ebook img

On eccentricity version of Laplacian energy of a graph PDF

0.06 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On eccentricity version of Laplacian energy of a graph

On eccentricity version of Laplacian energy of a graph NilanjanDe ∗ DepartmentofBasicSciencesandHumanities(Mathematics), CalcuttaInstituteofEngineeringandManagement,Kolkata,India. 7 1 0 2 n a J Abstract 8 Theenergy ofagraphG isequal to thesum ofabsolutevalues oftheeigenvalues ] oftheadjacency matrixofG, whereas theLaplacian energy of agraphG is equal M to the sum of the absolute value of the difference between the eigenvalues of the D Laplacian matrix of G and average degree of the vertices of G. Motivated by . s the work from Sharafdini et al. [R. Sharafdini, H. Panahbar, Vertex weighted c [ Laplacian graphenergy andothertopologicalindices. J. Math. Nanosci. 2016,6, 49-57.], in this paper we investigate the eccentricity version of Laplacian energy 1 v ofagraphG. 0 0 MSC(2010):Primary: 05C05. 0 2 0 Keywords: Eccentricity;Eigenvalue;Energy (ofgraph); Laplacian energy; . 1 Topologicalindex. 0 7 1 : 1. Introduction v i X LetG be a simplegraph withn vertices and m edges. Let thevertex and edge r a sets of G are denoted by V(G) and E(G) respectively. The degree of a vertex v, denoted by d (v), is the number of vertices adjacent to v. For any two vertices G u,v V(G), the distance between u and v is denoted by d (u,v) and is given by G ∈ the number of edges in the shortest path connecting u and v. Also we denote the sum of distances between v V(G) and every other vertices in G by d(xG), i.e., ∈ | d(xG) = d (x,v). The eccentricity of a vertex v, denoted by ε (v), is v V(G) G G | ∈ the largest distance from v to any other vertex u of G. The total eccentricity of a P CorrespondingAuthor. ∗ Emailaddress: [email protected](NilanjanDe) graph is denoted by ζ(G) and is equal to sum of eccentricities of all the vertices of the graph. Let A = [a ] be the adjacency matrix of G and let λ ,λ ,...,λ are ij 1 2 n eigenvaluesof A whicharetheeigenvaluesofthegraphG. Theenergyofagraph is introduced by Ivan Gutman in 1978 [1] and defined as the sum of the absolute valuesofitseigenvaluesand is denotedbyE(G). Thus n E(G) = λ . i | | i=1 X Alargenumberofresultsonthegraphenergyhavebeenreported,seeforinstance [4,5,6,7]. Motivatedbythesuccessofthetheoryofgraphenergy,otherdifferent energylikequantitieshavebeenproposedandstudiedbydifferentresearcher. Let D(G) = [d ] be the diagonal matrix associated with the graph G, where d = ij ii d (v) and d = 0 if i , j. Define L(G) = D(G) A(G), where L(G) is called the G i ij − Laplacian matrix ofG. Let µ ,µ ,...,µ be the Laplacian eigenvalues ofG. Then 1 2 n theLaplacian energy ofG isdefined as [2] n 2m LE(G) = µ . i | − n | i=1 X Various study on Laplacian energy of graphs were reported in the literature [8, 9, 10, 11, 12]. Analogues to Laplacian energy of a graph a different new type of graph energy were introduced and in this present study, inspired by the work in [3],weinvestigatetheeccentricityversionofLaplacianenergyofagraphdenoted by LE (G). In