ON BOOTH LEMNISCATE OF STARLIKE FUNCTIONS RAHIMKARGAR,ALIEBADIANANDJANUSZSOKO´L(cid:32) Abstract. Assumethat∆istheopenunitdiskinthecomplexplaneandA istheclassofnormalizedanalyticfunctionsin∆. Inthispaperweintroduce andstudytheclass (cid:26) (cid:18)zf(cid:48)(z) (cid:19) z (cid:27) BS(α):= f ∈A: −1 ≺ ,z∈∆ , 7 f(z) 1−αz2 1 where0≤α≤1and≺isthesubordinationrelation. Somepropertiesofthis 0 class like differential subordination, coefficients estimates and Fekete-Szeg¨o 2 inequalityassociatedwiththek-throottransformareconsidered. n a J 6 1. Introduction 2 Let A denote the class of functions f(z) of the form: ] V ∞ (cid:88) C (1.1) f(z)=z+ anzn, . n=2 h which are analytic and normalized in the open unit disk ∆ = {z ∈ C : |z| < 1}. t a The subclass of A consisting of all univalent functions f(z) in ∆ is denoted by m S. A function f ∈ S is called starlike (with respect to 0), denoted by f ∈ S∗, if [ tw ∈f(∆)wheneverw ∈f(∆)andt∈[0,1]. Robertsonintroducedin[8],theclass S∗(γ) of starlike functions of order γ ≤1, which is defined by 1 v (cid:26) (cid:26)zf(cid:48)(z)(cid:27) (cid:27) 9 S∗(γ):= f ∈A: Re >γ, z ∈∆ . f(z) 7 7 Ifγ ∈[0,1),thenafunctioninS∗(γ)isunivalent. InparticularweputS∗(0)≡S∗. 7 We denote by B the class of analytic functions w(z) in ∆ with w(0) = 0 and 0 |w(z)| < 1, (z ∈ ∆). If f and g are two of the functions in A, we say that . 1 f is subordinate to g, written f(z) ≺ g(z), if there exists a w ∈ B such that 0 f(z)=g(w(z)), for all z ∈∆. 7 1 Furthermore, if the function g is univalent in ∆, then we have the following : equivalence: v i f(z)≺g(z)⇔(f(0)=g(0) and f(∆)⊂g(∆)). X r We now recall from [7], a one-parameter family of functions as follows: a ∞ z (cid:88) (1.2) F (z):= =z+ αnz2n+1 (z ∈∆, 0≤α≤1). α 1−αz2 n=1 ThefunctionF (z)isstarlikeunivalentfor0≤α<1. WehavealsoF (∆)=D(α), α α where D(α)=(cid:26)x+iy ∈C: (cid:0)x2+y2(cid:1)2− x2 − y2 <0(cid:27), (1−α)2 (1+α)2 2000 Mathematics Subject Classification. 30C45. Key words and phrases. Boothlemniscate,Subordination,Starlike,StronglyStarlike,Fekete- Szeg¨oInequality. 1 2 R.KARGAR,A.EBADIANANDJ.SOKO´L(cid:32) when 0≤α<1 and D(1)={x+iy ∈C: (∀t∈(−∞,−i/2]∪[i/2,∞))[x+iy (cid:54)=it]}. Figure 1. The boundary curve of D(1/2) The Persian curve (cf. [10]) is a plane algebraic curve of order four that is the line of intersection between the surface of a torus and a plane parallel to its axis. The equation in rectangular coordinates is (cid:0)x2+y2+p2+d2−r2(cid:1)2 =4d2(cid:0)x2+p2(cid:1), where r is the radius of the circle describing the torus, d is the distance from the origin to its center and p is the distance from the axis of the torus to the plane. We remark that a curve described by (cid:0)x2+y2(cid:1)2−(cid:0)n4+2m2(cid:1)x2−(cid:0)n4−2m2(cid:1)y2 =0 (x,y)(cid:54)=(0,0), is a special case of Persian curve that studied by Booth and is called the Booth lemniscate [2]. The Booth lemniscate is called elliptic if n4 > 2m2 while, for n4 <2m2, it is termed hyperbolic. Thus it is clear that the curve (cid:0)x2+y2(cid:1)2− x2 − y2 =0 (x,y)(cid:54)=(0,0), (1−α)2 (1+α)2 is the Booth lemniscate of