On eccentricity version of Laplacian energy of a graph NilanjanDe ∗ DepartmentofBasicSciencesandHumanities(Mathematics), CalcuttaInstituteofEngineeringandManagement,Kolkata,India. 7 1 0 2 n a J Abstract 8 Theenergy ofagraphG isequal to thesum ofabsolutevalues oftheeigenvalues ] oftheadjacency matrixofG, whereas theLaplacian energy of agraphG is equal M to the sum of the absolute value of the difference between the eigenvalues of the D Laplacian matrix of G and average degree of the vertices of G. Motivated by . s the work from Sharafdini et al. [R. Sharafdini, H. Panahbar, Vertex weighted c [ Laplacian graphenergy andothertopologicalindices. J. Math. Nanosci. 2016,6, 49-57.], in this paper we investigate the eccentricity version of Laplacian energy 1 v ofagraphG. 0 0 MSC(2010):Primary: 05C05. 0 2 0 Keywords: Eccentricity;Eigenvalue;Energy (ofgraph); Laplacian energy; . 1 Topologicalindex. 0 7 1 : 1. Introduction v i X LetG be a simplegraph withn vertices and m edges. Let thevertex and edge r a sets of G are denoted by V(G) and E(G) respectively. The degree of a vertex v, denoted by d (v), is the number of vertices adjacent to v. For any two vertices G u,v V(G), the distance between u and v is denoted by d (u,v) and is given by G ∈ the number of edges in the shortest path connecting u and v. Also we denote the sum of distances between v V(G) and every other vertices in G by d(xG), i.e., ∈ | d(xG) = d (x,v). The eccentricity of a vertex v, denoted by ε (v), is v V(G) G G | ∈ the largest distance from v to any other vertex u of G. The total eccentricity of a P CorrespondingAuthor. ∗ Emailaddress: [email protected](NilanjanDe) graph is denoted by ζ(G) and is equal to sum of eccentricities of all the vertices of the graph. Let A = [a ] be the adjacency matrix of G and let λ ,λ ,...,λ are ij 1 2 n eigenvaluesof A whicharetheeigenvaluesofthegraphG. Theenergyofagraph is introduced by Ivan Gutman in 1978 [1] and defined as the sum of the absolute valuesofitseigenvaluesand is denotedbyE(G). Thus n E(G) = λ . i | | i=1 X Alargenumberofresultsonthegraphenergyhavebeenreported,seeforinstance [4,5,6,7]. Motivatedbythesuccessofthetheoryofgraphenergy,otherdifferent energylikequantitieshavebeenproposedandstudiedbydifferentresearcher. Let D(G) = [d ] be the diagonal matrix associated with the graph G, where d = ij ii d (v) and d = 0 if i , j. Define L(G) = D(G) A(G), where L(G) is called the G i ij − Laplacian matrix ofG. Let µ ,µ ,...,µ be the Laplacian eigenvalues ofG. Then 1 2 n theLaplacian energy ofG isdefined as [2] n 2m LE(G) = µ . i | − n | i=1 X Various study on Laplacian energy of graphs were reported in the literature [8, 9, 10, 11, 12]. Analogues to Laplacian energy of a graph a different new type of graph energy were introduced and in this present study, inspired by the work in [3],weinvestigatetheeccentricityversionofLaplacianenergyofagraphdenoted by LE (G). In this case, we define the Laplacian eccentricity matrix as L (G) = ε ε ε(G) A(G),whereε(G) = [e ]isthe(n n)diagonalmatrixofGwithe = ε (v) ij ii G i − × and e = 0 if i , j. Here, ε (v) is the eccentricity of the vertex v,i = 1,2,...,n. ij G i i Let µ′,µ′,...,µ′ be the eigenvalues of the matrix L (G). Then the eccentricity 1 2 n ε versionofLaplacian energy ofG isdefined as n ζ(G) LE (G) = µ′ . ε | i − n | i=1 X Recall that ζ(G)/n is the average vertex eccentricity. In this paper, we fist calcu- late some basic properties and then establish some upper and lower bounds for EL (G). ε 2. MainResults We knowthat,theordinary and Laplacian graph eigenvaluesobeythefollow- ingrelations: 2 n n λ = 0; λ2 = 2m i i i=1 i=1 n n n Pµ = 2mP; µ2 = 2m+ d(v)2. i i i i=1 i=1 i=1 As tPhe LaplaciaPn spectrum is dPenoted by µ′,µ′,...,µ′, let ν′ = µ′ ζ(G) . Recall 1 2 n i | i − n | thatthefirstZagrebeccentricityindexofagraphisdenotedby E (G)andisequal 1 to the sum of square of all the vertices of the graph G. Thus, we have E (G) = 1 n ε(v)2 (for details see [13, 14, 15]). In the following, now we investigatesome i i=1 bPasicproperties ofµ′ and ν′. i i Lemma 1. Theeigenvaluesµ′,µ′,...,µ′ satisfiesthefollowingrelations 1 2 n n n 2 (i) µ′ = ζ(G)and (ii) µ′ = E (G)+2m. i i 1 i=1 i=1 P P Proof. (i)Since,thetraceofasquarematrixisequaltothesumofitseigenvalues, wehave n n µ′ = tr(EL (G)) = [ε(v) a ] = ζ(G). i ε i − ii i=1 i=1 (ii)Againwehave, P P n µ′2 = tr[(ε(G) A(G))(ε(G) A(G))T] i − − i=1 X = tr[(ε(G) A(G))(ε(G)T A(G)T)] − − = tr[ε(G)ε(G)T A(G)ε(G)T A(G)Tε(G)+A(G)A(G)T] − − n n = ε(v)2 + λ2 i i i=1 i=1 X X = E (G)+2m. 1 Lemma 2. Theeigenvaluesν′,ν′,...,ν′ satisfiesthefollowingrelations 1 2 n n n (i) ν′ = 0 and(ii) ν′2 = E (G) ζ(G)2 +2m. i i 1 − n i=1 i=1 P P n n n Proof.(i)Wehavefrom definition, ν′ = µ′ ζ(G) = µ′ ζ(G) = 0. (cid:3) i i − n i − i=1 i=1 i=1 (ii)Again,similarlywehave P P(cid:16) (cid:17) P n n 2 ζ(G) 2 ν′ = µ′ i i − n i=1 i=1 ! X X 3 n ζ(G)2 ζ(G) 2 = µ′ + 2µ′ i n2 − i n i=1 " # X ζ(G)2 ζ(G)2 = E (G)+2m+ 2 , 1 n − n whichprovesthedesired result. (cid:3) Lemma 3. Theeigenvaluesν′,ν′,...,ν′ satisfiesthefollowingrelations 1 2 n 1 ζ(G)2 ν′ν′ = E (G) +2m . i j 2 1 − n (cid:12) (cid:12) (cid:12)i<j (cid:12) " # (cid:12)X (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Proof. Since n ν′ = 0,(cid:12)(cid:12)so wec(cid:12)(cid:12)an write n ν′2 = 2 ν′ν′. Thus, i i − i j i=1 i=1 i<j P P P n ζ(G)2 2 2 ν′ν′ = ν′ = E (G) +2m. i j i 1 − n (cid:12) (cid:12) (cid:12)i<j (cid:12) i=1 (cid:12)X (cid:12) X (cid:12) (cid:12) Hencethedesiredre(cid:12)(cid:12)sult follo(cid:12)(cid:12)ws. (cid:3) (cid:12) (cid:12) As an example, in the following, we now calculate the eccentric version of Laplacian energy and corresponding spectrum of two particular type of graphs, namely,completegraphand completebipartitegraph. Example1. Let K bethecompletegraphwithn vertices, then n 1 1 1 ... 1 − − − 1 1 1 ... 1 − − − L (K ) = 1 1 1 ... 1 . Itscharacteristicequatioεnins −−..1. −−..1. −..1. ...... −.1.. (n 1) (µ′ 2) − (µ′ (2 n)) = 0. − − − ThustheeccentricityLaplacianspectrumof K isgiven by n (1 n) 1 spec (G) = − ε 1 (n 1) − ! andhence EL (G) = 2(n 1). ε − 4 Example2. Let K be the complete graph with (m+n) vertices and mn edges, m,n then 2 0 0 ... 