ebook img

On Finite NeutroGroups of Type-NG PDF

2020·0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Finite NeutroGroups of Type-NG

InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 On Finite NeutroGroups of Type-NG[1,2,4] A.A.A.Agboola(cid:5) DepartmentofMathematics,FederalUniversityofAgriculture,Abeokuta,Nigeria. [email protected] (cid:5)Incommemorationofthe60thbirthdayoftheauthor Abstract TheNeutroGroupsasalternativestotheclassicalgroupsareofdifferenttypeswithdifferentalgebraicprop- erties. Inthispaper, wearegoingtostudyaclassofNeutroGroupsoftype-NG[1,2,4]. InthisclassofNeu- troGroups,theclosurelaw,theaxiomofassociativityandexistenceofinversearetakingtobeeitherpartially trueorpartiallyfalseforsomeelements;whiletheexistenceofidentityelementandaxiomofcommutativity are taking to be totally true for all the elements. Several examples of NeutroGroups of type-NG[1,2,4] are presented alongwith their basicproperties. It is shownthat Lagrange’s theorem holdsfor some NeutroSub- groups of a NeutroGroup and failed to hold for some NeutroSubgroups of the same NeutroGroup. It is also shownthattheunionoftwoNeutroSubgroupsofaNeutroGroupcanbeaNeutroSubgroupevenifoneisnot containedintheother;andthattheintersectionoftwoNeutroSubgroupsmaynotbeaNeutroSubgroup. The conceptsofNeutroQuotientGroupsandNeutroGroupHomomorphismsarepresentedandstudied. Itisshown thatthefundamentalhomomorphismtheoremoftheclassicalgroupsisholdingintheclassofNeutroGroups oftype-NG[1,2,4]. Keywords:NeutroGroup;AntiGroup;NeutroSubgroup;NeutroQuotientGroup;NeutroGroupHomomorphism. 1 Introduction and Preliminaries In any classical algebraic structure (X,∗), the law of composition of the elements of X otherwise called a binaryoperation∗iswelldefinedforalltheelementsofX thatis,x∗y ∈X ∀x,y ∈X;andaxiomslikeas- sociativity,commutativity,distributivity,etc.definedonXwithrespectto∗aretotallytrueforalltheelements ofX. ThecompositionsofelementsofX thiswayarerestrictiveanddonotreflectthereality. Itdoesnotgive roomforcompositionsthatareeitherpartiallydefined,partiallyundefined(indeterminate),andpartiallyouter- definedortotallyouterdefinedwithrespectto∗. Howeverinthedomainofknowledge,scienceandreality,the lawofcompositionandaxiomsdefinedonX mayeitherbeonlypartiallydefined(partiallytrue),orpartially undefined(partiallyfalse),ortotallyundefined(totallyfalse)withrespectto∗.Inanattempttomodelthereal- itybyallowingthelawofcompositiononX tobeeitherpartiallydefined,partiallyundefined(indeterminate), andpartiallyouterdefinedortotallyouterdefined,Smarandache[8]in2019introducedthenotionsofNetroDe- finedandAntiDefinedlaws,aswellasthenotionsofNeutroAxiomandAntiAxiominspiredbyhisworkin[9], whichhasgivenbirthtonewfieldsofresearchcalledNeutroStructuresandAntiStructures. Foranyclassical algebraiclaworaxiomdefinedonX,therecorrespondneutrosophictriplets< Law,NeutroLaw,AntiLaw > and < Axiom,NeutroAxiom,AntiAxiom > respectively. Smarandache in [7] studied NeutroAlgebras and AntiAlgebrasandin[6],hestudiedPartialAlgebras,UniversalAlgebras,EffectAlgebrasandBoole’sPartial AlgebrasandheshowedthatNeutroAlgebrasaregeneralizationofPartialAlgebras. RezaeiandSmarandache [5]studiedNeutro-BE-algebrasandAnti-BE-algebrasandfundamentallytheyshowedthatanyclassicalalge- braS withnoperations(lawsandaxioms)wheren ≥ 1willhave(2n −1)NeutroAlgebrasand(3n −2n) AntiAlgebras. Agboolaetal. in[1]studiedNeutroAlgebrasandAntiAlgebrasviz-a-viztheclassicalnumber systems N, Z, Q, R and C and in [2], he studied NeutroGroups by considering three NeutroAxioms (Neu- troAssociativity,existenceofNeutroNeutralelementandexistenceofNeutroInverseelement). Inaddition,he studied NeutroSubgroups, NeutroCyclicGroups, NeutroQuotientGroups and NeutroGroupHomomorphisms. He showed that generally, Lagrange’s theorem and 1st isomorphism theorem of the classical groups do not Doi:10.5281/zenodo.4006602 84 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 holdintheclassofNeutroGroups. In[3],AgboolastudiedNeutroRingsbyconsideringthreeNeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication overaddition)). HepresentedSeveralresultsandexamplesonNeutroRings,NeutroSubgrings,NeutroIdeals, NeutroQuotientRingsandNeutroRingHomomorphisms. Heshowedthatthe1stisomorphismtheoremofthe classicalringsholdsintheclassofNeutroRings. MotivatedandinspiredbytheworkofRezaeiandSmaran- dache in [5], the work on NeutroGroups presented in [2] is revisited and the present work is devoted to the study of a class of NeutroGroups of type-NG[1,2,4]. In this class of NeutroGroups, the closure law, the ax- iom of associativity and existence of inverse are taking to be either partially true or partially false for some elements;whiletheexistenceofidentityelementandaxiomofcommutativityaretakingtobetotallytruefor all the elements. Several examples of NeutroGroups of type-NG[1,2,4] are presented along with their basic properties. ItisshownthatLagrange’stheoremholdsforsomeNeutroSubgroupsofaNeutroGroupandfailed toholdforsomeNeutroSubgroupsofthesameNeutroGroup. ItisalsoshownthattheunionoftwoNeutro- SubgroupsofaNeutroGroupcanbeaNeutroSubgroupevenifoneisnotcontainedintheother;andthatthe intersectionoftwoNeutroSubgroupsmaynotbeaNeutroSubgroup. TheconceptsofNeutroQuotientGroups andNeutroGroupHomomorphismsarepresentedandstudied.Itisshownthatthefundamentalhomomorphism theoremoftheclassicalgroupsisholdingintheclassofNeutroGroupsoftype-NG[1,2,4]. Definition1.1. [6] (i) Aclassicaloperationisanoperationwelldefinedforalltheset’selements. (ii) A NeutroOperation is an operation partially well defined, partially indeterminate, and partially outer definedonthegivenset. (iii) AnAntiOperationisanoperationthatisouterdefinedforallset’selements. (iv) Aclassicallaw/axiomdefinedonanonemptysetisalaw/axiomthatistotallytrue(i.e. trueforallset’s elements). (v) ANeutroLaw/NeutroAxiom(orNeutrosophicLaw/NeutrosophicAxiom)definedonanonemptysetisa law/axiomthatistrueforsomeset’selements[degreeoftruth(T)],indeterminateforotherset’selements [degree of indeterminacy (I)], or false for the other set’s elements [degree of falsehood (F)], where T,I,F ∈ [0,1],with(T,I,F) (cid:54)= (1,0,0)thatrepresentstheclassicalaxiom,and(T,I,F) (cid:54)= (0,0,1) thatrepresentstheAntiAxiom. (vi) AnAntiLaw/AntiAxiomdefinedonanonemptysetisalaw/axiomthatisfalseforallset’selements. (vii) ANeutroAlgebraisanalgebrathathasatleastoneNeutroOperationoroneNeutroAxiom(axiomthat istrueforsomeelements,indeterminateforotherelements,andfalseforotherelements),andnoAnti- OperationorAntiAxiom. (viii) AnAntiAlgebraisanalgebraendowedwithatleastoneAntiOperationoratleastoneAntiAxiom. Theorem1.2. [5]LetUbeanonemptyfiniteorinfiniteuniverseofdiscourseandletS beafiniteorinfinite subset of U. If n classical operations (laws and axioms) are defined on S where n ≥ 1, then there will be (2n−1)NeutroAlgebrasand(3n−2n)AntiAlgebras. 