elliptic type (see figure 1). Two other special case of Persian curve are Cassini oval and Bernoulli lemniscate. A plane algebraic curve of order four whose equation in Cartesian coordinates has the form: (cid:0)x2+y2(cid:1)2−2c2(cid:0)x2−y2(cid:1)=a4−c4. The Cassini oval is the set of points such that the product of the distances from each point to two given points p = (−c,0) and p = (c,0) (the foci) is constant. √ 2 1 √ When a ≥ c 2 the Cassini oval is a convex curve; when c < a < c 2 it is a curve with ”waists” (concave parts); when a = c it is a Bernoulli lemniscate; and when a<c it consists of two components. Cassini ovals are related to lemniscates. CassiniovalswerestudiedbyG.Cassini(17thcentury)inhisattemptstodetermine the Earth’s orbit. The Bernoulli lemniscate plane algebraic curve of order four, the equation of which in orthogonal Cartesian coordinates is (cid:0)x2+y2(cid:1)2−2a2(cid:0)x2−y2(cid:1)=0, and in polar coordinates ρ2 =2a2cos2φ. The Bernoulli lemniscate is symmetric about the coordinate origin, which is a nodewithtangentsy =±xandthepointofinflection. Theproductofthedistances of any point M to the two given points p =(−a,0) and p =(a,0) is equal to the 1 2 ON BOOTH LEMNISCATE OF STARLIKE FUNCTIONS 3 square of the distance between the points p and p . The Bernoulli lemniscate is 1 2 a special case of the Cassini ovals, the lemniscates, and the sinusoidal spirals. The Bernoulli spiral was named after Jakob Bernoulli, who gave its equation in 1694. In [4], the authors introduced and studied the class M(δ) as follows: Definition A. Let π/2 ≤ δ < π. Then the function f ∈ A belongs to the class M(δ) if f satisfies: δ−π (cid:26)zf(cid:48)(z)(cid:27) δ (1.3) 1+ <Re <1+ (z ∈∆). 2sinδ f(z) 2sinδ By definition of subordination and by (1.3), we have that f ∈M(δ) if and only if (cid:18)zf(cid:48)(z) (cid:19) 1 (cid:18) 1−z (cid:19) −1 ≺B (z):= log (z ∈∆), f(z) α 2isinδ 1−ze−iδ where π/2≤δ <π. The above function B (z) is convex univalent in ∆ and maps α ∆ onto Γ ={w :(δ−π)/(2sinδ)<Re{w}<δ/(2sinδ)}, or onto the convex hull δ of three points (one of which may be that point at infinity) on the boundary of Γ . δ In other words, the image of ∆ may be a vertical strip when π/2≤δ <π, while in other cases, a half strip, a trapezium, or a triangle. It was proved in [6], that for α < 1 < β, the following function P : ∆ → C, α,β defined by β−α (cid:32)1−e2πiβ1−−ααz(cid:33) (1.4) P (z)=1+ ilog (z ∈∆), α,β π 1−z maps ∆ onto a convex domain (1.5) P (∆)={w ∈C:α<Re{w}<β}, α,β conformally. Therefore, the function P (z) defined by (1.4) is convex univalent α,β in ∆ and has the form: ∞ (cid:88) P (z)=1+ B zn, α,β n n=1 where β−α (cid:16) (cid:17) (1.6) Bn = nπ i 1−e2nπiβ1−−αα (n=1,2,...). The present authors (see [3]) introduced the class V(α,β) as follows: Definition B. Let α<1 and β >1. Then the function f ∈A belongs to the class V(α,β) if f satisfies: (cid:40)(cid:18) z (cid:19)2 (cid:41) (1.7) α<Re f(cid:48)(z) <β (z ∈∆). f(z) Therefore, by definition of subordination, we have that f ∈V(α,β) if and only if (cid:18) z (cid:19)2 f(cid:48)(z)≺P (z) (z ∈∆). f(z) α,β MotivatedbyDefinitionA,DefinitionBandusingF ,weintroduceanewclass. α Our principal definition is the following. Definition 1.1. Let f ∈A and 0≤α<1. Then f ∈BS(α) if and only if (cid:18)zf(cid:48)(z) (cid:19) (1.8) −1 ≺F (z) (z ∈∆), f(z) α where F defined by (1.2). α In our investigation, we require the following result. 