ebook img

On fractional kinetic equations and their Sumudu transform multiparameter Struve functions based solutions PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On fractional kinetic equations and their Sumudu transform multiparameter Struve functions based solutions

ON FRACTIONAL KINETIC EQUATIONS AND THEIR SUMUDU TRANSFORM MULTIPARAMETER STRUVE FUNCTIONS BASED SOLUTIONS K.S. NISAR*, F.B.M. BELGACEM, M. S. ABOUZAID Abstract. This research paper treats fractional kinetic equations using the Sumudu transformoperator. The exactsolutions obtainedare presentedin terms ofStruve func- 7 tions offour parameters. Byway ofobtainingsolutions some novelanduseful andnovel 1 kinetictheoremsarepresentedinlightoftheSumuduproperties. Resultsobtainedinthis 0 2 studymaybepragmaticallyusedinmanybranchestheoreticalandexperimentalscience n applications, not the least of which are mathematical physics, and various engineering a fields. J 7 1 1. Introduction ] A C The Struve function H (z) and modified Struve function L (z) are are given by the v v . following infinite series, respectively, h t a z υ+1 ∞ ( 1)k z 2k m H (z) = − , (1.1) υ 2 Γ k + 3 Γ k +υ + 3 2 [ (cid:16) (cid:17) Xk=0 2 2 (cid:16) (cid:17) 1 and (cid:0) (cid:1) (cid:0) (cid:1) v z υ+1 ∞ 1 z 2k 9 L (z) = . (1.2) 8 υ 2 Γ k + 3 Γ k +υ + 3 2 5 (cid:16) (cid:17) Xk=0 2 2 (cid:16) (cid:17) 4 The Struve function of order υ (see [40])(cid:0)is the(cid:1)sol(cid:0)ution of th(cid:1)e non-homogeneous Bessel 0 differential equation: . 1 0 4(x/2)υ+1 7 x2y′′(x)+xy′(x)+ x2 υ2 y(x) = , υ C. (1.3) − √πΓ(υ +1/2) ∈ 1 : (cid:0) (cid:1) v where Γ(z) is the gamma function and, L (z) is related to H (z), by the relation υ υ i X L (z) = ie−nπi/2H (iz). (1.4) r n − n a While, thehomogeneoussolutionsof (1.3)aretheBesselfunctions, theparticularsolutions may be given to correspond to Struve functions. For complex parameter, υ, modified 2010 Mathematics Subject Classification. 26A33, 44A10, 44A20, 33E12. Keywords andphrases. Fractionalkineticequations,Sumudutransforms,generalizedStruvefunction, Fractional calculus . *corresponding author. 1 2 K.S. NISAR*,F.B.M. BELGACEM, M. S. ABOUZAID Struve functions, L , turn out to be solutions of a modified version of equation (1.3), υ where the LHS zeroth coefficient is replaced by: (x2 + v2). Applications of Struve − functions can be found in various branches of applied science (see [1,21,29,35,36]). Generalized versions of Struve function are done by extending its domain or expanding the type and number of parameters. In particular, a four- parameter generalized struve function, studied by Singh [37], is defined by: ∞ ( 1)k Hλ,α(x) := − x 2k+p+1,p C (1.5) p,µ Γ(αk +µ)Γ λk +p+ 3 2 ∈ k=0 2 X (cid:0) (cid:1) where λ > 0,α > 0 and µ an arbitrary para(cid:0)meter. (cid:1) For