2 Main Results Definition2.1. [Classicalgroup][4] LetGbeanonemptysetandlet∗ : G×G → GbeabinaryoperationonG. Thecouple(G,∗)iscalleda classicalgroupifthefollowingconditionshold: (G1) x∗y ∈G∀x,y ∈G[closurelaw]. (G2) x∗(y∗z)=(x∗y)∗z∀x,y,z ∈G[axiomofassociativity]. (G3) Thereexistse∈Gsuchthatx∗e=e∗x=x∀x∈G[axiomofexistenceofneutralelement]. (G4) Thereexistsy ∈Gsuchthatx∗y =y∗x=e∀x∈G[axiomofexistenceofinverseelement]where eistheneutralelementofG. Ifinaddition∀x,y ∈G,wehave Doi:10.5281/zenodo.4006602 85 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 (G5) x∗y =y∗x,then(G,∗)iscalledanabeliangroup. Definition2.2. [NeutroSophicationofthelawandaxiomsoftheclassicalgroup] (NG1) Thereexistatleastthreeduplets(x,y),(u,v),(p,q),∈ Gsuchthatx∗y ∈ G(degreeoftruthT)and [u∗v =outer-defined/indeterminate(degreeofindeterminacyI)orp∗q (cid:54)∈G](degreeoffalsehoodF) [NeutroClosureLaw]. (NG2) Thereexistatleastthreetriplets(x,y,z),(p,q,r),(u,v,w)∈Gsuchthatx∗(y∗z)=(x∗y)∗z(degree oftruthT)and[[p∗(q∗r)]or[(p∗q)∗r]=outer-defined/indeterminate(degreeofindeterminacyI)or u∗(v∗w)(cid:54)=(u∗v)∗w](degreeof,falsehoodF)[NeutroAxiomofassociativity(NeutroAssociativity)]. (NG3) Thereexistsanelemente ∈ Gsuchthatx∗e = e∗x = x(degreeoftruthT)and[[x∗e]or[e∗x] = outer-defined/indeterminate(degreeofindeterminacyI)orx∗e (cid:54)= x (cid:54)= e∗x](degreeoffalsehoodF) foratleastonex∈G[NeutroAxiomofexistenceofneutralelement(NeutroNeutralElement)]. (NG4) Thereexistsanelementu∈Gsuchthatx∗u=u∗x=e(degreeoftruthT)and[[x∗u]or[u∗x)]= outer-defined/indeterminate(degreeofindeterminacyI)orx∗u (cid:54)= e (cid:54)= u∗x]foratleastonex ∈ G (degreeoffalsehoodF)[NeutroAxiomofexistenceofinverseelement(NeutroInverseElement)]where eisaNeutroNeutralElementinG. (NG5) Thereexistatleastthreeduplets(x,y),(u,v),(p,q)∈Gsuchthatx∗y =y∗x(degreeoftruthT)and [[u∗v]or[v∗u]=outer-defined/indeterminate(degreeofindeterminacyI)orp∗q (cid:54)=q∗p](degreeof falsehoodF)[NeutroAxiomofcommutativity(NeutroCommutativity)]. Definition2.3. [AntiSophicationofthelawandaxiomsoftheclassicalgroup] (AG1) Foralltheduplets(x,y)∈G,x∗y (cid:54)∈G[AntiClosureLaw]. (AG2) Forallthetriplets(x,y,z)∈G,x∗(y∗z)(cid:54)=(x∗y)∗z[AntiAxiomofassociativity(AntiAssociativity)]. (AG3) Theredoesnotexistanelemente∈Gsuchthatx∗e=e∗x=x∀x∈G[AntiAxiomofexistenceof neutralelement(AntiNeutralElement)]. (AG4) Theredoesnotexistu ∈ Gsuchthatx∗u = u∗x = e∀x ∈ G[AntiAxiomofexistenceofinverse element(AntiInverseElement)]whereeisanAntiNeutralElementinG. (AG5) Foralltheduplets(x,y)∈G,x∗y (cid:54)=y∗x[AntiAxiomofcommutativity(AntiCommutativity)]. Definition2.4. [NeutroGroup] ANeutroGroupNGisanalternativetotheclassicalgroupGthathasatleastoneNeutroLaworatleastone of{NG1,NG2,NG3,NG4}withnoAntiLaworAntiAxiom. Definition2.5. [AntiGroup] An AntiGroup AG is an alternative to the classical group G that has at least one AntiLaw or at least one of {AG1,AG2,AG3,AG4}. Definition2.6. [NeutroAbelianGroup] ANeutroAbelianGroupNGisanalternativetotheclassicalabeliangroupGthathasatleastoneNeutroLaw