this case, we define the Laplacian eccentricity matrix as L (G) = ε ε ε(G) A(G),whereε(G) = [e ]isthe(n n)diagonalmatrixofGwithe = ε (v) ij ii G i − × and e = 0 if i , j. Here, ε (v) is the eccentricity of the vertex v,i = 1,2,...,n. ij G i i Let µ′,µ′,...,µ′ be the eigenvalues of the matrix L (G). Then the eccentricity 1 2 n ε versionofLaplacian energy ofG isdefined as n ζ(G) LE (G) = µ′ . ε | i − n | i=1 X Recall that ζ(G)/n is the average vertex eccentricity. In this paper, we fist calcu- late some basic properties and then establish some upper and lower bounds for EL (G). ε 2. MainResults We knowthat,theordinary and Laplacian graph eigenvaluesobeythefollow- ingrelations: 2 n n λ = 0; λ2 = 2m i i i=1 i=1 n n n Pµ = 2mP; µ2 = 2m+ d(v)2. i i i i=1 i=1 i=1 As tPhe LaplaciaPn spectrum is dPenoted by µ′,µ′,...,µ′, let ν′ = µ′ ζ(G) . Recall 1 2 n i | i − n | thatthefirstZagrebeccentricityindexofagraphisdenotedby E (G)andisequal 1 to the sum of square of all the vertices of the graph G. Thus, we have E (G) = 1 n ε(v)2 (for details see [13, 14, 15]). In the following, now we investigatesome i i=1 bPasicproperties ofµ′ and ν′. i i Lemma 1. Theeigenvaluesµ′,µ′,...,µ′ satisfiesthefollowingrelations 1 2 n n n 2 (i) µ′ = ζ(G)and (ii) µ′ = E (G)+2m. i i 1 i=1 i=1 P P Proof. (i)Since,thetraceofasquarematrixisequaltothesumofitseigenvalues, wehave n n µ′ = tr(EL (G)) = [ε(v) a ] = ζ(G). i ε i − ii i=1 i=1 (ii)Againwehave, P P n µ′2 = tr[(ε(G) A(G))(ε(G) A(G))T] i − − i=1 X = tr[(ε(G) A(G))(ε(G)T A(G)T)] − − = tr[ε(G)ε(G)T A(G)ε(G)T A(G)Tε(G)+A(G)A(G)T] − − n n = ε(v)2 + λ2 i i i=1 i=1 X X = E (G)+2m. 1 Lemma 2. Theeigenvaluesν′,ν′,...,ν′ satisfiesthefollowingrelations 1 2 n n n (i) ν′ = 0 and(ii) ν′2 = E (G) ζ(G)2 +2m. i i 1 − n i=1 i=1 P P n n n Proof.(i)Wehavefrom definition, ν′ = µ′ ζ(G) = µ′ ζ(G) = 0. (cid:3) i i − n i − i=1 i=1 i=1 (ii)Again,similarlywehave P P(cid:16) (cid:17) P n n 2 ζ(G) 2 ν′ = µ′ i i − n i=1 i=1 ! X X 3 n ζ(G)2 ζ(G) 2 = µ′ + 2µ′ i n2 − i n i=1 " # X ζ(G)2 ζ(G)2 = E (G)+2m+ 2 , 1 n − n whichprovesthedesired result. (cid:3) Lemma 3. Theeigenvaluesν′,ν′,...,ν′ satisfiesthefollowingrelations 1 2 n 1 ζ(G)2 ν′ν′ = E (G) +2m . i j 2 1 − n (cid:12) (cid:12) (cid:12)i<j (cid:12) " # (cid:12)X (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Proof. Since n ν′ = 0,(cid:12)(cid:12)so wec(cid:12)(cid:12)an write n ν′2 = 2 ν′ν′. Thus, i i − i j i=1 i=1 i<j P P P n ζ(G)2 2 2 ν′ν′ = ν′ = E (G) +2m. i j i 1 − n (cid:12) (cid:12) (cid:12)i<j (cid:12) i=1 (cid:12)X (cid:12) X (cid:12) (cid:12) Hencethedesiredre(cid:12)(cid:12)sult follo(cid:12)(cid:12)ws. (cid:3) (cid:12) (cid:12) As an example, in the following, we now calculate the eccentric version of Laplacian energy and corresponding spectrum of two particular type of graphs, namely,completegraphand completebipartitegraph. Example1. Let K bethecompletegraphwithn vertices, then n 1 1 1 ... 1 − − − 1 1 1 ... 1  − − −  L (K ) = 1 1 1 ... 1 . Itscharacteristicequatioεnins  −−..1. −−..1. −..1. ...... −.1..  (n 1) (µ′ 2) − (µ′ (2 n)) = 0. − − − ThustheeccentricityLaplacianspectrumof K isgiven by n (1 n) 1 spec (G) = − ε 1 (n 1) − ! andhence EL (G) = 2(n 1). ε − 4 Example2. Let K be the complete graph with (m+n) vertices and mn edges, m,n then 2 0 0 ... 0 1 1 1 ... 1 − − − − 0 2 0 ... 0 1 1 1 ... 1  − − − −  0 0 2 ... 0 1 1 1 ... 1 ItscharactLeεr(iKstni,cn)e=quat−−−−i.0.o..1111nis−−−−0....1111 −−−−0....1111 ................... −−−−2....1111 −−..2000..1 −−..0200..1 −−..0020..1 ................... −−..0002..1 . 2(n 1) (µ′ 2) − (µ′ (2+n))(µ′ (2 n)) = 0. − − − − So,theeccentricityLaplacianspectrumof K isgiven by n,n n n 0 spec (G) = − ε 1 1 2(n 1) − ! andhence EL (K ) = 2n. ε n,n Note that, from the above two examples, the properties of the eigenvalues ν′,ν′,...,ν′ can be verified easily. In the following, next we investigate some 1 2 n upperand lowerboundsofeccentricityversionofLaplacianenergy ofagraphG. Theorem 1. Let G beaconnected graphoforder nand sizem, then 1 1 EL (G) 2 m+ (E (G) ζ(G)2). ε 1 ≥ 2 − n r n Proof. Wehavefrom definition, EL (G) = ν′ . So wecan write, ε | i| i=1 P n ζ(G)2 EL (G)2 = ν′2 +2 ν′ν′ E (G) +2m +2 ν′ν′ . ε i | i j| ≥ 1 − n | i j| i=1 i<j ! i<j X X X HenceusingLemma3, thedesired resultfollows. (cid:3) 5 Theorem 2. LetGbeaconnectedgraphofordernandsizem;andν′ andν′ are 1 n maximumandminimumabsolutevaluesof ν′s, then i n2 ELε(G) ≥ nE1(G)−ζ(G)2 +2mn− 4 (ν′1 −ν′n)2. r Proof. Let a and b, 1 i n are non-negative real numbers, then using the i i ≤ ≤ Ozekisinequality[17], wehave n n n 2 n2 a2 b2 ab (M M m m )2 i i i i 1 2 1 2 − ≤ 4 − i=1 i=1 i=1  where M = maxX(a), mX= min(aX), M = max(b) and m = min(b). Let a = ν′ 1 i 1 i 2 i 2 i i | i| and b = 1,then fromabovewehave i n n n 2 n2 ν′ 2 12 ν′ (ν′ ν′)2. | i| − | i| ≤ 4 1 − n i=1 i=1 i=1  Thus,wecan wrXite X X  n n2 EL (G)2 n ν′ 2 (ν′ ν′)2 ε ≥ | i| − 4 1 − n i=1 X ζ(G)2 n2 2 = n E (G) +2m (ν′ ν′) , 1 − n − 4 1 − n ! fromwhere thedesired resultfollows. (cid:3) Theorem 3. LetGbeaconnectedgraphofordernandsizem;andν′ andν′ are 1 n maximumandminimumabsolutevaluesof ν′s, then i 1 ζ(G)2 EL (G) E (G) +2m nν′ν′ . ε ≥ (ν′1 +ν′n) " 1 − n − 1 n# Proof. Let a and b, 1 i n are non-negative real numbers, then from Diaz- i i ≤ ≤ Metcalfinequality[16], wehave n n n b2 +mM a2 (m+ M) ab . i i i i ≤ i=1 i=1 i=1  X X X  6 where, ma b Ma. Let a = 1 and b = ν′ , then fromabovewehave i ≤ i ≤ i i i | i| n n n ν′ 2 +ν′ν′ 12 (ν′ +ν′) ν′ . | i| 1 n ≤ 1 n | i| i=1 i=1 i=1  Now,since X X X  n EL (G) = ν′ ε | i| i=1 X n and ν′2 = E (G) ζ(G)2 +2m,weget i 1 − n i=1 P ζ(G)2 E (G) +2m+nν′ν′ (ν′ +ν′)EL (G), 1 − n 1 n ≤ 1 n ε fromwhere thedesired resultfollows. (cid:3) Theorem 4. Let G beaconnected graphoforder nand sizem, then EL (G) nE (G) ζ(G)2 +2mn . ε 1 ≤ − q h i Proof. Using the Cauchy-Schwarz inequality to the vectors (ν′ , ν′ ,..., ν′ ) and | 1| | 2| | n| (1,1,...,1),wehave n n ν′ √n ν′ 2 | i| ≤ vt | i| i=1 i=1 X X Thusfrom definition,wehave n n ELε(G) = |ν′i| ≤ √nvt |ν′i|2 i=1 i=1 X X n ζ(G) ζ(G)2 = √nvti=1 |µ′i − n |2 = √ns"E1(G)− n +2m#. X Hencethedesiredresult follows. (cid:3) Theorem 5. Let G beaconnected graphoforder nand sizem, then 2 ν′1ν′n EL (G) nE (G) ζ(G)2 +2mn . ε ≥ ν′1q+ν′n