalen e lass of Ti,λi onthedata i, i andonthe hoi eof in [F] b its equivalen e lass , b T B 3. repeatthe onstru tion madeat the(cid:28)rststepstartingfrom (viewedas a basi tilting -module) F End (T) andtheGalois overing Ti,λi. ThiswillgiveaGalois overingof B whi hwillbe ompared F b ρ : A−∼→End (T) A B with using theisomorphism . 6 F b 2.1 Constru tion of the Galois overing Ti,λi End ( gT ) k Let C g,i i be the following - ategory: L b { gT | g∈G, i∈{1,...,n}} gT g′T i i j . th(ei,sget)6=of(ojb,jge′ )ts is ( and are onsidered as di(cid:27)erent obje ts if ), b b b gT hT Hom (gT , hT ) i j C i j . thespa e of morphismsfrom to is equal to , b b b mobd(C) . the omposition is indu edbythe omposition of morphismsin . C gT F.T Remark 2.1. 1. The -modules g,i i and are isomorphi . L G C b k End ( gT ) 2. If is a (cid:28)nite group, then is a (cid:28)nite dimensional -algebra. In parti ular, C g,i i and EndC(F.T) are isomorphi k-algebras. L b G mod(C) End ( gT ) G 3. The -a tion on naturally endows C g,i i with a stru ture of free - ategory. L End ( gT ) G = 1b i 4. C i,g i is lo ally bounded if and only if Ti for any . This is equivalent to say that F.T L C b is a basi b -module. λ ,...,λ 1 n The isomorphisms de(cid:28)nethefollowing fun tor: F : End ( gT ) −→ B Ti,λi C g,i i b LgT 7−→ T i b i gT −→ub hT 7−→ T −λ−j−−F−λ−u−−λ−−i→1 T i j i j b b F : End ( gT )→B G Lemma 2.2. The fun tor Ti,λi C i,g i is a Galois overing with group . b L C′ Enbd ( gT ) F′: C′ → B F Proof: For simpli ity, we shall write for C i,g i and for Ti,λi. Re all (see G C′ L F′◦g=F′ Fb′ F′ Remark2.1)that a tsfreelyon . Moreover,wehave b by onstru tionof . So, de(cid:28)nes k k a ommutativediagram of - ategories and -linear fun tors: C′ ⋆ CC ( ) CCCF′ C C (cid:15)(cid:15) C!! C′/G //B F′ C′ → C′/G F λ WherFe′ is the quotient funC ′t→or.CF′/rGom the properties veri(cid:28)ed by (see Se tion 1) wFe′infer that is a overing fun tor. Sin e is a also overing fun tor we dedu e that so is (see F′ Ob(C′)/G={gT | g∈G, i∈{1,...,n}}/G→ i OLebm(Bm)a=1.{1T).,F..in.a,Tlly,} rFes′tri ts to a bije tive mappinFg′ G (cid:4) 1 n so is an isomorphism. Thus, is a Galois ovebring with group . F End ( gT ) Sin e Ti,λi isaGalois overing,itisnaturaltoaskwhether C i,g i is onne tedornot. The b L following lemma partially answers this question. b C End ( gT ) Lemma 2.3. If is not onne ted, then C i,g i is not onne ted. L C′ End ( bgT ) C Proof: For simpli ity let us write for C i,g i . Assume that is not onne ted and let C = x∈ICx wheretheCx'sarethe onne ted omLponentbsof C. Fori∈{1,...,n}, we haveTi∈ind(C), ‘ x ∈I T ∈ind(C ) so there exists a unique i su h that i xi . Let us set: b G b={g∈G| g(C )=C } x1 x1 x1 i∈{1,...,n} G {C | x∈I} g ∈G g (C )=C Let , sin e a ts transitively on x , there exists i su h that i x1 xi g ∈G (in parti ular 1 x1). Therefore: (∀i∈{1,...,n}) gi−1Ti ∈mod(Cx1) O C′ b Let us set to be thefollowing set of obje ts of : O:={gT | i∈{1,...,n} gg ∈G }⊆Ob(C′) i and i x1 O b Remarkthat satis(cid:28)es thefollowing: 7 O6=∅ T ∈O 1 . be ause . . Sin e C is not bonne ted and sin e G a ts transitively on {Cx | x ∈ I} we have Gx1 ( G. Let g∈G\G gg 6∈G gT 6∈O O(Ob(C) x1, then 1 x1 and 1 . Hen e . . For anygTi ∈Ob(C′), wCe′ havegTib∈O if and oOnly if gTi ∈ind(Cx1O).bA(Cs′)a\O onsequen e, thereis no non zero mborphismin betweenban obje t in and abn obje t in . C′ (cid:4) As a onsequen e, is not onne ted. b F F,T ,λ 2.2 Independen e of the equivalen e lass of Tbi,λi on the data i i [F ] F Inthetwofollowing lemmas,weexaminethedependen eoftheequivalen e lass Ti,λi of Ti,λi onthe T ,...,T ,λ ,...,λ F [F] b b 1 n 1 n hoi e of and on the hoi e of in its equivalen e lass . b b i ∈ {1,...,n} µi: FλTi → Ti Ti ∈ ind(C) Lemma 2.4. For ea h , let be an isomorphism with . Then F F Ti,λi and Ti,µi are equivalent. b Proof: We need to exhibit a ommutativesquare: EndC( i,g gTi) ϕ // EndC( i,g gTi) (⋆) L L F F b Ti,µi Ti,λi B(cid:15)(cid:15) ψ //B(cid:15)(cid:15) b ϕ,ψ ψ(x)=x x∈Ob(B)={T ,...,T } i∈{1,...,n} 1 n where FλaTrei ≃isoTmio≃rpFhλisTmis and where for any θi: Ti −∼→ giTi gi ∈.GLet ϕ. We have , so there exists an isomorphism with . Let us de(cid:28)ne by: ϕb: End ( gT ) −→ End ( gTb) C i,g i C i,g i LgTi 7−→ gLgiTi b gTi −→u hTj 7−→ ggiTi−−h−θj−−u−−bg−θi−−→1 hgjTj ϕ k θ b b F θ : F T → F T i λ i λ i λ i Then is an isomorphism of - ategories. Noti e that de(cid:28)nes an isomorphism . ψ So we an de(cid:28)ne by: b ψ: B −→ B T 7−→ T i i u T −→T 7−→ ψ(u) i j ψ(u) where is the omposition: T −λ−−i−→1 F T −F−λ−θ−i−→1 F T −µ→i T −→u T −µ−−j−→1 F T −F−λ−θ→j F T −λ→j T i λ i λ i i j λ j λ j j ψ kb Obb(B) ϕ ψ So isanisomorphismof - ategories whi h restri ts to theidentitymapon . Moreover and (⋆) (cid:4) make ommutative. T In the following lemma, we show that, under additional hypotheses on , the equivalen e lass of F F [F] Ti,λi does notdependonthe hoi e of in . b F′: C′ →A G F Lemma 2.5. Assume that is a Galois overing (with group ) equivalent to and assume T that veri(cid:28)es the following ondition: H ψ.T ≃T i ψ: A−∼→A A,T i i ( ):(cid:17) for any and for any isomorphism whi h restri ts to the identity map on Ob(A) .