oratleastoneof{NG1,NG2,NG3,NG4}andNG5withnoAntiLaworAntiAxiom. Definition2.7. [AntiAbelianGroup] AnAntiAbelianGroupAGisanalternativetotheclassicalabeliangroupGthathasatleastoneAntiLaworat leastoneof{AG1,AG2,AG3,AG4}andAG5. Proposition2.8. Let(G,∗)beafiniteorinfiniteclassicalnonabeliangroup. Then: (i) thereare15typesofNeutroNonAbelianGroups, (ii) thereare65typesofAntiNonAbelianGroups. Proof. ItfollowsfromTheorem1.2. Proposition2.9. Let(G,∗)beafiniteorinfiniteclassicalabeliangroup. Then: (i) thereare31typesofNeutroAbelianGroups, Doi:10.5281/zenodo.4006602 86 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 (ii) thereare211typesofAntiAbelianGroups. Proof. ItfollowsfromTheorem1.2. Remark2.10. ItisevidentfromTheorem2.8andTheorem2.9thattherearemanytypesofNeutroGroupsand NeutroAbelianGroups. ThetypeofNeutroGroupsstudiedbyAgboolain[2]isthatforwhichG1,G2,G3,G4 andG5areeitherpartiallytrueorpartiallyfalse. Definition2.11. Let(NG,∗)beaNeutroGroup. NGissaidtobefiniteofordernifthecardinalityofNGis nthatiso(NG)=n. Otherwise,NGiscalledaninfiniteNeutroGroupandwewriteo(NG)=∞. Definition2.12. Let(AG,∗)beanAntiGroup. AGissaidtobefiniteofordernifthecardinalityofAGisn thatiso(AG)=n. Otherwise,AGiscalledaninfiniteAntiGroupandwewriteo(AG)=∞. Example 2.13. Let NG = N = {1,2,3,4··· ,}. Then (NG,.) is a finite NeutroGroup where (cid:48)(cid:48).(cid:48)(cid:48) is the binaryoperationofordinarymultiplication. Example 2.14. Let AG = Q∗ be the set of all irrational positive numbers and consider algebraic structure + (AG,∗) where ∗ is ordinary multiplication of numbers. It is clear that ∗ is a total AntiLaw defined on AG. Thebinaryoperation∗istotallyassociativeforallthetriplets(x,y,z)withx,y,z ∈AG. Thereisnoneutral element(s) for all the elements AG and hence no element of AG has an inverse. Finally, the operation ∗ is commutative for all the duplets (x,y) with x,y ∈ AG. Hence by Definition 2.5, (AG,∗) is an infinite AntiGroup. Example2.15. LetU={a,b,c,d,e,f}beauniverseofdiscourseandletAG={a,b,c,}beasubsetofU. Let∗beabinaryoperationdefinedonAGasshownintheCayleytablebelow: ∗ a b c a d c b . b c e a c b a f Itisclearfromthetablethatexceptforthecompositionsa∗a=d,b∗b=e,c∗c=f thatareouter-defined withthedegreeoffalsity33%,therestcompositionsareinner-definedwith66.7%degreeoftruth. Thisshows that G1 is partially true and partially false so that ∗ is a NeutroLaw. Also, G2 is partial true and partially false. There are 33 = 27 possible triplets out of which only 6 can verify associativity of ∗. Hence degree of associativity of ∗ is 22.2% while the degree of non-associativity is 77.8% so that ∗ is NeutroAssociative. However,G3andG4aretotallyfalseforalltheelementsofAGwhichshowsthatAG3andAG4aresatisfied. Lastly,G5ispartiallytruewiththedegreeoftruth50%andpartiallyfalsewith50%degreeoffalsitywhich showsthat∗isNeutroCommutative. HencebyDefinition2.5,(AG,∗)isafiniteAntiGroup. 