ebook img

On conjectures by Csordas, Charalambides and Waleffe PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On conjectures by Csordas, Charalambides and Waleffe

On conjectures by Csordas, Charalambides and ∗ Waleffe Alexander Dyachenko Galina van Bevern 12th June 2015 InthepresentnoteweobtainnewresultsontwoconjecturesbyCsordasetal. regardingthe interlacing property of zeros of special polynomials. These polynomials came from the Jacobi 5 1 taumethodsfortheSturm-Liouvilleeigenvalueproblem. Theircoefficientsarethesuccessive 0 (α,β) evenderivativesoftheJacobipolynomialsP evaluatedatthepointone.Thefirstconjecture 2 n n statesthatthepolynomialsconstructedfromPn(α,β)andPn(α−,1β)areinterlacingwhen−1<α<1and u −1<β.WeproveitinarangeofparameterswiderthanthatgivenearlierbyCharalambidesand J Waleffe.Wealsoshowthatwithinnarrowerboundsanotherconjectureholds.Itassertsthatthe 2 (α,β) (α,β) polynomialsconstructedfromP andP arealsointerlacing. 1 n n−2 ] Keywords: Jacobipolynomials·Interlacingzeros·Taumethods·Hurwitzstability·Hermite-Biehlertheorem A MathematicsSubjectClassification(2010): 33C45·26C10·30C15 C . h t 1 Introduction a m [ Thisstudyisdevotedtopropertiesofzerosofpolynomialswhichoriginatefrommathematicalphysics.The orthogonalpolynomialsprovedtobeaveryhelpfultoolforthediscretizationoflineardifferentialoperators.The 2 v mainfeatureofthetaumethodsistheadoptionofapolynomialbasiswhichdoesnotautomaticallysatisfythe 4 boundaryconditions.Thisinducesaproblemattheboundary(i.e.thepoints±1intheJacobicase).Thefamily 9 3 ofpolynomialsstudiedhereisconnectedthiswaytotheeigenproblemu(cid:48)(cid:48)(x)=λu(x)ontheintervalx∈(−1,1) 3 withvarioushomogeneousboundaryconditions(forthedetailssee[4,3]).Weplaceourmainemphasisonthe 0 . analyticpropertiesoftheconsideredfamilyitself,leavingasidethecorrespondingpropertiesoftheoriginal 1 0 differentialoperators.Moreinformationonthetaumethodscanbefoundine.g.[1,§10.4.2]. 5 TheJacobipolynomials(seetheirdefinitionandbasicpropertiesine.g.[7,Ch.IV]) 1 : v (cid:195) (cid:33) (cid:34) (cid:35) Xi Pn(α,β)(x)= n+nα 2F1 α−+n,1 n+α+β+1;1−2x , n=1,2,... r a appearregularlyinapplicationsasclassicalorthogonalpolynomials. Theyaremoregeneralthanthoseof Chebyshev, Legendre and Gegenbauer. The Jacobi polynomials are orthogonal with respect to the meas- urewα,β(x)=(1−x)α(1+x)βontheinterval(−1,1)wheneverboththeparametersαandβaregreaterthan−1: (cid:90) 1 −1Pn(α,β)(x)Pk(α,β)(x)wα,β(x)dx=0 if k(cid:54)=n. TheusualnormalizationsupposesthatP(α,β)(1)=(cid:161)n+α(cid:162)= (α+1)n,whereweappliedtheso-calledPochhammer n n n! symbolortherisingfactorialdefinedas (α+1) :=(α+1)·(α+2)···(α+n). n ∗ ThisworkwasfinanciallysupportedbytheEuropeanResearchCouncilundertheEuropeanUnion’sSeventhFrameworkProgramme (FP7/2007–2013)/ERCgrantagreementno.259173. 1 2 OnconjecturesbyCsordas,CharalambidesandWaleffe Inthisnotationwehave P(α,β)(x)= (α+1)n (cid:88)∞ (−n)k(n+α+β+1)k (cid:181)1−x(cid:182)k, n=1,2,.... (1) n n! k!(α+1) 2 k=0 k Definition(see[2,p.17]). Wesaythatthezerosofthepolynomialsg(x)andh(x)interlace(orinterlacestrictly)if thefollowingconditionsholdsimultaneously: • allzerosofg(x)andh(x)aresimple,realanddistinct(i.e.thepolynomialsarecoprime), • betweeneachtwoconsecutivezerosofg(x)thereisexactlyonezeroofthepolynomialh(x),and • betweeneachtwoconsecutivezerosofh(x)thereisexactlyonezeroofthepolynomialg(x). Wesaythatthezerosofthepolynomialsg(x)andh(x)interlacenon-strictlyiftheirzerosarerealandbecome strictlyinterlacingafterdividingbothpolynomialsbythegreatestcommondivisorgcd(g,h).Roughlyspeaking, thezerosoftwopolynomialsinterlacenon-strictlyiftheycanmeetbutneverpassthrougheachotherwhen changingcontinuouslyfromastrictlyinterlacingstate. Definition. Apair(cid:161)g(x),h(x)(cid:162)iscalledrealifforanyrealnumbersA,B thecombinationAg(x)+Bh(x)hasonly realzeros.Thisisequivalenttothenon-strictinterlacingpropertyofg(x)andh(x),whichisshownine.g.