(cid:17) T F′ i∈{1,...,n} µ : F′T →T TThe∈nindi(sC′o)f the (cid:28)rsFt′kind w.r.tF. . For ea h let i λ i i be an isomorphism with i . Then Ti,µi and Ti,λi are equivalent. b F F′ Proof: Let us (cid:28)xan isomorphism between and : C′ ϕ //C F′ F A(cid:15)(cid:15) ψ //A(cid:15)(cid:15) 8 ν: Aut(C′)→Aut(C) Aut(C′)=G Aut(C)= Letus set to betheisomorphismof groups(re all that and G ): ν: Aut(C′) → Aut(C) g 7→ ϕ◦g◦ϕ−1 g ∈Aut(C)=G g ∈Aut(C′)=G g MOD(C) ReM alOl Dth(aCt′)any (resp. )MdeO(cid:28)nDe(sCa′)n→auMtomOoDr(pAh)ism of (resp. of ). Therefore we have an equalityof fun tors : (∀g∈Aut(C′)) ϕ ◦g=ν(g)◦ϕ λ λ θ : ψ.T →T i T =ϕ.T ϕ T =T i i i i i λ i i Letus(cid:28)xanisomorpψhi.sψm=Id ,forea h ,andψlFet′u=sFseϕt . Inparti ular: (see Lemma1.3). Sin e λ MOD(A) (lo . it.) and ,we infebr that: b F′T =ψ.ψ F′T =ψF ϕ T =ψ.F T λ i λ λ i . λ λ i λ i i µ : F′T →T b Therefore, we get for ea h anisomorphism i λ i i equal to the omposition: µ : F′T =ψF T −ψ−.−λ→i ψT −θ→i T i λ i . λ i . i i T F′ b This proves that is of the (cid:28)rst kind w.r.t. . A ording to the pre eding subse tion, this de(cid:28)nes the G Galois overing with group : FT′i,µi: EndC′( gTi)→B Mg,i F′ F Thanks to Lemma2.4 we only need to prove that Ti,µi and Ti,λi are equivalent. ϕλ b First, we have thefollowing fun tor indu edby : ϕ: EndC′( i,g gTi) −→ EndC( i,g gTi) gLT 7−→ ν(g)T L=ϕ gT i i λ bi gT −→u hT 7−→ ν(g)T −ϕ−λ−→u ν(h)T i j ib j ν: G→G bϕ ϕ.=Id b ϕ.ϕ =Id λ MOD(C) λ MOD(C) Sin e isanisomorphismandbe auseoftheequalities and ϕ (see Lemma1.3), thefun tor is an isomorphism. ψ λ Se ondly,we have the following fun tor indu edby : ψ: B −→ B T 7−→ T i i T −→u T 7−→ T −ψ−λ−(−θ−j−−1u−θ−i→) T i j i j ψ ψ.=ψ.ψ =Id ψ λ λ MOD(A) Sin e ,thefun tor isawellde(cid:28)nedisomorphismandrestri tstotheidentity Ob(B) map on . Therefore, we have a diagram whose horizontal arrows are isomorphisms and whose bottomhorizontal arrow restri ts to theidentitymapon theset of obje ts: EndC′( i,g gTi) ϕ // EndC( i,g gTi) L L F′ F b Ti,µi Ti,λi B(cid:15)(cid:15) ψ //B(cid:15)(cid:15) b gT −→u hT i j This diagram is ommutative,indeed, for any we have: ψF′ (u) = ψ(µ F′(u)µ−1)=ψ (θ−1µ F′(u)µ−1θ ) Ti,µi j λ i λ j j λ i i = ψ (θ−1θ ψ.(λ )F′(u)ψ.(λ )−1θ−1θ ) λ j j j λ i i i = λ (ψ F′)(u) λ−1 ψ ψ.=Id = λj (Fλϕλ)(u) λi−1 be ause Fλϕ=ψF′MOD(C) j λ λ i be ause = F (ϕ (u))=F ϕ(u) Ti,λi λ Ti,λi b b F′ F (cid:4) This proves that Ti,µi and Ti,λi are equivalent. b T A →− Later, we shall prove that if is a basi tilting -module lying in the onne ted omponent of K A H A A,T ontaining , then the hypothesis ( ) in the pre eding lemma is automati ally veri(cid:28)ed. As a A onsequen e,forthesetilting -modules,theproperty(cid:16)tobeofthe(cid:28)rstkindw.r.t. anequivalen e lassof A H A A,T Galois overingsof (cid:17) doesmakesense. However,thehypothesis( )isnotveri(cid:28)edforany -module T as the following exampleshows. 