3 Certain Types of NeutroGroups Inthissection,wearegoingtostudycertaintypesofNeutroGroups(NG,∗).TheNeutroGroupswillbenamed accordingtowhichofNG1−NG5is(are)satisfied. Inthesequel,x∗ywillbewrittenasxy∀x,y ∈NG. Example3.1. LetU={a,b,c,d,e,f}beauniverseofdiscourseandletNG={e,a,b,c}beasubsetofU. Let∗beabinaryoperationdefinedonNGasshownintheCayleytablebelow: ∗ e a b c e e a b c a a b a b . b b c f c c c d c e ItisclearfromthetablethatG1,G2,G3,G4andG5arepartiallytrueandpartiallyfalsewithrespectto∗as shownbelow: (i) NeutroClosureLaw (NG1): Except for the compositions b∗b = f,c∗a = d which are false with 12.5%degreeoffalsity,allothercompositionsaretruewith87.5%degreeoftruth. Doi:10.5281/zenodo.4006602 87 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 (ii) NeutroAssociativity(NG2): a∗(b∗c) = (a∗b)∗c=b. a∗(a∗a) = a, but,(a∗a)∗a=c(cid:54)=a. (iii) NeutroNeutralElement(NG3): N = N =N =e but e a b N = e or b. c (iv) NeutroInverseElement(NG4): I = e, e I doesnotexist, a I doesnotexist, b I = e. c (v) NeutroCommutativity(NG5): b∗c = c∗b=c. a∗b = a but b∗a=c(cid:54)=a. We have just shown that (NG,∗) is a finite NeutroAbelianGroup. This is an example of the class of Neu- troGroupsstudiedbyAgboolain[2]. ThisclassofNeutroGroupsarereferredtoasoftype-NG[1,2,3,4,5]. Example3.2. LetU={a,b,c,d,e,f}beauniverseofdiscourseandletNG={a,b,c,e}beasubsetofU. Let∗beabinaryoperationdefinedonNGasshownintheCayleytablebelow: ∗ a b c e a e c f a b c e d b . c d a e c e a b c e ItisclearfromthetablethatG3andG4aretotallytrueforalltheelementsofNG. However,G1,G2andG5 arepartiallytrueandpartiallyfalsewithrespectto∗asshownbelow: (i) NeutroClosureLaw(NG1):Exceptforthecompositionsa∗c=f,b∗c=d,c∗a=dwhichareouter- definedwith18.75%degreeoffalsity, allothercompositionsareinner-definedwith81.25%degreeof truth. (ii) NeutroAssociativity(NG2): c∗(b∗b) = (c∗b)∗b=c. a∗(b∗c) = a∗d=outer-defined,(a∗b)∗c=e. (iii) NeutroCommutativity(NG5): a∗b = b∗a=c. a∗c = f but c∗a=d(cid:54)=f. Wehavejustshownthat(NG,∗)isafiniteNeutroAbelianGroupoftype-NG[1,2,5]. Example3.3. LetNG=Zandlet∗beabinaryoperationdefinedonNGby x∗y =x+xy x,y ∈Z. ItisclearthatonlyG1istotallytrueforallx,y ∈NGbutG2,G3,G4andG5arepartiallytrueandpartially falsewithrespectto∗asshownbelow: Doi:10.5281/zenodo.4006602 88 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 (i) NeutroAssociativity(NG2): x∗(y∗z) = x+xy+xyz (x∗y)∗z = x+xy+xz+xyz byequating,wehave x+xy+xyz = x+xy+xz+xyz ⇒ xz = 0 fromwhichweobtain x = 0 or z =0. Thisshowsthatonlythetriplets(0,y,0),(0,y,z),(x,y,0)canverifyassociativityof∗. (ii) NeutroNeutralElement(NG3): Itisclearthatonlytheelement0∈NGhas0asitsneutralelementandnoneutral(s)forotherelements ofNG. (iii) NeutroInverseElement(NG4): Again, onlytheelement0 ∈ NGhas0astheinverseelementandnoinverse(s)forotherelementsof NG. (iv) NeutroCommutativity(NG5): Only the duplet (0,0) can verify the commutativity of ∗ and not any other duplet(s) (x,y). Hence, (NG,∗)isaninfiniteNeutroAbelianGroupoftype-NG[2,3,4,5]. Definition3.4. Let(NG,∗)beaNeutroGroup. AnonemptysubsetNH ofNGiscalledaNeutroSubgroup of NG if (NH,∗) is also a NeutroGroup of the same type as NG. If (NH,∗) is a NeutroGroup of a type differentfromthatofNG,thenNH willbecalledaQuasiNeutroSubgroupofNG. Example3.5. Let(NG,∗)betheNeutroGroupofExample3.2andletNH ={a,c,e}andNH ={b,c,e} 1 2 betwosubsetsofNG. Let∗bedefinedonNH andNH asshownintheCayleytablesbelow: 1 2 ∗ a c e ∗ b c e a e f a b e d b NH : NH : 1 c d e c 2 c a e c e a c e e b c e It can easily be shown that (NH ,∗) and (NH ,∗) are NeutroGroups of type-NG[1,2,5] and therefore 1 2 NH andNH areNeutroSubgroupsofNG. Wenotethato(NG) = 4,o(NH ) = 3 = o(NH ). Since3 1 2 1 2 doesnotdivide4,itfollowsthatLagranges’theoremdoesnothold. Nowconsiderthefollowing: NH ∪NH = {a,b,c,e}=NG. 1 2 NH ∩NH = {c,e}. 