0 1 1 1 ... 1 − − − − 0 2 0 ... 0 1 1 1 ... 1 − − − − 0 0 2 ... 0 1 1 1 ... 1 ItscharactLeεr(iKstni,cn)e=quat−−−−i.0.o..1111nis−−−−0....1111 −−−−0....1111 ................... −−−−2....1111 −−..2000..1 −−..0200..1 −−..0020..1 ................... −−..0002..1 . 2(n 1) (µ′ 2) − (µ′ (2+n))(µ′ (2 n)) = 0. − − − − So,theeccentricityLaplacianspectrumof K isgiven by n,n n n 0 spec (G) = − ε 1 1 2(n 1) − ! andhence EL (K ) = 2n. ε n,n Note that, from the above two examples, the properties of the eigenvalues ν′,ν′,...,ν′ can be verified easily. In the following, next we investigate some 1 2 n upperand lowerboundsofeccentricityversionofLaplacianenergy ofagraphG. Theorem 1. Let G beaconnected graphoforder nand sizem, then 1 1 EL (G) 2 m+ (E (G) ζ(G)2). ε 1 ≥ 2 − n r n Proof. Wehavefrom definition, EL (G) = ν′ . So wecan write, ε | i| i=1 P n ζ(G)2 EL (G)2 = ν′2 +2 ν′ν′ E (G) +2m +2 ν′ν′ . ε i | i j| ≥ 1 − n | i j| i=1 i<j ! i<j X X X HenceusingLemma3, thedesired resultfollows. (cid:3) 5 Theorem 2. LetGbeaconnectedgraphofordernandsizem;andν′ andν′ are 1 n maximumandminimumabsolutevaluesof ν′s, then i n2 ELε(G) ≥ nE1(G)−ζ(G)2 +2mn− 4 (ν′1 −ν′n)2. r Proof. Let a and b, 1 i n are non-negative real numbers, then using the i i ≤ ≤ Ozekisinequality[17], wehave n n n 2 n2 a2 b2 ab (M M m m )2 i i i i 1 2 1 2 − ≤ 4 − i=1 i=1 i=1 where M = maxX(a), mX= min(aX), M = max(b) and m = min(b). Let a = ν′ 1 i 1 i 2 i 2 i i | i| and b = 1,then fromabovewehave i n n n 2 n2 ν′ 2 12 ν′ (ν′ ν′)2. | i| − | i| ≤ 4 1 − n i=1 i=1 i=1 Thus,wecan wrXite X X n n2 EL (G)2 n ν′ 2 (ν′ ν′)2 ε ≥ | i| − 4 1 − n i=1 X ζ(G)2 n2 2 = n E (G) +2m (ν′ ν′) , 1 − n − 4 1 − n ! fromwhere thedesired resultfollows. (cid:3) Theorem 3. LetGbeaconnectedgraphofordernandsizem;andν′ andν′ are 1 n maximumandminimumabsolutevaluesof ν′s, then i 1 ζ(G)2 EL (G) E (G) +2m nν′ν′ . ε ≥ (ν′1 +ν′n) " 1 − n − 1 n# Proof. Let a and b, 1 i n are non-negative real numbers, then from Diaz- i i ≤ ≤ Metcalfinequality[16], wehave n n n b2 +mM a2 (m+ M) ab . i i i i ≤ i=1 i=1 i=1 X X X 6 where, ma b Ma. Let a = 1 and b = ν′ , then fromabovewehave i ≤ i ≤ i i i | i| n n n ν′ 2 +ν′ν′ 12 (ν′ +ν′) ν′ . | i| 1 n ≤ 1 n | i| i=1 i=1 i=1 Now,since X X X n EL (G) = ν′ ε | i| i=1 X n and ν′2 = E (G) ζ(G)2 +2m,weget i 1 − n i=1 P ζ(G)2 E (G) +2m+nν′ν′ (ν′ +ν′)EL (G), 1 − n 1 n ≤ 1 n ε fromwhere thedesired resultfollows. (cid:3) Theorem 4. Let G beaconnected graphoforder nand sizem, then EL (G) nE (G) ζ(G)2 +2mn . ε 1 ≤ − q h i Proof. Using the Cauchy-Schwarz inequality to the vectors (ν′ , ν′ ,..., ν′ ) and | 1| | 2| | n| (1,1,...,1),wehave n n ν′ √n ν′ 2 | i| ≤ vt | i| i=1 i=1 X X Thusfrom definition,wehave n n ELε(G) = |ν′i| ≤ √nvt |ν′i|2 i=1 i=1 X X n ζ(G) ζ(G)2 = √nvti=1 |µ′i − n |2 = √ns"E1(G)− n +2m#. X Hencethedesiredresult follows. (cid:3) Theorem 5. Let G beaconnected graphoforder nand sizem, then 2 ν′1ν′n EL (G) nE (G) ζ(G)2 +2mn . ε ≥ ν′1q+ν′n q 1 − h i 7 Proof. We have, from Polya-Szego inequality [18] for non-negatve real numbers a and b, 1 i n i i ≤ ≤ n n 2 n 2 1 M M m m a2 b2 1 2 + 1 2 ab i i i i ≤ 4 m m M M i=1 i=1 r 1 2 r 1 2 i=1 where M = mXax(a),Xm = min(a), M = max(b) andmX= min(b). Let a = ν′ 1 i 1 i 2 i 2 i i | i| and b = 1,then fromabovewehave i 2 n ν′ 2 n 12 1 ν′n + ν′1 n ν′ 2. i=1 | i| i=1 ≤ 4sν′1 sν′n i=1 | i| Thatis, X X X 2 n n ν′ 2 1 ν′n + ν′1 (EL (G))2 Xi=1 | i| =≤ 14(νs′n +ν′1ν′1)2s(EνL′n(G))2ε. ε 4 ν′nν′1 n Since, ν′2 = E (G) ζ(G)2 +2m, wegetthedesired resultfrom above. (cid:3) i 1 − n i=1 P 3. Conclusion In this paper, we study different properties and boundsof eccentricity version of Laplacian energy of a graphG. It is found that, there is great analogy between theoriginalLaplacianenergyandeccentricityversionofLaplacianenergy,where as alsohavesomedistinctdifference. Competing Interests Theauthordeclares thatthereis noconflict ofinterestsregardingthepublica- tionofthispaper. 8 References [1] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103(1978)1-22. [2] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006)29–37. [3] R. Sharafdini, H. Panahbar, Vertex weighted Laplacian graph energy and othertopologicalindices,J. Math.Nanosci.6 (2016)49-57. [4] V. Nikiforov,The energy ofgraphs and matrices, J. Math. Anal. Appl. 326 (2007)1472-1475. [5] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–295. [6] I. Gutman, The energy of graph: Old and new results, Algebraic combina- torics andapplications,Springer, Berlin, (2001)196-211. [7] H. Liu, M. Lu and F. Tian, Someupperbounds forthe energy of graphs, J. Math.Chem., 41(1)(2007)45-57. [8] G. H. Fath-Tabar, A.R. Ashrafi, Some remarks on Laplacian eigenvalues and Laplacian energy ofgraphs,Math.Commun.,15(2)(2010)443–451. [9] K.C. Das, S.A. Mojallala and I. Gutman, On energy and Laplacian energy ofbipartitegraphs, Appl.Math.Comput.273(2016)759-766. [10] B. Zhou, I. Gutman and T. Aleksic, A note on Laplacian energy of graphs, MATCH Commun.Math.Comput.Chem. 60(2008)441-446. [11] T. Aleksic, Upper bounds for Laplacian energy of graphs, MATCH Com- mun,Math.Comput.Chem. 60 2008435-439. [12] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198(1994)143-176. [13] R. Xing, B. Zhou and N. Trinajstic, On Zagreb eccentricity indices, Croat. Chem. Acta, 84(4)(2011)493–497. 9 [14] Z. Luo and J. Wu, Zagreb eccentricity indices of the generalized hierar- chical product graphs and their applications, J. Appl. Math. 2014, DOI 10.1155/2014/241712. [15] N.De,NewboundsforZagrebeccentricityindices,OpenJ.DiscreteMath. 3 (2013)70–74. [16] J.B.Diaz,F.T.Metcalf,StrongerformsofaclassofinequalitiesofG.Plya- G.Szego and L. V. Kantorovich. Bulletin of the AMS - American Mathe- matical Society,69(1963)415–418. [17] N. Ozeki, On the estimation of inequalities by maximum and minimum values,J. CollegeArts Sci. ChibaUniv.5(1968)199–203,in Japanese. [18] G. Polya, G. Szego, Problems and Theorems in analysis, Series, Integral Calculus, TheoryofFunctions,Springer, Berlin, (1972). 10