[2, ChapterI]. Remark. Thephrases“g(x)andh(x)interlace”,“g(x)andh(x)possesstheinterlacingproperty”,“g(x)interlaces h(x)”,“g(x)andh(x)haveinterlacingzeros”and“thezerosofg(x)andh(x)areinterlacing”weusesynonymously. Itiswell-knownthattheorthogonalpolynomialsonthereallinehaverealinterlacingzeros(duetothe so-calledthree-termrecurrence;seee.g.[7,pp.42–47,Sections3.2–3.3]).Thatis,inparticular,thezerosof (α,β) (α,β) P andP interlaceforallnaturaln.Inthepresentnotewestudyzerosofpolynomialsthatdonotsatisfy n n−1 thethree-termrecurrence.Morespecifically,weconsider (cid:175) φ(α,β)(µ):=[n(cid:88)/2] d2k P(α,β)(x)(cid:175)(cid:175) ·µk= (α+1)n [n(cid:88)/2](−n)2k(n+α+β+1)2k (cid:179)µ(cid:180)k, n=1,2,..., (2) n k=0 dx2k n (cid:175)(cid:175)x=1 n! k=0 (α+1)2k 4 wherethenotation[a]standsfortheintegerpartofthenumbera. TheoremCCW(Csordas,CharalambidesandWaleffe[4]). Foreverypositiveintegern(cid:202)2thepolynomialφ(α,β)(µ), n −1<α<1,−1<β,hasonlyrealnegativezeros. Theproofofthistheoremgivenin[4]restsontheHermite-Biehlertheory(seeTheoremHBherein). Remark(toTheoremCCW). Infact,theauthorshaveshownthatφ(α,β)(µ)interlacesφ(α+1,β+1)(µ).Asaresult, n n−1 thetheoremremainsvalidwhen1(cid:201)α<2and0<β.Notethattheinterlacingpropertyhereisstrict,soitimplies thesimplicityofthezeros. Furthermore,thepolynomialφ(α,β)(µ)hasonlysimplenegativezerosfor−1<α<0 n and−2<β,aswell.ThisfollowsasastraightforwardconsequenceofTheoremsCW*andLemma2ofthepresent study. BasedonTheoremCCWtheauthorsof[4]conjecturedthatthesepolynomialsalsohavethefollowingproperty. ConjectureA([4,p.3559]). For−1<α<1,−1<βandn(cid:202)4thezerosofthepolynomialsφ(α,β)andφ(α,β)interlace. n n−1 Inparticular,thisassertionwouldimplythatthespectraofpolynomialapproximationstothecorresponding differentialoperatorarenegativeandsimple(see[3]). In[3],ConjectureAwasprovedfor−1<α,β<0and 0<α,β<1:seeTheoremCWbelow.Infact,theupperboundonβisredundant.TheoremCW*withashorter proofstatesthattheconjectureholdstruefor −1<α<0, −1<β or 0(cid:201)α<1, 0<β or 1(cid:201)α<2, 1<β. (3) Additionally,westudyanotherassertionaboutthesamepolynomials. ConjectureB([4,p.3559]). Forφ(α,β)(µ)asinTheoremCCWandforalln(cid:202)5,thezerosofthepolynomialsφ(α,β)(µ) n n andφ(α,β)(µ)interlace. n−2 Originally, thisconjecturewasstatedfor−1<α<1andβ>−1. However, numericalcalculationsshow AlexanderDyachenkoandGalinavanBevern 3 thatitfailsforsomevaluessatisfying−1<β<0<α<1. Our(partial)solutiontoConjectureBisgivenin Theorem10: itholdstruefor−1<α<0<β or 0<α<1<β. Weapproachbyextendingtheideaof[3]to anotherpairofauxiliarypolynomials.Certainly,thereexistsarelationbetweenConjectureAandConjectureB asdiscussedinSection5. Vieta’sformulaeimplythatthesumofallzerosofφ(α,β)(µ)tendsto−1/2forevennandto−1/6foroddn n asn→∞.Thus,theassertionofConjectureBgivesthatthezeropointsofφ(α,β)(µ)convergemonotonically n inn outsideofanyfixedintervalcontainingtheorigin. Iftheassertionsofbothconjectureshold,thenthe fractionφ(α,β)(µ)/φ(α,β)(µ)mapstheupperhalfofthecomplexplaneintoitselfandconvergestoafunction 2n−1 2n meromorphicoutsideofanydiskcentredattheorigin.Thissituationresembleshowthequotientsoforthogonal polynomialsofthefirstandsecondkindsbehave. Section2ofthepresentpaperintroducesconnectionsbetweenpolynomialsφ(α,β)(µ)withdifferentn,α n andβ. Theseconnectionsallowustoextendandclarifytheresult[3]inSection3(seeTheoremCW*). We showthatConjectureAholdstrueundertheconditions(3). Section4containstheproofofConjectureBfor −1<α<0<βand0<α<1<β(seeTheorem10).Inthelastsectionweshowthatthestudiedconjecturesare actuallyrelated. 