1 2 TheseshowthatNH ∪NH isaNeutroSubgroupofNGbutNH ∩NH isnotaNeutrosubgroupofNG. 1 2 1 2 ItishoweverobservedthatNH ∩NH isagroupascanbeseenintheCayleytablebelow: 1 2 ∗ c e NH ∩NH : c e c . 1 2 e c e Definition3.6. Let(NG,∗)beaNeutroGroupandleta∈NGbeafixedelement. (i) ThecenterofNGdenotedbyZ(NG)isasetdefinedby Z(NG)={x∈NG:xg =gx foratleastone g ∈NG}. (ii) Thecentralizerofa∈GdenotedbyNC isasetdefinedby a NC ={g ∈NG:ga=ag}. a Example3.7. Let(NG,∗)betheNeutroGroupofExample3.2. Then: (i) Z(NG)={a,b,c,e}=NG. ThisshowsthatZ(NG)isaNeutroSubgroupofNG. (ii) NC = {a,b,e}, NC = {a,b,e}, NC = {c,e} and NC = {a,b,c,e}. We have that NC and a b c e a NC arenotNeutroSubgroupsofNG,NC isagroupandNC isaNeutroSubgroupofNG. b e c Doi:10.5281/zenodo.4006602 89 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 4 Characterization of Finite NeutroGroups of type-NG[1,2,4] In this section, we are going to study finite NeutroGroups of type-NG[1,2,4] that is NeutroGroups (NG,∗) whereG3andG5aretotallytrueforalltheelementsofNGandwhereG1, G2andG4areeitherpartially trueorpartiallyfalseforsomeelementsofNG. Example4.1. LetNG={1,2,3,4}⊆Z andlet∗beabinaryoperationonNGdefinedas 5 x∗y =x+y+4 ∀x,y ∈NG. Then(NG,∗)isafiniteNeutroGroupoftype-NG[1,2,4]ascanbeseenintheCayleytable ∗ 1 2 3 4 1 1 2 3 4 2 2 3 4 0 . 3 3 4 0 1 4 4 0 1 2 Example 4.2. Let NG = {1,2,3} ⊆ Z and let • be a binary operation defined on NG as shown in the 4 Cayleytable (cid:63) 1 2 3 1 1 2 3 . 2 2 0 2 3 3 2 1 Then(NG,•)isafiniteNeutroGroupoftype-NG[1,2,4]. Example4.3. LetNK ={1,3,5}⊆Z andlet◦beabinaryoperationdefineonNKasshownintheCayley 8 table ◦ 1 3 5 1 1 3 5 . 3 3 1 7 5 5 7 1 Then(NK,◦)isafiniteNeutroGroupoftype-NG[1,2,4]. Example4.4. LetNG = {1,2,3,4,5} ⊆ Z andlet∗beabinaryoperationdefineonNGasshowninthe 10 Cayleytable ∗ 1 2 3 4 5 1 1 2 3 4 5 2 2 4 6 8 0 . 3 3 6 9 2 5 4 4 8 2 6 0 5 5 0 5 0 5 Then(NG,∗)isafiniteNeutroGroupoftype-NG[1,2,4]. Example4.5. Let(NG,•)and(NK,◦)beNeutroGroupsofExamples4.2and4.3respectively. Then NG×NG = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}, NK×NK = {(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}, NG×NK = {(1,1),(1,3),(1,5),(2,1),(2,3),(2,5),(3,1),(3,3),(3,5)}. Itcaneasilybeshownthat(NG×NG,•),(NK×NK,◦)and(NG×NK,(cid:50))areNeutroGroupsoftype- NG[1,2,4]. Proposition 4.6. Let (NG,•) and (NK,◦) be any two NeutroGroups of the same type-NG[1,2,4]. Then (NG×NG,•),(NK×NK,◦)and(NG×NK,(cid:50))areNeutroGroupsoftype-NG[1,2,4]. Proof. Theproofiseasyandsoomitted. Doi:10.5281/zenodo.4006602 90 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 Proposition4.7. Let(NG,∗)beafiniteNeutroGroupoftype-NG[1,2,4]. Theclassicallawsofindicesdonot hold. Proof. Since∗isaNeutroLawand∗isNeutroAssociativeoverNG,theresultfollows. Corollary 4.8. No NeutroGroup (NG,∗) of type-NG[1,2,4] can be cyclic that is, generated by an element x∈NG. Proposition4.9. Let(NG,∗)beafiniteNeutroGroupoftype-NG[1,2,4]. Ifxandy areinvertibleelements ofNG,then (i) (cid:0)x−1(cid:1)−1 =x. (ii) (xy)−1 =x−1y−1. Proof. Obvious. Example4.10. Let(NG,∗)betheNeutroGroupofExample4.1andconsiderthefollowingsubsetsofNG. NH ={1,2},NH ={1,3},NH ={1,4},NH ={1,2,3},NH ={1,2,4},NH ={1,3,4}. 