subsequent need towards our objective below we also recall the generalized Mittag- Leffler function [24] defined by, ∞ xn E (x) = . (1.6) α,β Γ(αn+β) n=0 X The main motive of this paper is to study the solution of generalized form of the fractional kinetic equation involving generalized Struve function of four parameters with the help of Sumudu transform. The Sumudu transform introduced by Watugala (see [41,42]). For more details about Sumudu transform, see ( [2–10,13,22]). The Sumudu transform over the set functions A = f (t) M,τ ,τ > 0, f (t) < Me|t|/τj , if t ( 1)j [0, ) 1 2 ∃ | | ∈ − × ∞ n o (cid:12) is defined by (cid:12) ∞ G(u) = S[f (t);u] = f (ut)e−tdt, u ( τ ,τ ). (1.7) 1 2 ∈ − Z0 The significance of fractional differential equations in the field of applied science in- creased more attention not only in mathematics but also in physics, dynamical systems, control systems and systems engineering, to create the mathematical model of numer- ous physical phenomena ( [14–16,18,19,25–28,30–34,43]. To carry our investigation,we would like to recall the following results due to Haubold and Mathai [20]. The fractional differential equation between rate of change of reaction was established by Haubold and Mathai [20]. The destruction rate and the production rate are given as follows dN = d(N )+p(N ) (1.8) t t dt − where N = N (t) the rate of reaction ,d = d(N) the rate of destruction, p = p(N) the rate of production and N denote the function defined by N (t∗) = N (t t∗),t∗ > 0 t t − ON FRACTIONAL KINETIC EQUATIONS AND THEIR SUMUDU TRANSFORM... 3 The special case of (1.8), for spatial fluctuations or in homogeneities in N (t) the quantity are neglected, that is the equation dN = c N (t) (1.9) i i dt − with the initial condition that N (t = 0) = N is the number of density of species i at i 0 time t = 0 and c > 0. If we reject the index i and integrate the standard kinetic equation i (1.9), we have N (t) N = c D−1N (t) (1.10) − 0 − 0 t where D−1 is the special case of the Riemann-Liouville integral operator D−υ defined 0 t 0 t as t 1 D−υf (t) = (t s)υ−1f (s)ds,t > 0, (υ) > 0 (1.11) 0 t Γ(υ) − ℜ Z 0 The fractional generalization of the standard kinetic equation (1.10) given by Haubold and Mathai [20] as: N (t) N = cυD−1N (t) (1.12) − 0 − 0 t and obtained the solution of (1.12) as follows ∞ ( 1)k N (t) = N − (ct)υk (1.13) 0 Γ(υk+1) k=0 X Further, Saxena and Kalla [34] considered the following fractional kinetic equation: N (t) N f (t) = cυ D−1N (t) ( (υ) > 0) (1.14) − 0 − 0 t ℜ where N(t) denotes the number density o(cid:0)f a given(cid:1) species at time t, N = N (0) is the 0 number density ofthatspecies attimet = 0, cisaconstant andf L(0, ). Byapplying ∈ ∞ the Laplace transform to (1.14), F (p) L[N (t)](p) = N 0 1+cυp−υ ∞ c = N ( cυ)np−nυ F (p) n N , < 1 , (1.15) 0 0 − ∈ p ! n=0 (cid:18) (cid:12) (cid:12) (cid:19) X (cid:12) (cid:12) where the Laplace transform ( [38]) is defined by (cid:12) (cid:12) (cid:12) (cid:12) ∞ F (p) = L[f(t)] = e−ptf (t)dt (p) > 0 (1.16) ℜ Z 0 The Sumudu transform of (1.11) is (see, ( [3]), p.106,eqn (2.1)) : S D−vf (t) = uvG(u) (1.17) 0 t (cid:2) (cid:3) 4 K.S. NISAR*,F.B.M. BELGACEM, M. S. ABOUZAID where G(u) is defined in (1.7). It is clear that the Sumudu transform of f (t) = tα is given by ∞ S[f (t)] = (tu)αe−tdt = uαΓ(α+1), (α) > 1 (1.18) ℜ − Z0 2. Solution of generalized fractional Kinetic equations We devote this section to the derivative of the exact solution of time fractional kinetic equation via the well-known Sumudu transform. The results are as follows: Theorem 1. If d > 0,υ > 0,α,c,l,t C , (l) > 1 and (u) > 0 with u < d−1, then ∈ ℜ − ℜ | | the solution of the equation N (t) N Hλ,α(t) := dυ D−υN (t), (2.1) − 0 l,µ − 0 t is given by the following formula N ∞ ( 1)kΓ(2k +l+2) t 2k+l N (t) = 0 − E ( dυtυ) (2.2) 2 Γ(αk +µ)Γ λk +l+ 3 2 υ,2k+l+1 − k−0 2 (cid:18) (cid:19) X where E (.) is the generalized M(cid:0)ittag-Leffler(cid:1)function given in (1.6). v,2k+l+1 Proof. Taking the Sumudu transform to the both sides of (2.1), we obtain the following relation, S N (t) N S Hλ,α(t);p = dυS D−υN (t) { }− 0 l,µ − 0 t Now, using the definition given in (n1.5), we geto (cid:8) (cid:9) ∗ ∞ ( 1)k t 2k+l+1 ∗ N (u) N S − = dυuvN (u) − 0 Γ(αk +µ)Γ λk +l + 3 2 − ( !) k−0 2 (cid:18) (cid:19) X ∗ (cid:0) (cid:1) where N (u) = S N (t),u and S tλ−1 = uλ−1Γ(λ) gives, { } ∗ ∞ ( 1(cid:8))k (cid:9) ∗ N (u) N − u2k+l+1Γ(2k +l +2) = dυuvN (u), − 0 Γ(αk +µ)Γ λk +l + 3 − k−0 2 X (cid:0) (cid:1) ∗ ∞ ( 1)k u 2k+l+1Γ(2k +l+2) N (u)(1+dυuv) = N − 2 0 Γ(αk +µ)Γ λk +l + 3 k−0 (cid:0) (cid:1) 2 X ∗ N ∞ ( 1)k (cid:0)u 2k+l+1Γ((cid:1)2k +l+2) N (u) = 0 − 2 (1+dυuv) Γ(αk +µ)Γ λk +l + 3 k−0 (cid:0) (cid:1) 2 X ∞ ( 1)k u 2k+l+1Γ(2k +(cid:0)l+2) ∞ (cid:1) = N − 2 ( 1)r(du)vr 0 Γ(αk +µ)Γ λk +l + 3 − k−0 (cid:0) (cid:1) 2 r−0 X X (cid:0) (cid:1) ON FRACTIONAL KINETIC EQUATIONS AND THEIR SUMUDU TRANSFORM... 5 Now, taking the inverse transform of the above expression and using the relation tλ−1 S−1 uv = , (u) > 0, (v) > 0, { } Γ(v) ℜ ℜ we get ∞ ( 1)k(2)−(2k+l+1)Γ(2k +l +2) ∞ ( 1)rdvrt2k+vr+l N (t) = N − − 0 Γ(αk +µ)Γ λk +l + 3 Γ(2k +l+1+vr) k−0 2 r−0 X X ∞ ( 1)kΓ(2k(cid:0)+l +2)t2k(cid:1)+l ∞ ( 1)rdvrtvr = N − − 0 Γ(αk +µ)Γ λk +l + 3 (2)2k+l+1 Γ(2k +l +1+vr) k−0 2 r−0 X X In view of (1.6), we obtain the desi(cid:0)red result. (cid:1) (cid:3) Corollary 2.1. If we put α = λ = 1 and µ = 3/2 in (2.1) then we obtain the solution of fractional kinetic equation involving Struve function H (z) as : v For d > 0,υ > 0,c,l,t C, (l) > 1 and (u) > 0, then the solution of the equation ∈ ℜ − ℜ N (t) N H1,1 (t) := dυ D−υN (t), − 0 l,3/2 − 0 t is given by the following formula N ∞ ( 1)kΓ(2k +l+2) t 2k+l N (t) = 0 − E ( dυtυ) 2 Γ k +l+ 3 Γ k + 3 2 v,2k+l+1 − k−0 2 2 (cid:18) (cid:19) X (cid:0) (cid:1) (cid:0) (cid:1) Theorem 2. If d > 0,υ > 0,α,c,b,l,t C, (l) > 1 and (u) > 0 then for the ∈ ℜ − ℜ solution of the equation N (t) N Hλ,α(dυtυ) = dυ D−υN (t) (2.3) − 0 p,µ − 0 t there holds the formula dv l+1 N (t) = N tlv+v−1 0 2 (cid:18) (cid:19) ∞ ( 1)kΓ(2kv +vl+ν +1) dυtv 2k − E ( dυtυ), (2.4) × Γ(αk+µ)Γ λk +l+ 3 2 v,(2k+l+1)υ − k=0 2 (cid:18) (cid:19) X (cid:0) (cid:1) where E (.) is the generalized Mittag-Leffler function (1.6). v,2kυ+lv+v+1 Proof. The proof can be proved in parallel with the proof of Theorem 1, so the details of (cid:3) proofs are omitted. 6 K.S. NISAR*,F.B.M. BELGACEM, M. S. ABOUZAID Corollary 2.2. If we set, α = λ = 1 and µ = 3/2 in (2.3) then we obtain the solution of fractional kinetic equation involving Struve function H (z) as : For d > 0,υ > 0,c,l,t v ∈ C, (l) > 1 and (u) > 0, then the solution of the equation , ℜ − ℜ N (t) N H1,1 (dvtv) := dυ D−υN (t), − 0 l,3/2 − 0 t is given by dv l+1 N (t) = N tlv+v−1 0 2 (cid:18) (cid:19) ∞ ( 1)kΓ(2kv +vl+ν +1) dυtv 2k − E ( dυtυ) × Γ k + 3 Γ k +l + 3 2 v,(2k+l+1)υ − k=0 2 2 (cid:18) (cid:19) X Theorem 3. If d > 0,υ >(cid:0) 0,a,(cid:1)c,b(cid:0),l,t C ,(cid:1) (l) > 1, (u) > 0 with u < d−1 and ∈ ℜ − ℜ | | a = d then for the solution of the equation 6 N (t) N Hλ,α(dυtυ) = aυ D−υN (t), (2.5) − 0 l,µ − 0 t there hold the formula dv l+1 ∞ ( 1)kΓ(2kυ +υl+υ +1) N (t) = N tlv+v−1 − 0 2 Γ(αk +µ)Γ λk +l+ 3 (cid:18) (cid:19) k=0 2 X dυtv 2k (cid:0) (cid:1) E ( aυtυ), (2.6) v,(2k+l+1)υ × 2 − (cid:18) (cid:19) where E ( aυtυ) is the Mittag-Leffler function in (1.6). v,(2k+l+1)υ − Proof. The proof of theorem 3 is derived similarly as that of theorems 1 and 2. (cid:3) Corollary 2.3. By setting α = λ = 1 and µ = 3/2 in (2.5) we obtain the solution of fractional kinetic equations as : For d > 0,υ > 0,c,l,t C,a = d , (l) > 1 (u) > ∈ 6 ℜ − ℜ 0 and then the solution of the equation , N (t) N H1,1 (dvtv) := aυ D−υN (t), − 0 l,3/2 − 0 t is given by dv l+1 ∞ ( 1)kΓ(2kυ +υl+υ +1) N (t) = N tlv+v−1 − 0 2 Γ k + 3 Γ k +l+ 3 (cid:18) (cid:19) k=0 2 2 X dυtv 2k (cid:0) (cid:1) (cid:0) (cid:1) E ( aυtυ) v,(2k+l+1)υ × 2 − (cid:18) (cid:19) ON FRACTIONAL KINETIC EQUATIONS AND THEIR SUMUDU TRANSFORM... 7 2.1. Special Cases. 