2 Basicrelationsbetweenthepolynomialsφ(α,β) forvariousαandβ n BeingconnectedwiththeJacobipolynomials,thefamily(cid:179)φ(α,β)(cid:180) ,wheren=2,3,...,inheritssomeoftheir n n properties. The formulae induced by the corresponding relations for the Jacobi case include (we omit the argumentµofφ(α,β)forbrevity’ssake): n (2n+α+β)φ(α,β−1)=(n+α+β)φ(α,β)+(n+α)φ(α,β), (4) n n n−1 (2n+α+β)φ(α−1,β)=(n+α+β)φ(α,β)−(n+β)φ(α,β), (5) n n n−1 (n+α+β)φ(α,β)=(=4=)+=(=5=) (n+β)φ(α,β−1)+(n+α)φ(α−1,β), (6) n n n φ(α,β)=(=4=)−=(=5=) φ(α,β−1)−φ(α−1,β). (7) n−1 n n Thelattertwoidentitiescontainlabelsofequationsabovetheequalitysign:weusetheconventionthatthis explainshowtheequalitiescanbeobtained(uptosomepropercoefficients).Forexample,2n+α+βtimes(6) isthesumofn+βtimes(4)andn+αtimes(5),whereas2n+α+βtimes(7)isthedifference(4)−(5). The identities(4)and(5)canbecheckedbyapplyingtheformulae(see,e.g.,[6,p.737]) (2n+α+β)P(α,β−1)(x)=(n+α+β)P(α,β)(x)+(n+α)P(α,β)(x), (8) n n n−1 (2n+α+β)P(α−1,β)(x)=(n+α+β)P(α,β)(x)−(n+β)P(α,β)(x), (9) n n n−1 respectively,totheleft-handsideofthedefinition(2).Therelationsinvolvingderivatives(notsurprisingly) differfromthosefortheJacobipolynomials: (n+α)φ(α,β+1)=nφ(α,β)−2µ(cid:179)φ(α,β)(cid:180)(cid:48), (10) n−1 n n (n+α+β+1)φ(α,β+1)=(=1=0=)a=n=d=(=4=) (n+α+β+1)φ(α,β)+2µ(cid:179)φ(α,β)(cid:180)(cid:48), (11) n n n (n+α)φ(α−1,β+1)==(5=),=t=h=en==(1=1=)−=(=10==) αφ(α,β)+2µ(cid:179)φ(α,β)(cid:180)(cid:48), (12) n n n n+β 2µ(cid:179)φ(α,β−1)(cid:180)(cid:48)=(=1=1=)a=n=d=(=6=) (n+α)φ(α−1,β)−αφ(α,β), (13) n+α+β n n n 2µ(cid:179)φ(α,β−1)(cid:180)(cid:48)=(=1=0=)a=n=d=(=7=) nφ(α−1,β)−αφ(α,β). (14) n n n−1 Soweseethatthepresentedidentitiesarenotindependentinthesensethattheycanbeobtainedascom- binations of others with various α and β. We derive the formula (10) with the help of the right-hand side 4 OnconjecturesbyCsordas,CharalambidesandWaleffe of(2). nφ(α,β)−2µ(cid:179)φ(α,β)(cid:180)(cid:48)= (α+1)n [n(cid:88)/2](−n)2k(n+α+β+1)2k (cid:179)µ(cid:180)k(n−2k) n n n! (α+1) 4 k=0 2k =(n+α)(α+1)n−1[n(cid:88)/2](−n+2k)(−n)(−n+1)···(−n+2k−1)(n+α+β+1)2k (cid:179)µ(cid:180)k (n−1)! (−n)(α+1) 4 k=0 2k =(n+α)φ(α,β+1). n−1 Certainly,wecancombineformulaefurtherobtaininge.g. nφ(α,β)−2µ(cid:179)φ(α,β)(cid:180)(cid:48)=(=1=0=) (n+α)φ(α,β+1)=(=1=1=) (n+α)φ(α,β)+ n+α 2µ(cid:179)φ(α,β)(cid:180)(cid:48), (15) n n n−1 n−1 n+α+β n−1 nφ(α,β)−(n+α)φ(α,β)==(1=1=)−=(=1=0=) 2n+α+β2µ(cid:179)φ(α,β−1)(cid:180)(cid:48)==ddµ=(=4=) 2µ(cid:179)φ(α,β)(cid:180)(cid:48)+ n+α 2µ(cid:179)φ(α,β)(cid:180)(cid:48). (16) n n−1 n+α+β n n n+α+β n−1 Thekeyrolefurtherplaysthefollowingcombinationof(10)and(11),whichisvalidforanarbitraryreal A, n+α+βφ(α,β)+Aφ(α,β)= (1+A)n+α+βφ(α,β−1)+2µ1−A (cid:179)φ(α,β−1)(cid:180)(cid:48). (17) n+α n n−1 n+α n n+α n Thenextidentitystandsapartandcanbecheckedexplicitlywiththehelpof(2) φ(α,β)(µ)−φ(α,β)(0)= 1(n+α+β+1) ·µφ(α+2,β+2)(µ). n n 4 2 n−2 ItreflectsthestandardformulaforthederivativeoftheJacobipolynomial(e.g.