The Raymond and Beverly Sackler Faculty of Exact Sciences School of Mathematical Sciences On Certain Degenerate Whittaker Models for GL(n) over Finite Fields Thesis submitted in partial fulfillment of the requirements for the M. Sc. degree in the School of Mathematical Sciences, Tel-Aviv University by Zahi Hazan Under the supervision of Prof. David Soudry October 2016 Abstract Let F be a finite field and let Fn be the degree n field extension of F. This thesis deals with certain degenerate Whittaker models of cuspidal representations of GLn(F). Given aregular character ofF∗n, there existsa corresponding irreducible cuspidal representation of GLn(F). D. Prasad proved in [Pra00] that for such a cuspidal representation π(cid:48) of GL2n(F), associated with a regular F∗2n-character θ(cid:48) and for a nontrivial character ψ0 of F, the following GLn(F)-representation π , N(cid:48) ,ψ (cid:48) I X V = v V π n v = ψ (X)v , πN(cid:48) ,ψ(cid:48) (cid:26) ∈ π(cid:48) (cid:12) (cid:48)(cid:18)0 In(cid:19) 0 (cid:27) (cid:12) is equivalent to the induced represe(cid:12)(cid:12)ntation IndGF∗nLn(F)(θ(cid:48) (cid:22)F∗n). We generalize Prasad’s work by considering the GLn(F)-representation πN,ψ, I X Y n Vπ = v V π 0 I Z v = ψ (tr(X +Z))v , N,ψ π n 0 ∈ (cid:12) (cid:12) 0 0 I n (cid:12) (cid:12) (cid:12) where π is an irreducible cu(cid:12)spidal representation of GL3n(F), associated with a regular F∗3n-character θ and ψ0 is a nontrivial character of F. We give an exact formula for the character of π and a nice description of π by all N,ψ N,ψ IndGLn(F)(θ (cid:22) ), where (cid:96) n. F∗(cid:96) F∗(cid:96) | Acknowledgments First and foremost I would like to express my sincere gratitude to my supervisor Professor David Soudry. I am indebted to him for providing me with invaluable support, encouragement, scientific guidance and most importantly for intriguing my curiosity over and over again. I would like to thank my fellow student Ofir Gorodetsky who managed to prove a necessary identity for this thesis (Theorem B) and Professor Chan Heng Huat for useful discussions and advice regarding this identity. I would like to thank my fellow students Or Baruch and Elad Zelingher for many useful discussions. Last but not least, I would like to thank my wife Ravit and my kids Orya and Noya for their constant support, encouragement and patience during all these years. 5 Contents 1 Introduction 11 1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Preliminaries 16 2.1 Cuspidal Representations . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Characters Induced from Subfields . . . . . . . . . . . . . . . . . . 18 2.3 Some Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Number of matrices with same sank and trace . . . . . . . 20 2.3.2 Number of non-square matrices with a given rank . . . . . 22 2.4 On Some Conjugacy Classes of GLn(F) . . . . . . . . . . . . . . . 23 2.4.1 Analog of Jordan form . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Conjugating an arbitrary matrix . . . . . . . . . . . . . . . 25 2.4.3 Trace under conjugation . . . . . . . . . . . . . . . . . . . 27 2.5 Arithmetic properties of certain polynomials . . . . . . . . . . . . 28 3 Calculation of dimπ 32 N,ψ 4 Calculation of the Character Θ 39 N,ψ 4.1 Character Calculation at a Non-Semisimple Element . . . . . . . 40 4.1.1 Case g = λu (λ F,u = In) . . . . . . . . . . . . . . . . . 40 ∈ (cid:54) 4.1.2 Case g = s u, (s comes from Fn but not from F) . . . . . 43 · 4.2 Character Calculation at a Semisimple Element . . . . . . . . . . 46 5 Concluding the Main Theorem 51 Appendix - Proof of the Dimension Identity 53 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Conclusion of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7 List of Notations F A finite field of cardinality q ......................................... 11 ψ0 A nontrivial character of F...........................................11 Fn The unique degree n field extension of F ............................. 11 Gk The group of invertible k k matrices over F ........................ 11 × G The group of invertible 3n 3n matrices over F......................12 × ∆r(G ) The diagonal subgroup of (G )r....................................11 k k P The parabolic subgroup of GL3n(F) of type (n,n,n)..................12 M The Levi subgroup of P..............................................12 N The unipotent radical of P ...........................................12 ψ A nontrivial character of N ..........................................12 V The (N,ψ)-isotypic subspace of V ...................................12 πN,ψ π πθ An irreducible, cuspidal representation of GL3n(F) associated to a regular character θ of F∗3n....................................................13 Θ The character of π ................................................14 N,ψ N,ψ πN,ψ The representation of GLn(F), identified with ∆3(Gn), in VπN,ψ.......13 θ A regular character of F∗3n............................................16 Θ The character of π ..................................................16 θ θ ΘInd(cid:96) The character of IndFG∗(cid:96)Ln(F)(θ (cid:22)F∗(cid:96)).....................................18 Yα The number of square matrices of order m+k over F with a fixed rank k m,k and a fixed trace α...................................................20 Gr(n,r) The Grassmannian of r-dimensional subspace of Fn...............20 Zs,t,k The number of matrices of order s t over F with fixed rank k.......22 × 9