1 2 3 4 5 6 Itcanbeshownthat(NH ,∗),i=1,2,3,4,5,6areNeutroSubgroupsofNG. Nextconsiderthefollowing: i NH ∪NH = NH ∪NH ={1,2,3} [NeutroSubgroupsofNG]. 1 2 1 4 NH ∪NH = NH ∪NH =NH ∪NH ={1,2,4} [NeutroSubgroupsofNG]. 1 3 1 5 3 5 NH ∪NH = NH ∪NH ={1,3,4} [NeutroSubgroupsofNG]. 2 3 2 6 NH ∪NH = NH ∪NH ={1,2,3,4} [trivialNeutroSubgroupsofNG]. 3 4 5 6 NH ∩NH = NH ∩NH =NH ∩NH ={1,2} [NeutroSubgroupsofNG]. 1 4 1 5 4 5 NH ∩NH = NH ∩NH =NH ∩NH ={1,3} NeutroSubgroupsofNG]. 2 4 2 6 4 6 NH ∩NH = NH ∩NH ={1,4} [NeutroSubgroupsofNG]. 3 5 3 6 NH ∩NH = NH ∩NH ={1} [notNeutroSubgroupsofNG]. 1 2 2 3 Example4.11. Let(NG,∗)betheNeutroGroupofExample4.4andconsiderthefollowingsubsetsofNG. NH ={1,2,4,5},NH ={1,2,3,5}. 1 2 Itcanbeshownthat(NH ,∗),i=1,2areNeutroSubgroupsofNG. Nextconsiderthefollowing: i NH ∪NH = ={1,2,5} [aNeutroSubgroupofNG]. 1 2 NH ∩NH = {1,2,3,4,5} [atrivialNeutroSubgroupofNG]. 1 2 Remark4.12. Examples4.10and4.11haveshownthatintheNeutroGroupsoftype-NG[1,2,4],wecanhave thefollowing: (i) Lagrange’stheoremmayholdforsomeNeutroSubgroupsoftheNeutroGroupsandfailtoholdforsome NeutroSubgroups. (ii) The union of two NeutroSubgroups of the NeutroGroups can be NeutroSubgroups even if one is not containedintheother. (iii) TheintersectionoftwoNeutroSubgroupsoftheNeutroGroupscanbeNeutroSubgroups. Definition4.13. LetNH beaNeutroSubgroupoftheNeutroGroup(NG,∗)andletx∈NG. (i) xNH theleftcosetofNH inNGisdefinedby xNH ={xh:h∈NH}. (ii) ThenumberofdistinctleftcosetsofNH inNGiscalledtheindexofNH inNGdenotedby[NG : NH]. Doi:10.5281/zenodo.4006602 91 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 (iii) ThesetofalldistinctleftcosetsofNH inNGdenotedbyNG/NH isdefinedby NG/NH ={xNH :x∈NG}. Example4.14. Let(NG,∗)betheNeutroGroupofExample4.1andlet(NH ,∗),i = 1,2,3,4,5,6bethe i NeutroSubgroupsofExample4.10. TheleftcosetsofNH arecomputedasfollows. i 1NH = {1,2},2NH ={2,3},3NH ={3,4},4NH ={0,4}. 1 1 1 1 1NH = {1,3},2NH ={2,4},3NH ={0,3},4NH ={1,4}. 2 2 2 2 1NH = {1,4},2NH ={0,2},3NH ={1,3},4NH ={2,4}. 3 3 3 3 1NH = {1,2,3},2NH ={2,3,4},3NH ={0,3,4},4NH ={0,1,4}. 4 4 4 4 1NH = {1,2,4},2NH ={0,2,3},3NH ={1,3,4},4NH ={0,2,4}. 5 5 5 5 1NH = {1,3,4},2NH ={0,2,4},3NH ={0,1,3},4NH ={1,2,4}. 6 6 6 6 ∴ NG/NH = {1NH ,2NH ,3NH ,4NH },i=1,2,3,4,5,6. i i i i i Example4.15. Let(NG,∗)betheNeutroGroupofExample4.4andlet(NH ,∗),i = 1,2betheNeutro- i SubgroupsofExample4.11. TheleftcosetsofNH arecomputedasfollows. i 1NH = {1,2,4,5},2NH ={0,2,4,8},3NH ={2,3,5,6},4NH ={0,4,6,8},5NH ={0,5}. 1 1 1 1 1 1NH = {1,2,3,5},2NH ={0,2,4,6},3NH ={3,5,6,9},4NH ={0,2,4,8},5NH ={0,5}. 2 2 2 2 1 ∴ NG/NH = {1NH ,2NH ,3NH ,4NH ,5NH },i=1,2. i i i i i i Lemma4.16. LetNH beaNeutroSubgroupoftheNeutroGroup(NG,∗)oftype-NG[1,2,4]andletx∈NG. Then,xNH =NH ifandonlyifx=ewhereeistheidentityelementinNG. Proof. Obvious. Remark4.17. Examples4.14and4.15haveshownthatintheNeutroGroupsoftype-NG[1,2,4]distinctleft cosetsofNeutroSubgroupsintheNeutroGroupsdonotnecessarilypartitiontheNeutroGroups. LetNHbeaNeutroSubgroupofaNeutroGroup(NG,∗)oftype-NG[1,2,4]andletNG/NHbethesetof distinctleftcosetsofNH inNG. ForxNH,yNH ∈NG/NH withx,y ∈NG,let(cid:12)beabinaryoperation definedonNG/NH by xNH (cid:12)yNH =xyNH ∀x,y ∈NG. Wewanttoinvestigateifthecouple(NG/NH,(cid:12))isaNeutroGroupoftype-NG[1,2,4]usingthefollowing examples. Example4.18. LetNG/NH = {1NH ,2NH ,3NH ,4NH },i = 1,2,3,4,5,6beasgiveninExample i i i i i 4.14. Fori=1,wehave (cid:12) 1NH 2NH 3NH 4NH 1 1 1 1 1NH 1NH 2NH 3NH 4NH 1 1 1 1 1 2NH 2NH 3NH 4NH 0NH . 