[6,p.737]): (cid:179)Pn(α,β)(x)(cid:180)(m)=2−m(n+α+β+1)mPn(α−+mm,β+m)(x). (18) Remark. Notethattheequalities(4)–(18)areofformalnature,andthereforetheirvalidityrequiresnoortho- gonalityfromtheJacobipolynomials.Thatis,theseequalitiesholdstrueifallcoefficientsaredefined,notonly forα,β>−1. Remark. ApolynomialwithonlyrealzerosinterlacesitsderivativebyRolle’stheorem.1 Consequently,theyboth interlaceanyrealcombinationofthem.2 Soifinoneoftheformulae(10)–(12)thefirsttermontheright-hand sidehasonlyrealzeros,thenallthreeinvolvedpolynomialsarepairwiseinterlacing.Forexample,ifφ(α,β)has onlyrealzeros,thenφ(α,β+1),φ(α,β)and2µ(cid:179)φ(α,β)(cid:180)(cid:48)arepairwiseinterlacingwhichisprovidedby(10).n n−1 n n Remark. The identities (6) and (7) show that the interlacing property of φ(α,β)(µ) and φ(α,β)(µ) can also be n n−1 expressed as the interlacing property of φ(α,β−1)(µ) and φ(α−1,β)(µ). Analogously, from the relations (13) and(14)itcanbeseenthatthisisalsoequivanlenttotheinternlacingpropertyof(cid:179)φ(α,β−1)(µ)(cid:180)(cid:48)andφ(α−1,β)(µ). n n Lemma 1. If −1 < α < 1, −1 < β or if 1 (cid:201) α < 2, 0 < β, then the polynomials (cid:179)φ(α,β)(µ)(cid:180)(cid:48), (cid:179)φ(α,β)(µ)(cid:180)(cid:48) and n n−1 (cid:179)φ(α,β−1)(µ)(cid:180)(cid:48)arepairwiseinterlacing. n Proof. By Theorem CCW the polynomials φ(α,β)(µ), φ(α,β)(µ) have only (simple) negative zeros. Then the n n−1 relation (10) shows that the polynomial φ(α,β+1)(µ) with negative zeros interlaces (strictly) both φ(α,β)(µ) n−1 n andµ(cid:179)φ(α,β)(µ)(cid:180)(cid:48).Moreover,thesignofφ(α,β+1)(µ)attheoriginandattherightmostzeroofφ(α,β)(µ)isthe n n−1 n same,andtherefore(cid:179)φ(α,β)(µ),µφ(α,β+1)(µ)(cid:180)isarealcoprimepair.Asimilarconsiderationoftherelation(11) n n−1 givesthatthepair(cid:179)µφ(α,β)(µ),φ(α,β+1)(µ)(cid:180)isalsorealandcoprime. n−1 n−1 Inparticular,eachintervalbetweentwoconsequentzerosofφ(α,β+1)(µ)containsexactlyonezeroofφ(α,β)(µ) n−1 n 1Non-strictlywheneverthepolynomialhasamultiplezero. 2Seethedefinitionofarealpaironthepage2. AlexanderDyachenkoandGalinavanBevern 5 aswellasofφ(α,β)(µ).Takingthesignsofthelasttwopolynomialsattheendsoftheseintervalsintoaccount n−1 shows that the difference in the left-hand side of (16), and hence (cid:179)φ(α,β−1)(µ)(cid:180)(cid:48), changes its sign between n consecutivezerosofφ(α,β+1)(µ).Sincedeg(cid:179)φ(α,β−1)(cid:180)(cid:48)(cid:201)degφ(α,β+1),thepolynomialµ(cid:179)φ(α,β−1)(µ)(cid:180)(cid:48)necessarily n−1 n n−1 n interlacesφ(α,β+1)(µ).Thentheright-handsideof(16)showsthat n−1 (cid:179)φ(α,β)(µ)(cid:180)(cid:48)+ n+α (cid:179)φ(α,β)(µ)(cid:180)(cid:48) (19) n n+α+β n−1 andφ(α,β+1)(µ)haveinterlacingzeros.Atthesametime,bydifferentiatingtheequality(16)weobtainthat n−1 n(cid:179)φ(α,β)(µ)(cid:180)(cid:48)−(n+α)(cid:179)φ(α,β)(µ)(cid:180)(cid:48) (20) n n−1 isproportionalto(cid:179)µ(cid:179)φ(α,β−1)(µ)(cid:180)(cid:48)(cid:180)(cid:48)and,hence,interlacesµ(cid:179)φ(α,β−1)(µ)(cid:180)(cid:48).Putinotherwords,thepolynomi- n n als(19)and(20)areinterlacing. Withappropriatefactors, theirsumgives(cid:179)φ(α,β)(µ)(cid:180)(cid:48) andtheirdifference n gives(cid:179)φ(α,β)(µ)(cid:180)(cid:48).Thisyieldsthelemma. n−1 3 ResultsonConjectureA TheoremHB(Hermite-Biehler,forrealpolynomials). Arealpolynomial f(z):=p(z2)+zq(z2)isstable3ifandonly ifp(0)·q(0)>0andallzerosofp(z)andzq(z)arenonpositiveandstrictlyinterlacing. Thiswell-knownfactplaysacrucialrolein[4]forprovingTheoremCCW.HerethestatementoftheHermite- Biehlertheoremisexpressedcloselytotheonegivenin[5,p.228].Thereplacementofq(z)withzq(z)provides the desired order of zeros. That is, the zero of p(z) and q(z) closest to the origin belongs to the former polynomial.Themoregeneralstatementcanbefoundine.g.