9 A Example 2.6. Let be the path algebra of the following quiver: 2 (cid:0)@@ >> (cid:0) > b (cid:0) >c (cid:0) > (cid:0) > (cid:0) > (cid:0) (cid:30)(cid:30) 1 //3 a n = 3 k ψ: A −∼→ A ψ(x) = x Here and we have an isomorphism of - ategories: su h that for any x∈Ob(A) ψ(a)=a+cb ψ(b)=b ψ(c)=c i T A i , , and . For any integer , let be the following -module: k (cid:0)@@ >> (cid:0) > 1(cid:0)(cid:0) >>1 (cid:0) > (cid:0) > (cid:0) (cid:30)(cid:30) k // k i Then: T T i i i+1 - and are not isomorphi , for any , car(k)6=2 T ,T ,T 1 2 3 - if , then are pairwise non isomorphi , ψ.T =T i i i+1 - for any . car(k)6=2 H T =T ⊕T ⊕T T A,T 1 2 3 In parti ular, if , thien hypothesEisxt(1(T ,T) i)s≃nokt satis(cid:28)edτfo(rT )≃T . Remark that is not tilting. Indeed, for any , we have A i i be ause A i i. Remark2.1,Lemma2.4 and Lemma2.5 justify the following de(cid:28)nition: H A,T De(cid:28)nition 2.7. Assume that the hypothesis ( ) is satis(cid:28)ed (see Lemma 2.5). The equivalen e lass [F] F A T =T ... T [F] T ∈ind(A) 1 n i of and the basi tilting -module of the (cid:28)rst kind w.r.t. (with ) L L B G F uniquely de(cid:28)ne an equivalen e lass of Galois overing of with group and whi h admits Ti,λi as a [F]T: EndC(F.T)→B b representative. This equivalen e lass will be denoted by . [F] ([F] ) 2.3 Comparison of and T T C′ End ( gT ) F′ F For short, let us write for C g,i i and for Ti,λi . In this subse tion we shall not assume that the hypothesis (HA,T)λof:LFemTLm−a∼→2T.5bisi∈sa{ti1s,(cid:28).e.d.,,nex} ebpt for the last proposition. Starting froFm′ F i λ i i aBndfromtheisomorphisms , ,wehavFe′ onstru tedtheGalois overing Fo′f′ .EOnndem(Ta)y≃tryAto perform thesambe onsFtr′u′ tionFstarting from in order to get a Galois oTvering B of Fa′nd eventually ompaLre: Ob(Aw)it→h O.bI(nC)this purpose, we need to prFov:eOtbh(aCt)→isOobf(Ath)e (cid:28)rstkindw.r.t. . Letus(cid:28)xalifting ofthesurje tive mapping . x∈Ob(A) T[(x) C′ For , let be the -modulesu h that: T[(x)(gT )=T (g−1L(x)) gT ∈Ob(C′) i i i - for any , T[(x) gbT −→u bhT T (g−b1L(x))−u−L−(−x→) T (h−1L(x)) u∈ C′ - “ i j” is equal to i j for any hTj gTi. b b b i∈b{1,...,n} b b Therefore, for any , we have: F′T[(x) (T )= T[(x)(gT )= T (g−1L(x))= F T (x) λ i i i λ i “ ” gM∈G gM∈G “ ” b b b (µ ) : F′T[(x) (T )→(T(x))(T ) (F T )(x)−(−λi−)→x T (x) So we mayset x Ti “ λ ” i i to be equalto λ i i . Lemma 2.8. The linear isomorphisms (µx)Ti (i∈{1,...,n}) de(cid:28)ne anbisomorphism of B-modules: µ : F′T[(x)−∼→T(x) x λ µ B u ∈ C′ F′(u) ∈ Proof: We only need to prove that x is a morphism of -modules. Let tTj sTi so that TjBTi, and let us prove that thefollowing diagram ommutes: b b F′T[(x) (T ) (µx)Ti=(λi)x //T (x) ⋆ “ λ ” i i ( ) “Fλ′T[(x)”(F′(u)) (T(x))(F′(u))=F′(u)x F′T[(x(cid:15)(cid:15)) (T ) (µx)Tj=(λj)x // T ((cid:15)(cid:15)x) λ j j “ ” 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.