1 1 1 1 1 3NH 3NH 4NH 0NH 1NH 1 1 1 1 1 4NH 4NH 0NH 1NH 2NH 1 1 1 1 1 ItisclearfromtheCayleytablethat(NG/NH ,(cid:12))isaNeutroGroupoftype-NG[1,2,4]with1NH asthe 1 1 identityelement. Thisisalsotruefori=2,3,4,5,6. Example 4.19. Let NG/NH = {1NH ,2NH ,3NH ,4NH ,5NH },i = 1,2 be as given in Example i i i i i i 4.15. Fori=1,wehave (cid:12) 1NH 2NH 3NH 4NH 5NH 1 1 1 1 1 1NH 1NH 2NH 3NH 4NH 5NH 1 1 1 1 1 1 2NH 2NH 4NH 6NH 8NH 0NH 1 1 1 1 1 1 . 3NH 3NH 6NH 9NH 2NH 5NH 1 1 1 1 1 1 4NH 4NH 8NH 2NH 6NH 0NH 1 1 1 1 1 1 5NH 5NH 0NH 5NH 0NH 5NH 1 1 1 1 1 1 ItisevidentfromtheCayleytablethat(NG/NH ,(cid:12))isaNeutroGroupoftype-NG[1,2,4]with1NH asthe 1 1 identityelement.. Thisisalsotruefori=2. Doi:10.5281/zenodo.4006602 92 InternationalJournalofNeutrosophicScience(IJNS) Vol. 10,No. 2,PP.84-95,2020 Remark4.20. ItisevidentfromExamples4.18and4.19thatifNH isaNeutroSubgroupoftheNeutroGroup oftype-NG[1,2,4],thenNG/NH thesetofdistinctleftcosetscanbemadeaNeutroGroupoftype-NG[1,2,4] bydefiningappropriatebinaryoperation(cid:12)onNG/NH. TheNeutroGroupNG/NH iscalledtheQuotient- NeutroGroupofNGfactoredbyNH. Definition 4.21. Let (NG,∗) and (NH,◦) be any two NeutroGroups of type-NG[1,2,4]. The mapping φ : NG→NH iscalledaNeutroGroupHomomorphismifφpreservesthebinaryoperations∗and◦thatisiffor atleastaduplet(x,y)∈G,wehave φ(x∗y)=φ(x)◦φ(y). TheKernelofφdenotedbyKerφisdefinedby Kerφ={x:φ(x)=e } NH wheree istheidentityelementinNH. NH TheImageofφdenotedbyImφisdefinedby Imφ={y ∈H :y =φ(x) forsome h∈NH}. IfinadditionφisaNeutroBijection,thenφiscalledaNeutroGroupIsomorphismandwewriteNG ∼= NH. NeutroGroupEpimorphism,NeutroGroupMonomorphism,NeutroGroupEndomorphism,andNeutroGroupAu- tomorphismaresimilarlydefined. Example4.22. Let(NG,•)betheNeutroGroupofExample4.2andletφ:NG×NG→NGbeaprojection givenby ψ(x,y)=y ∀x,y ∈NG. Then φ(1,1)=φ(2,1)=φ(3,1)=1,φ(1,2)=φ(2,2)=φ(3,2)=2,φ(1,3)=φ(2,3)=φ(3,3)=3. Since φ((2,1)(3,3)) = φ(2,3) = 3 and φ(2,1)φ(3,3) = 1•3 = 3 but φ((2,2)(2,3)) = φ(0,2) =? and φ(2,2)φ(2,3) = 2•3 = 2,itfollowsthatφisaNeutroGroupHomomorphism. Imφ = {1,2,3} = NGand Kerφ={(1,1),(2,1),(3,1)}. TheKerφisaNeutroSubgroupofNG×NGascanbeseeninthefollowing Cayleytable • (1,1) (2,1) (3,1) (1,1) (1,1) (2,1) (3,1) . (2,1) (2,1) (0,1) (2,1) (3,1) (3,1) (2,1) (1,1) Itisevidentfromthetablethat(Kerφ,•)isaNeutroGroupoftype-NG[1,2,4]andsinceKerφ⊆NG×NG, itfollowsthatkerφisaNeuroSubgroup. Example 4.23. Let (NK,◦) be the NeutroGroup of Example 4.3 and let ψ : NK × NK → NK be a projectiongivenby ψ(x,y)=x ∀x,y ∈NK. Then ψ(1,1)=ψ(1,3)=ψ(1,5)=1,ψ(3,1)=ψ(3,3)=ψ(3,5)=3,ψ(5,1)=ψ(5,3)=ψ(5,5)=5. Sinceψ((1,1)(1,3)) = ψ(1,3) = 1andψ(1,1)ψ(1,3) = 1◦1 = 1butψ((1,5)(5,3)) = ψ(5,7) =?and ψ(1,5)ψ(5,3) = 1◦5 = 5, it follows that ψ is a NeutroGroupHomomorphism. Imψ = {1,3,5} = NK and Kerψ = {(1,1),(1,3),(1,5)}. The Kerψ is a NeutroSubgroup of NK ×NK as can be seen in the followingCayleytable ◦ (1,1) (1,3) (1,5) (1,1) (1,1) (1,3) (1,5) . (1,3) (1,3) (1,1) (1,7) (1,5) (1,5) (1,7) (1,1) Itisevidentfromthetablethat(Kerψ,◦)isaNeutroGroupoftype-NG[1,2,4]andsinceKerψ ⊆NK×NK, itfollowsthatkerψisaNeuroSubgroup. Doi:10.5281/zenodo.4006602 93

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.