[2,p.21].ThepresentstudyalsousesTheoremHB asamaintool. SomeboundsontheparametersαandβarenecessaryevenforTheoremCCW(i.e.aresatisfiedifallzeros of φ(α,β)(µ) are negative for every n (cid:202) 2). The restriction α > −1 corresponds to positivity of the coeffi- n cients (and to negativity of all zeros). The parameter α is bounded from above by 3.37228.... Indeed, if the polynomial φ(α,β)(µ)=:(cid:80)m b µk, m =[n/2], has only negative4 zeros, then by Rolle’s theorem, the n k=0 k zerosofp(µ):=µmφ(α,β)(µ−1)andp(cid:48)(µ)areinterlacing. So,TheoremHBthenimpliesthatthepolynomial n p(µ2)+µp(cid:48)(µ2)isstable. Therefore,whenb >0theHurwitzcriterion(seee.g.[2,ChapterI])givesusthe 0 easy-to-checkconditionsb >0and 1 (cid:175) (cid:175) (cid:175)mb (m−1)b (m−2)b (cid:175) (cid:175)(cid:175)(cid:175) b 0 b 1 b 2(cid:175)(cid:175)(cid:175)(cid:202)0, thatis b12 (cid:202) 2m >2, (21) (cid:175) 0 1 2 (cid:175) b b m−1 (cid:175)(cid:175) 0 mb0 (m−1)b1(cid:175)(cid:175) 0 2 whicharenecessarilytruewhenthepolynomialp(µ)hasonlyrealzeros.Inourcasewehave b12 = n(n−1)(α+3)2(n+α+β+1)2 −n−→−−∞→ (α+3)(α+4), b b (n−2)(n−3)(α+1) (n+α+β+3) (α+1)(α+2) 0 2 2 2 sothecondition(21)failstobetrue(alongwiththeassertionofTheoremCCW)foreveryn bigenoughand (cid:112) (cid:112) every β when α > 1+ 33 = 3.37228... or α < 1− 33 = −2.37228.... Computer experiments show that the 2 2 polynomialsφ(α,β)withpositivecoefficientscanhavezerosoutsidetherealaxisfora(largeenough)negativeβ. n So,somelowerconstraintontheparameterβisalsorequired. 3Thatis,Hurwitzstable: f(z)=0 =⇒ Rez<0. 4Herewesupposethatφ(α,β)(µ)hasonlysimplezeros;thecaseofmultiplezerosfollowsbycontinuity. n 6 OnconjecturesbyCsordas,CharalambidesandWaleffe Definition. Denotetheithzeroofapolynomialpwithrespecttothedistancefromtheoriginbyzr (p).Putzr (p) i i equalto−∞ifdegp<i andtozeroifi =0(itisconvenientsinceallcoefficientsofthepolynomialswedeal witharenonnegative). Lemma2. Letα>−1andn+α+β>0,n=4,5,.... Thezerosofthepolynomialsφ(α,β) andφ(α,β) arenegative n n−1 andinterlacenon-strictly(strictly)ifandonlyifthepolynomialφ(α,β−1) hasonlyrealzeros(onlysimplerealzeros, n respectively).Moreover,ifφ(α,β−1)hasonlyrealzeros,thenzr (cid:179)φ(α,β)(cid:180)(cid:201)zr (cid:179)φ(α,β)(cid:180). n 1 n−1 1 n Proof. Therelation(17)with A=1and A=−(n+α+β)/n impliesthateachcommonzeroofthepolynomi- alsφ(α,β)andφ(α,β)isamultiplezeroofφ(α,β−1).Theconverseresultisgivenby(10)and(11). n−1 n n Supposethatφ(α,β−1)hasonlyrealzeros.Thecoefficientsofthispolynomialarepositiveundertheassump- n tionsofthelemma,andhenceallofitszerosarenegative.ByRolle’stheorem,thepair(cid:179)φ(α,β−1),µ(cid:179)φ(α,β−1)(cid:180)(cid:48)(cid:180)is n n real.Therefore,thepolynomialsφ(α,β)andφ(α,β)haveonlyrealzerosbytheformulae(10)and(11),respectively. n−1 n Thezerosarenegativeautomaticallysincethecoefficientsofpolynomialsarepositive.Moreover,wehavethat thefirstzeroofφ(α,β) isclosertotheoriginthanthatofφ(α,β). Therelation(17)holdsforallreal A,which n n−1 yieldsthatthepolynomialsφ(α,β)andφ(α,β)formarealpairandthushave(non-strictly)interlacingzeros. n−1 n Letφ(α,β)andφ(α,β)havenegativeinterlacingzeros.Thenanyoftheirrealcombinationsonlyhasrealzeros. n−1 n Thisistrueforφ(α,β−1)accordingtotheidentity(4). n Corollary3. For−1<α<1,β>0or1(cid:201)α<2,β>1thezerosofthepolynomialsφ(α,β) andφ(α,β), n=4,5,..., n n−1 interlace.(Furthermore,thepolynomialsφ(α,β)andµφ(α,β)interlace.) n n−1 Proof. ThiscorollaryisprovidedbyTheoremCCW(seealsotheremarkonit)andLemma2. TheoremCW(Theorem3.10,Charalambidesetal.