1 . Consider the generalized Struve function given by Bhowmic [11] ∞ ( 1)k t 2k+l+1 Hλ(x) = − 2 (2.7) l Γ λk +l+ 3 Γ k + 3 k−0 (cid:0)2(cid:1) 2 X Now, we have the following corollaries du(cid:0)e to theorem(cid:1) s(cid:0)1, 2 an(cid:1)d 3 respectively. Corollary 2.4. If d > 0,υ > 0,λ,l,t C, (l) > 1 and (u) > 0 then the solution of ∈ ℜ − ℜ the equation N (t) N Hλ(t) := dυ D−υN (t), − 0 l − 0 t is given by the following formula N ∞ ( 1)kΓ(2k +l+2) t 2k+l N (t) = 0 − E ( dυtυ) 2 Γ λk +l + 3 Γ k + 3 2 υ,2k+l+1 − k−0 2 2 (cid:18) (cid:19) X Corollary 2.5. If d > 0,υ(cid:0)> 0,λ,l,t(cid:1) C(cid:0) , (cid:1)(l) > 1 and (u) > 0 then for the ∈ ℜ − ℜ solution of the equation N (t) N Hλ(dυtυ) = dυ D−υN (t) − 0 l − 0 t there holds the formula dv l+1 ∞ ( 1)kΓ(2kv +vl+ν +1) dυtv 2k N (t) = N tlv+v−1 − E ( dυtυ) 0 2 Γ λk +l + 3 Γ k + 3 2 v,(2k+l+1)υ − (cid:18) (cid:19) k=0 2 2 (cid:18) (cid:19) X Corollary 2.6. If d > 0,υ > 0,λ,(cid:0)b,l,t C ,(cid:1)a =(cid:0)d , ((cid:1)l) > 1 and (u) > 0 then for ∈ 6 ℜ − ℜ the solution of the equation N (t) N Hλ(dυtυ) = aυ D−υN (t) − 0 l − 0 t there hold the formula dv l+1 ∞ ( 1)kΓ(2kυ +υl+υ +1) N (t) = N tlv+v−1 − 0 2 λk +l+ 3 Γ k + 3 (cid:18) (cid:19) k=0 2 2 X dυtv 2k (cid:0) (cid:1) (cid:0) (cid:1) E ( aυtυ) v,(2k+l+1)υ × 2 − (cid:18) (cid:19) 2 . Consider the generalized Struve function given by Kant [23] ∞ ( 1)k x 2k+l+1 Hλ,α(x) = − 2 (2.8) l Γ λk +l + 3 Γ αk + 3 k−0 (cid:0)2 (cid:1) 2 X Now, we have the following corollaries(cid:0)due to theo(cid:1)rem(cid:0) 1, 2 an(cid:1)d 3 respectively. 8 K.S. NISAR*,F.B.M. BELGACEM, M. S. ABOUZAID Corollary 2.7. If d > 0,υ > 0,λ,l,t C , (l) > 1 and (u) > 0, then the solution ∈ ℜ − ℜ of the equation N (t) N Hλ,α(t) := dυ D−υN (t), − 0 l − 0 t is given by the following formula N ∞ ( 1)kΓ(2k +l+2) t 2k+l N (t) = 0 − E ( dυtυ) 2 λk +l + 3 Γ αk + 3 2 υ,2k+l+1 − k−0 2 2 (cid:18) (cid:19) X Corollary 2.8. If d > 0,υ(cid:0)> 0,λ,l,t (cid:1)C(cid:0), (l) >(cid:1) 1 and (u) > 0 then for the solution ∈ ℜ − ℜ of the equation N (t) N Hλ,α(dυtυ) = dυ D−υN (t) − 0 l − 0 t there holds the formula dv l+1 ∞ ( 1)kΓ(2kv +vl+ν +1) dυtv 2k N (t) = N tlv+v−1 − E ( dυtυ) 0 2 Γ λk +l+ 3 Γ αk + 3 2 v,(2k+l+1)υ − (cid:18) (cid:19) k=0 2 2 (cid:18) (cid:19) X Corollary 2.9. If d > 0,υ > 0,λ(cid:0),b,l,t C(cid:1),a =(cid:0) d , ((cid:1)l) > 1 and (u) > 0 then for ∈ 6 ℜ − ℜ the solution of the equation N (t) N Hλ,α(dυtυ) = aυ D−υN (t) − 0 l − 0 t there hold the formula dv l+1 ∞ ( 1)kΓ(2kυ +υl+υ +1) N (t) = N tlv+v−1 − 0 2 λk +l + 3 Γ αk + 3 (cid:18) (cid:19) k=0 2 2 X dυtv 2k (cid:0) (cid:1) (cid:0) (cid:1) E ( aυtυ) v,(2k+l+1)υ × 2 − (cid:18) (cid:19) 3 . Consider the generalized Struve function given by Singh [37] ∞ ( 1)k x 2k+l+1 Hλ (x) = − 2 (2.9) l,µ Γ λk + l +(cid:0) 3(cid:1) Γ k + 3 Xk−0 µ 2 2 (cid:16) (cid:17) Now, we have the following corollaries due to theorem(cid:0) 1, t(cid:1)heorem 2 and theorem 3 respectively. Corollary 2.10. If d > 0,υ > 0,λ,l,t C , (l) > 1 and (u) > 0 then the solution ∈ ℜ − ℜ of the equation N (t) N Hλ (t) := dυ D−υN (t), − 0 l,µ − 0 t is given by the following formula N ∞ ( 1)kΓ(2k +l+2) t 2k+l N (t) = 0 − E ( dυtυ) υ,2k+l+1 2 Xk−0 Γ λk + µl + 23 Γ k + 32 (cid:18)2(cid:19) − (cid:16) (cid:17) (cid:0) (cid:1) ON FRACTIONAL KINETIC EQUATIONS AND THEIR SUMUDU TRANSFORM... 