q 1 − h i 7 Proof. We have, from Polya-Szego inequality [18] for non-negatve real numbers a and b, 1 i n i i ≤ ≤ n n 2 n 2 1 M M m m a2 b2 1 2 + 1 2 ab i i i i ≤ 4 m m M M i=1 i=1 r 1 2 r 1 2 i=1  where M = mXax(a),Xm = min(a), M = max(b) andmX= min(b). Let a = ν′ 1 i 1 i 2 i 2 i i | i| and b = 1,then fromabovewehave i 2 n ν′ 2 n 12 1 ν′n + ν′1 n ν′ 2. i=1 | i| i=1 ≤ 4sν′1 sν′n i=1 | i| Thatis, X X   X  2 n n ν′ 2 1 ν′n + ν′1 (EL (G))2 Xi=1 | i| =≤ 14(νs′n +ν′1ν′1)2s(EνL′n(G))2ε. ε 4 ν′nν′1 n Since, ν′2 = E (G) ζ(G)2 +2m, wegetthedesired resultfrom above. (cid:3) i 1 − n i=1 P 3. Conclusion In this paper, we study different properties and boundsof eccentricity version of Laplacian energy of a graphG. It is found that, there is great analogy between theoriginalLaplacianenergyandeccentricityversionofLaplacianenergy,where as alsohavesomedistinctdifference. Competing Interests Theauthordeclares thatthereis noconflict ofinterestsregardingthepublica- tionofthispaper. 8 References [1] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103(1978)1-22. [2] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006)29–37. [3] R. Sharafdini, H. Panahbar, Vertex weighted Laplacian graph energy and othertopologicalindices,J. Math.Nanosci.6 (2016)49-57. [4] V. Nikiforov,The energy ofgraphs and matrices, J. Math. Anal. Appl. 326 (2007)1472-1475. [5] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–295. [6] I. Gutman, The energy of graph: Old and new results, Algebraic combina- torics andapplications,Springer, Berlin, (2001)196-211. [7] H. Liu, M. Lu and F. Tian, Someupperbounds forthe energy of graphs, J. Math.Chem., 41(1)(2007)45-57. [8] G. H. Fath-Tabar, A.R. Ashrafi, Some remarks on Laplacian eigenvalues and Laplacian energy ofgraphs,Math.Commun.,15(2)(2010)443–451. [9] K.C. Das, S.A. Mojallala and I. Gutman, On energy and Laplacian energy ofbipartitegraphs, Appl.Math.Comput.273(2016)759-766. [10] B. Zhou, I. Gutman and T. Aleksic, A note on Laplacian energy of graphs, MATCH Commun.Math.Comput.Chem. 60(2008)441-446. [11] T. Aleksic, Upper bounds for Laplacian energy of graphs, MATCH Com- mun,Math.Comput.Chem. 60 2008435-439. [12] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198(1994)143-176. [13] R. Xing, B. Zhou and N. Trinajstic, On Zagreb eccentricity indices, Croat. Chem. Acta, 84(4)(2011)493–497. 9 [14] Z. Luo and J. Wu, Zagreb eccentricity indices of the generalized hierar- chical product graphs and their applications, J. Appl. Math. 2014, DOI 10.1155/2014/241712. [15] N.De,NewboundsforZagrebeccentricityindices,OpenJ.DiscreteMath. 3 (2013)70–74. [16] J.B.Diaz,F.T.Metcalf,StrongerformsofaclassofinequalitiesofG.Plya- G.Szego and L. V. Kantorovich. Bulletin of the AMS - American Mathe- matical Society,69(1963)415–418. [17] N. Ozeki, On the estimation of inequalities by maximum and minimum values,J. CollegeArts Sci. ChibaUniv.5(1968)199–203,in Japanese. [18] G. Polya, G. Szego, Problems and Theorems in analysis, Series, Integral Calculus, TheoryofFunctions,Springer, Berlin, (1972). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.