[3]). ConjectureAholdstruefor−1<α,β<0andfor0<α,β<1. ThistheoremreliesonTheorem3.8andTheorem3.9ofthesameworkandonTheoremCCW.Infact,the original proof (which we extend in the next section to treat Conjecture B) does not need any upper bound onβ. ItbecomesmoreevidentonrecallingthattheregionofpositiveβiscoveredbyCorollary3(i.e. isa straightforwardconsequenceofLemma2andTheoremCCW). TheoremCW*. ConjectureAholdstruefor−1<α<0,−1<β or 0(cid:201)α<1,0<β or 1(cid:201)α<2,1<β. Proof. Corollary3suitsthecaseofpositiveα.FortheregionwithnegativeαitisenoughtoproveonlyTheorem4 (whichisstatedbelow)andTheorem3.9isnotneeded.Indeed,accordingtoTheorem4andTheoremHBwe havethatallzerosofφ(α,β−1)aresimpleandrealforalln,soLemma2isapplicable. n Theorem4(EquivalenttoTheorem3.8,Charalambidesetal.[3]). If−1<α<0,−1<βandn=4,5,...,thenthe zerosofthepolynomialΦ (1;µ),where n Φ (x;µ):= (cid:88)n dk P(α,β−1)(x)µk, n k=0dxk n lieintheopenlefthalfofthecomplexplane. Remark. Itisworthnotingthatthistheoremcannotbeextendedtothefullrange−1<β<0<α<1.According tocomputerexperiments, ConjectureAseemstoholdinthisrange, whileTheorem4fails, e.g., forn=12 whenβ=−0.8andα(cid:39)0.97842,orwhenβ=−0.9andα(cid:39)0.97140. ThereasonisthatprovingConjectureA onlyrequiresnegativesimplezerosofthepolynomialφ(α,β−1)(µ),Theorem4neverthelessassertsadditional n propertiesofφ(α+1,β)(µ)asgivenbytheHermite-Biehlertheorem. n−1 AlexanderDyachenkoandGalinavanBevern 7 Proof. Thisproofisakinto[3,Theorem3.8]butusesotherrelationsfortheJacobipolynomials.Thepolyno- mialΦ (x;µ)satisfiesthedifferentialequation(hereweconsiderµasaparameter) n Φ (x;µ)=P(α,β−1)(x)+µdΦn(x;µ). n n dx dΦ dΦ dΦ LetΦn:=Φn(x;µ)forbrevityandlet n denoteacomplexconjugateof n.Multiplyingby nwα,β+1, dx dx dx wherewα,β+1:=wα,β+1(x)=(1−x)α(1+x)β+1,andintegrationovertheinterval(−1,1)givesus (cid:90)−11ΦnddΦxnwα,β+1dx=(cid:90)−11Pn(α,β−1)ddΦxnwα,β+1dx+µ(cid:90)−11(cid:175)(cid:175)(cid:175)(cid:175)ddΦxn(cid:175)(cid:175)(cid:175)(cid:175)2wα,β+1dx. SelectµsothatΦ (1;µ)=0.Toestimatetherealpartofµweaddthelastequationtoitscomplexconjugate n andobtain (cid:90)−11d(cid:161)|dΦxn|2(cid:162)wα,β+1dx=(cid:90)−11Pn(α,β−1)·2ReddΦxn ·wα,β+1dx+2Reµ(cid:90)−11(cid:175)(cid:175)(cid:175)(cid:175)ddΦxn(cid:175)(cid:175)(cid:175)(cid:175)2wα,β+1dx. (22) Sincewα,β+1increaseson(−1,1)andlimx→−1+Φnwα,β+1=limx→1−Φnwα,β+1=0,theleft-handsidesatisfies (cid:90) 1 d(cid:161)|Φ |2(cid:162) (cid:90) 1 −1 dxn wα,β+1dx=− −1|Φn|2wα(cid:48),β+1dx<0. (α,β−1) Applyingtherelation(8)tothepolynomialP threetimesgivesus n P(α,β−1)= n+α+β P(α,β)+ n+α P(α,β)= (n+α+β)2 P(α,β+1)+(n+α+β)(n+α)P(α,β+1) n 2n+α+β n 2n+α+β n−1 (2n+α+β) n (2n+α+β) n−1 2 2 +(n+α)(n+α+β)P(α,β+1)+ (n+α−1)2 P(α,β+1), (2n+α+β−1) n−1 (2n+α+β−1) n−2 2 2 thatis, P(α,β−1)= (n+α+β)2 P(α,β+1)+ 2(n+α)(n+α+β) P(α,β+1)+ (n+α−1)2 P(α,β+1). n (2n+α+β) n (2n+α+β−1)(2n+α+β+1) n−1 (2n+α+β−1) n−2 2 2 BythedefinitionofΦ andtheformula(18), n RedΦn =2−1(n+α+β)P(α+1,β)+Reµ·2−2(n+α+β) P(α+2,β+1)+(cid:169)polynomialsofdegree <n−2(cid:170). dx n−1 2 n−2 Thedifference(8)−(9)inducestheidentityP(α+1,β)=P(α,β+1)+P(α+1,β+1),sowefinallyhave n−1 n−1 n−2 (cid:90) 1Pn(α,β−1)·2RedΦn ·wα,β+1dx=η+ζReµ, where η,ζ>0. −1 dx Nowthetermsoftherelation(22)areestimated,andityields0>Reµ. 4 ResultsonConjectureB WejusthaveshownthattheresultontheConjectureAin[3]canbeobtainedinashorterwayifweconsiderpoly- nomialswithshiftedparametervalues(weusedφ(α,β−1))insteadofrealcombinationsofthepolynomialsφ(α,β) n n andφ(α,β).Atthesametime,toverifytheConjectureBwecancombineboththeseideas. n−1 Foranyfixedn>3considertheintermediarypolynomial (cid:195) (cid:33) f(x;µ):= (cid:88)n µk A dk P(α,β)(x)+µ dk P(α,β)(x) . k=0 dxk n dxk n−1 8 OnconjecturesbyCsordas,CharalambidesandWaleffe