9 Corollary 2.11. If d > 0,υ > 0,λ,l,t C , (l) > 1 and (u) > 0 then for the ∈ ℜ − ℜ solution of the equation N (t) N Hλ (dυtυ) = dυ D−υN (t) − 0 l,µ − 0 t there holds the formula dv l+1 ∞ ( 1)kΓ(2kv+vl+ν +1) dυtv 2k N (t) = N tlv+v−1 − E ( dυtυ). 0 v,(2k+l+1)υ 2 Γ λk + l + 3 Γ k + 3 2 − (cid:18) (cid:19) Xk=0 µ 2 2 (cid:18) (cid:19) (cid:16) (cid:17) Corollary 2.12. If d > 0,υ > 0,λ,b,l,t C ,(cid:0)a = d(cid:1), (l) > 1,µ is an arbitrary ∈ 6 ℜ − parameter and (u) > 0 then for the solution of the equation ℜ N (t) N Hλ (dυtυ) = aυ D−υN (t) − 0 l,µ − 0 t there hold the formula dv l+1 ∞ ( 1)kΓ(2kυ +υl+υ +1) N (t) = N tlv+v−1 − 0 2 λk + l + 3 Γ k + 3 (cid:18) (cid:19) Xk=0 µ 2 2 dυtv 2k (cid:16) (cid:17) (cid:0) (cid:1) E ( aυtυ) v,(2k+l+1)υ × 2 − (cid:18) (cid:19) References [1] A.R.Ahmadi,S.E.Widnall,Unsteadylifting-line theory as a singular-perturbation problem,J.Fluid Mech. 153 (1985) 59–81. [2] M.A.Asiru,Sumudutransformandthesolutionofintegralequationofconvolutiontype,International Journal of Mathematical Education in Science and Technology, 32 (2001) 906–910. [3] F.B.M. Belgacem , A.A. Karaballi, S.L., Kalla, Analytical Investigations of the Sumudu Transform and Applications to Integral Production Equations, Journal of Mathematical Problems in Engineer- ing, 3 2003,103–118. [4] F.B.M. Belgacem,A.A. Karaballi,Sumudu transform fundamental properties investigations and ap- plications, International J. Appl. Math. Stoch. Anal. (2005) 1–23. [5] F.B.M. Belgacem, A.A.Karaballi, Sumudu transform fundamental properties investigations and ap- plications, JournalofApplied Mathematics andStochasticAnalysis, 2006 (2006),Article ID 91083. [6] F.B.M.Belgacem,Introducingandanalyzingdeeper Sumuduproperties,NonlinearStudies,13(2006) 23–42. [7] F.B.M. Belgacem, Applications with the Sumudu transform to Bessel functions and equations, Ap- plied Math. Sciences, 4 (2010) 3665–3686. [8] F.B.M. Belgacem, Sumudu applications to Maxwells equations, PIERS Online, 5 (2009) 355–360. [9] F.B.M. Belgacem, E.H., Al-Shemas E. H., R. Silambarasan, Sumudu computation of the transient magnetic field in a lossy medium. Applied Mathematics & Information Sciences, 6 (2016) 1-9. [10] F.B.M. Belgacem, R. Silambarasan, A distinctive Sumudu treatment of trigonometric functions, Journal of Computational and Applied Mathematics, 312 (2017) 74-81. 