Lemma5. Thepolynomial f(1;µ)isHurwitz-stableprovidedthat−1<α<1andβ,A>0. Proof. Fromthedefinitionof f(x,µ)thedifferentialequation µ d f(x;µ)+AP(α,β)(x)+µP(α,β)(x)=f(x;µ) dx n n−1 follows.Multiplicationby f(x;µ)wα−1,β(x)givesus f ddxf wα−1,β+APn(α,β)(x)µf wα−1,β+Pn(α−,1β)(x)fwα−1,β= µ1|f|2wα−1,β, whereweput f :=f(x;µ)andwα−1,β:=wα−1,β(x)=(1−x)α−1(1+x)βforbrevity.Addingtothisequalityits complexconjugateandintegratingyields (cid:90)−11d(cid:161)d|fx|2(cid:162)wα−1,βdx+A(cid:90)−11Pn(α,β)(x)(cid:195)µf +µf (cid:33)wα−1,βdx+(cid:90)−11Pn(α−,1β)(x)(cid:179)f +f(cid:180)wα−1,βdx (cid:181)1 1(cid:182)(cid:90) 1 = µ+µ |f|2wα−1,βdx. (23) −1 Takeµsothat f(1;µ)=0.Thenthepolynomial f(x;µ)canberepresentedas n−1 f(x;µ)=(1−x)(cid:88)c P(α,β)(x) k k k=0 withsomecomplexconstantsck dependingonµ(generallyspeaking). Observethatcn−1<0: denotingthe leadingcoefficientinx bylc,weobtain cn−1= lc(cid:179)l−c(cid:161)xfP((xα;,βµ))((cid:162)x)(cid:180) =−Al·cl(cid:179)cP(cid:179)P(αn(,αβ,)β()x()x(cid:180))(cid:180) =(=1=) −A(n+nα!+2nβ·+(n1+)nα·(+nβ−)n1−)!12n−1 =−A(22nn+(nα++αβ+−β1))2 <0. n−1 n−1 Thenwehave (cid:90) 1 (cid:90) 1 n−1 −1Pn(α,β)(x)fwα−1,βdx= −1Pn(α,β)(x)k(cid:88)=0ckPk(α,β)(x)wα,βdx=0, (24) (cid:90) 1Pn(α−,1β)(x)fwα−1,βdx=cn−1(cid:90) 1(cid:179)Pn(α−,1β)(x)(cid:180)2wα,βdx<0 −1 −1 asaconsequenceoforthogonalityoftheJacobipolynomials.Notethatif−1<α<1andβ>0,then wα(cid:48)−1,β=(cid:161)β(1−x)−(α−1)(1+x)(cid:162)·wα−2,β−1>0 and x→lim−1+|f|2wα−1,β=xl→im1−|f|2wα−1,β=0. Therefore,integratingbypartsyields (cid:90) 1 d(cid:161)|f|2(cid:162) (cid:90) 1 −1 dx wα−1,βdx=− −1(cid:161)|f|2(cid:162)wα(cid:48)−1,βdx<0. (25) Bytheformulae(24)–(25),theleft-handsideoftheequation(23)isnegative,thusnecessarilyReµ<0. Consideralsoanotherintermediarypolynomialforafixedn>3,namely (cid:195) (cid:33) g(x;µ):= (cid:88)n µk µ dk P(α,β)(x)+A dk P(α,β)(x) . k=0 dxk n dxk n−1 Lemma6. Thepolynomialg(1;µ)isHurwitz-stableprovidedthat−1<α<0andβ,A>0. AlexanderDyachenkoandGalinavanBevern 9 Proof. ThisproofisanalogoustotheproofsofTheorem4andLemma5.Fromthedefinitionofg(x,µ)wehave µdg(x;µ)+µP(α,β)(x)+AP(α,β)(x)=g(x;µ) dx n n−1 whichgivesus(weputg :=g(x;µ)andg(cid:48):= dg(x;µ) forbrevity’ssake) dx µg(cid:48)g(cid:48)wα,β+µPn(α,β)(x)g(cid:48)wα,β+APn(α−,1β)(x)g(cid:48)wα,β=gg(cid:48)wα,β (cid:48) aftermultiplicationbyg wα,β.Addingtotheequationitscomplexconjugateandintegratingyields (µ+µ)(cid:90) 1|g(cid:48)|2wα,βdx+(cid:90) 1Pn(α,β)(x)(cid:179)µg(cid:48)+µg(cid:48)(cid:180)wα,βdx+A(cid:90) 1Pn(α−,1β)(x)(cid:179)g(cid:48)+g(cid:48)(cid:180)wα,βdx −1 −1 −1 (cid:90) 1(cid:179) (cid:180) = gg(cid:48)+gg(cid:48) wα,βdx. (26) −1 Observethatg isapolynomialofdegreeninxanditsleadingcoefficientisgivenbyP(α,β)(x)·µ.Consequently, n (cid:179) (α,β) (cid:180) substitutingtheexplicitexpressionforlc P (x) fromtheformula(1)gives n lc(g(cid:48))=nlc(cid:179)P(α,β)(x)(cid:180)µ= (2n+α+β−1)2 ·(n+α+β)n−1µ= (2n+α+β−1)2lc(cid:179)P(α,β)(x)(cid:180)µ. n 2(n+α+β) (n−1)!2n−1 2(n+α+β) n−1 Thisallowsustocalculatethethirdsummandontheleft-handsideof(26): (cid:90)−11Pn(α−,1β)(x)(cid:179)g(cid:48)+g(cid:48)(cid:180)wα,βdx=(cid:90)−11Pn(α−,1β)(x)(2n2(+nα++αβ+−β)1)2lc(cid:179)Pn(α−,1β)(x)(cid:180)(cid:161)µ+µ(cid:162)xn−1wα,βdx =(cid:161)µ+µ(cid:162)(2n2(+nα++αβ+−β)1)2(cid:90)−11(cid:179)Pn(α−,1β)(x)(cid:180)2wα,βdx. (27) Additionally,wehave (cid:90) 1 Pn(α,β)(x)g(cid:48)wα,βdx=0. (28) −1 Takeµsothatg(1;µ)=0.Then wα(cid:48),β=(cid:161)β(1−x)−α(1+x)(cid:162)·wα−1,β−1>0 and x→lim−1+|g|2wα,β=xl→im1−|g|2wα,β=0 since−1<α<0andβ>0.Integratingbypartsweobtain (cid:90) 