10 K.S. NISAR*,F.B.M. BELGACEM, M. S. ABOUZAID [11] K. N. Bhowmick, Some relations between a generalized Struve’s function and hypergeometric func- tions, Vijnana Parishad Anusandhan Patrika, 5 (1962) 93–99. [12] K. N. Bhowmick, A generalized Struve’s function and its recurrence formula, Vijnana Parishad Anusandhan Patrika, 6 (1963) 1–11. [13] V.B.L., Chaurasia, R.S., Dubey, F.B.M., Belgacem, Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, International Journal of Mathematics in Eng. Science, & Aerospace, 32 (2012) 179–188. [14] V.B.L. Chaurasia, S.C. Pandey, On the new computable solution of the generalized fractional ki- netic equations involving the generalized function for the fractional calculus and related functions, Astrophys. Space Sci.317 (2008) 213–219. [15] A. Chouhan, S. Sarswat, On solution of generalized Kinetic equation of fractional order, Int. Jr. of Mathematical Sciences and Applications 22 (2012) 813–818. [16] A. Chouhan, S.D. Purohit, S. Saraswat, An alternative method for solving generalized differential equations of fractional order, Kragujevac J. Math. 372 (2013) 299–306. [17] A. Erd´elyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York-Toronto-London,(1954). [18] V.G. Gupta, B. Sharma, F.B.M, Belgacem, On the solutions of generalized fractional kinetic equa- tions, Applied Mathematical Sciences 519 (2011) 899–910. [19] A. Gupta, C.L. Parihar, On solutions of generalized kinetic equations of fractional order, Bol. Soc. Paran.Mat. 321 (2014) 181–189. [20] H.J.Haubold,A.M.Mathai,Thefractionalkineticequationandthermonuclearfunctions,Astrophys. Space Sci. 327 (2000) 53–63. [21] M .H. Hirata, Flow near the bow of a steadily turning ship, J. Fluid Mech. 712 (1975) 283–291. [22] M.G.M., Hussain, F.B.M.,Belgacem, Transient Solutions of Maxwells Equations Based on Sumudu Transformation, Journal of Progress in Electromagnetic Research (PIER) 74 (2007) 273–289. [23] B.N.Kanth,IntegralsinvolvinggeneralizedStruve’sfunction,NepaliMath.Sci.Rep.6(1981)61–64. [24] G.M. Mittag-Leffler, Mittag-Leffler, Sur la representation d’une fonction monogene cinquieme note, Acta Math.29 (1905),101–181. [25] K. S. Nisar, D. Baleanu, and M. M. A. Qurashi, Fractional calculus and application of generalized Struve function, SpringerPlus 5 (2016) 910 . [26] K. S. Nisar, J. Choi, Generalized Fractional Kinetic Equations Involving the generalized modified k-Bessel function, arXiv:1612.03267[math.CA], (2016) [27] K.S. Nisar, S.D. Purohit, Saiful. R. Mondal, Generalized fractional kinetic equations involving gen- eralized Struve function of the first kind, Journal of King Saud University Science 28 2 (2016) 167–171 [28] K.S. Nisar, S.R. Mondal, F.B.M. Belgacem, On Solution of fractional kinetic equation Involving k-Struve function, arXiv:1611.09154[math.CA], (2016) [29] T. G. Pedersen, Variational approach to excitons in carbon nanotubes, Phys. Rev. B 67 (2003) 0734011–0734014. [30] A. Saichev, M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos, 7 (1997) 753-764.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.