1(cid:179) (cid:180) (cid:90) 1 gg(cid:48)+gg(cid:48) wα,βdx=− |g|2wα(cid:48),βdx<0. (29) −1 −1 Nowletusbringtogethertherelations(26)–(29): (µ+µ)(cid:90)−11(cid:181)|g(cid:48)|2+A(2n2(+nα++αβ+−β)1)2(cid:179)Pn(α−,1β)(x)(cid:180)2(cid:182)wα,βdx=−(cid:90)−11|g|2wα(cid:48),βdx, hence 2Reµ=µ+µ<0. Thatis,anyzeroµofthepolynomialg(1;µ)residesinthelefthalfofthecomplexplane. Corollary7. Foranypositive A,thezerosofthepolynomials 2Aφ(α,β)(µ)+(cid:161)n+α+β(cid:162)µφ(α+1,β+1)(µ) and A(cid:161)n+α+β+1(cid:162)φ(α+1,β+1)(µ)+2φ(α,β)(µ) (30) n n−2 n−1 n−1 areinterlacingprovidedthat−1<α<1andβ>0.Ifinaddition−1<α<0,thezerosofthepolynomials (cid:161)n+α+β+1(cid:162)µφ(α+1,β+1)(µ)+2Aφ(α,β)(µ) and 2φ(α,β)(µ)+A(cid:161)n+α+β(cid:162)φ(α+1,β+1)(µ) (31) n−1 n−1 n n−2 arealsointerlacing. 10 OnconjecturesbyCsordas,CharalambidesandWaleffe Proof. To get the assertion we apply the relation (18) to the even and odd parts of the polynomials f(x;µ) andg(x;µ).Theevenpartof f(x;µ)is f(x;µ)+f(x;−µ) =A[n(cid:88)/2]µ2k d2k P(α,β)(x)+µ2[n(cid:88)/2]µ2k d2k+1 P(α,β)(x) 2 k=0 dx2k n k=0 dx2k+1 n−1 =A[n(cid:88)/2]µ2k d2k P(α,β)(x)+n+α+βµ2[n/(cid:88)2]−1µ2k d2k P(α+1,β+1)(x). k=0 dx2k n 2 k=0 dx2k n−2 Analogously,fortheoddpartwehave f(x;µ)−f(x;−µ) =A[(n−(cid:88)1)/2]µ2k+1 d2k+1 P(α,β)(x)+[(n−(cid:88)1)/2]µ2k+1 d2k P(α,β)(x) 2 k=0 dx2k+1 n k=0 dx2k n−1 =An+α+β+1[(n−(cid:88)1)/2]µ2k+1 d2k P(α+1,β+1)(x)+[(n−(cid:88)1)/2]µ2k+1 d2k P(α,β)(x). 2 k=0 dx2k n−1 k=0 dx2k n−1 Thesamemanipulationswithg(x;µ)give g(x;µ)+g(x;−µ) =[(n−(cid:88)1)/2]µ2k+2 d2k+1 P(α,β)(x)+A[(n−(cid:88)1)/2]µ2k d2k P(α,β)(x) 2 k=0 dx2k+1 n k=0 dx2k n−1 = n+α+β+1µ2[(n−(cid:88)1)/2]µ2k d2k P(α+1,β+1)(x)+A[(n−(cid:88)1)/2]µ2k d2k P(α,β)(x) and 2 k=0 dx2k n−1 k=0 dx2k n−1 g(x;µ)−g(x;−µ) =[n(cid:88)/2]µ2k+1 d2k P(α,β)(x)+A[(n−(cid:88)1)/2]µ2k+1 d2k+1 P(α,β)(x) 2 k=0 dx2k n k=0 dx2k+1 n−1 =µ(cid:195)[n(cid:88)/2]µ2k d2k P(α,β)(x)+An+α+β[n/(cid:88)2]−1µ2k d2k P(α+1,β+1)(x)(cid:33). k=0 dx2k n 2 k=0 dx2k n−2 The polynomials f(1;µ) and g(1;µ) are stable by Lemma 5 and Lemma 6, respectively. Thus, the pairs of polynomialsmentionedin(30)and(31)haveinterlacingzerosbyTheoremHB. Lemma8(seee.g.[8,Lemma3.4]or[3,Lemma3.5]). Letrealpolynomialsp(x)andq(x)suchthatp(0),q(0)>0 (cid:161) (cid:162) haveonlynegativezeros.Then p(x),xq(x) isarealpairifandonlyifthecombinations r (x):=r (x;A,B):=Ap(x)+Bxq(x) and r (x):=r (x;C,D):=Cp(x)+Dq(x) (32) 1 1 2 2 arenonzerooutsidethereallineforall A,B,C,D>0. Recall that p(x) and xq(x) is a real pair whenever they interlace (non-strictly if p(x) and xq(x) have a commonzero).Forp andq asinthislemmawethushavedegq(cid:201)degp(cid:201)1+degq automatically. Proof. Withoutlossofgenerality,assumeintheproofthatthepolynomialsp andq havenocommonzeros:if not,thezerosarerealandwecanfactorthemoutofr andr .Thepresenceofcommonzerospreventsp andq 1 2 frombeingstrictlyinterlacing. (cid:161) (cid:162) Let p(x),xq(x) be a real pair. The polynomials p and xq interlace exactly when between each pair of consecutivezeroszri(p),zri−1(p)thepolynomialq hasexactlyonechangeofsign,i =2,...,degp.Thatis,the interlacingpropertyofthesepolynomialsisequivalentto R(z):= q(z) =γ+(cid:88)n Ai implying zR(z)= zq(z) =γz+(cid:88)n A +(cid:88)n zri(p)Ai , p(z) z−zr (p) p(z) i z−zr (p) i=1 i i=1 i=1 i whereγ(cid:202)0andtheresidues A = q(zri(p)) arepositiveforalli.Thestraightforwardcheckshowsthat i p(cid:48)(zri(p)) signImR(z)=−signIm(zR(z))=−signImz foranyz∈(cid:67)suchthatp(z)(cid:54)=0.Consequently,thecombinations(32)havezerosonlyontherealline.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.