4 R.KARGAR,A.EBADIANANDJ.SOKO´L(cid:32) Corollary 1.1. We have that f ∈BS(α) if and only if (cid:90) z F (w(t))−1 (1.9) f(z)=zexp α dt (z ∈∆), t 0 for some function w(z), analytic in ∆, with |w(z)|≤|z| in ∆. Proof. From (1.8) it follows that there exists a function w(z), analytic in ∆, with |w(z)|≤|z| in ∆, such that (cid:18)f(cid:48)(z) 1(cid:19) z − =F (w(z)) (z ∈∆), f(z) z α or (cid:18) f(z)(cid:19)(cid:48) z log =F (w(z)) (z ∈∆). z α This gives (1.9). On the other hand, it is a easy calculation that a function having the form (1.9) satisfies condition (1.8). (cid:3) Applying formula (1.9) for w(z)=z gives that √ √ (cid:18) (cid:19)1/ α 1+ αz (1.10) f (z)=z √ (z ∈∆), 0 1− αz is in the class BS(α). Lemma 1.1. Let F (z) be given by (1.2). Then α 1 1 (1.11) <Re{F (z)}< (0≤α<1). α−1 α 1−α Proof. If α = 0, then we have −1 < Re{F } = Re(z) < 1. For 0 < α < 1, the α function {F } does not have any poles in ∆ and is analytic in ∆, thus looking α for the min{Re{F (z)} : |z| < 1} it is sufficient to consider it on the boundary α ∂F (∆)={F (eiϕ):ϕ∈[0,2π]}. A simple calculation give us α α Re(cid:8)F (eiϕ)(cid:9)= (1−α)cosϕ (ϕ∈[0,2ϕ]). α 1+α2−2αcos2ϕ So we can see that Re{F (z)} is well defined also for ϕ=0 and ϕ=2π. Define α (1−α)x g(x)= (−1≤x≤1), 1+α2−2α(2x2−1) then for 0<α<1, we have g(cid:48)(x)>0. Thus for −1≤x≤1, we have 1 1 =g(−1)≤g(x)≤g(1)= . α−1 1−α This completes the proof. (cid:3) We note that from Lemma 1.1 and by definition of subordination, the function f ∈A belongs to the class BS(α), 0≤α<1, if it satisfies the condition 1 (cid:18)zf(cid:48)(z) (cid:19) 1 <Re −1 < (z ∈∆), α−1 f(z) 1−α or equivalently α (cid:18)zf(cid:48)(z)(cid:19) 2−α (1.12) <Re < (z ∈∆). α−1 f(z) 1−α It is clear that BS(0) ≡ S(0,2) ⊂ S∗, where the class S(α,β), α < 1 and β > 1, was recently considered by K. Kuroki and S. Owa in [6]. ON BOOTH LEMNISCATE OF STARLIKE FUNCTIONS 5 Corollary 1.2. If f ∈BS(α), then zf(cid:48)(z) (1.13) ≺P (z) (z ∈∆), f(z) α where (cid:32) (cid:33) 2 1−eπi(1−α)2z (1.14) P (z)=1+ ilog (z ∈∆), α π(1−α) 1−z is convex univalent in ∆. Proof. If f ∈ BS(α), then it satisfies (1.12) or zf(cid:48)(z)/f(z) lies in a strip of the form (1.5). Then applying the definition of subordination and the function (1.4), we obtain (1.13) and (1.14). (cid:3) For the proof of our main results, we need the following Lemma. Lemma 1.2. (See [9]) Let q(z)=(cid:80)∞ C zn be analytic and univalent in ∆, and n=1 n suppose that q(z) maps ∆ onto a convex domain. If p(z)=(cid:80)∞ A zn is analytic n=1 n in ∆ and satisfies the following subordination p(z)≺q(z) (z ∈∆), then |A |≤|C | n≥1. n 1 2. Main Results The first main result is the following theorem. Theorem 2.1. Let f ∈A and 0≤α<1. If f ∈BS(α) then f(z) (cid:90) z P (t)−1 (2.1) log ≺ α dt (z ∈∆), z t 0 where (cid:32) (cid:33) 2 1−eπi(1−α)2z P (z)−1= ilog (z ∈∆) α π(1−α) 1−z and (cid:90) z P (t)−1 P(cid:101)α(z)= α t dt (z ∈∆), 0 are convex univalent in ∆. Proof. If f ∈BS(α), then by (1.13) it satisfies (cid:26) f(z)(cid:27)(cid:48) (2.2) z log ≺P (z)−1. z α It is known that if F(z) is convex univalent in ∆, then (cid:20)(cid:90) z f(t) (cid:90) z F(t) (cid:21) (2.3) [f(z)≺F(z)]⇒ dt≺ dt t t 0 0 and (cid:90) z F(t) F(cid:101)(z)= dt, t 0 is convex univalent in ∆. By Corollary 1.2, we know that P (z) − 1 is convex α univalent in ∆. Therefore, applying (2.3) in (2.2) gives (2.1) with convex univalent P(cid:101)α(z). (cid:3) 6 R.KARGAR,A.EBADIANANDJ.SOKO´L(cid:32) Corollary 2.1. If f ∈BS(α) and |z|=r <1, then (2.4) |mz|=inr(cid:12)(cid:12)(cid:12)expP(cid:101)α(z)(cid:12)(cid:12)(cid:12)≤(cid:12)(cid:12)(cid:12)(cid:12)f(zz)(cid:12)(cid:12)(cid:12)(cid:12)≤|mz|a=xr(cid:12)(cid:12)(cid:12)expP(cid:101)α(z)(cid:12)(cid:12)(cid:12). Proof. Subordination implies f(z) (2.5) z ≺expP(cid:101)α(z) and expP(cid:101)α(z) is convex univalent. Then (2.5) implies (2.4). (cid:3) We now obtain coefficients estimates for functions belonging to the class BS(α). Theorem 2.2. Assume that the function f of the form (1.1) belongs to the class √ BS(α) where 0≤α≤3−2 2. then |a |≤1 and 2 n−1(cid:18) (cid:19) 1 (cid:89) k (2.6) |a |≤ (n=3,4,...). n n−1 k−1 k=2 Proof. Assume that f ∈BS(α). Then from Definition 1.1 we have (2.7) p(z)≺1+F (z)=1+z+αz3+··· (z ∈∆), α where (2.8) zf(cid:48)(z)=p(z)f(z). √ We note that F is convex function for 0≤α≤3−2 2 (see [7, Corollary 3.3]). If α we define p(z)=1+(cid:80)∞ p zn, then from Lemma 1.2, we have n=1 n (2.9) |p |≤1. n Equating the coefficients of zn on both sides of (2.8), we find the following relation between the coefficients: (2.10) na =p +a p +···+a p +a . n n−1 2 n−2 n−1 1 n Making use of (2.9) and (2.10), we get n−1 1 (cid:88) (2.11) |a |≤ |a | |a |=1. n n−1 k 1 k=1 Obvious that, from (2.11) we have |a |≤1. We now need show that 2 n−1 n−1(cid:18) (cid:19) 1 (cid:88) 1 (cid:89) 1 (2.12) |a |≤ 1+ (n=3,4,...). n−1 k n−1 k−1 k=1 k=2 Weuseinductiontoprove(2.12). Ifwetaken=3intheinequality(2.12),wehave |a |≤1, therefore the case n=3 is clear. A simple calculation gives us 2 m (cid:32)m−1 (cid:33) 1 (cid:88) 1 (cid:88) |a |≤ |a |= |a |+|a | m+1 m k m k m k=1 k=1 m−1(cid:18) (cid:19) m−1(cid:18) (cid:19) 1 (cid:89) 1 1 1 (cid:89) 1 ≤ 1+ + × 1+ m k−1 m m−1 k−1 k=2 k=2 m (cid:18) (cid:19) 1 (cid:89) 1 = 1+ , m k−1 k=2 which implies that the inequality (2.12) holds for n=m+1. From now (2.11) and (2.12), the desired estimate for |a |(n=3,4,...) follows, as asserted in (2.6). This n completes the proof. (cid:3) ON BOOTH LEMNISCATE OF STARLIKE FUNCTIONS 7 Theproblemoffindingsharpupperboundsforthecoefficientfunctional|a −µa2| 3 2 for different subclasses of the normalized analytic function class A is known as the Fekete-Szeg¨o problem. Recently, Ali et al. [1] considered the Fekete-Szeg¨o functional associated with the kth root transform for several subclasses of univalent functions. We recall here that, for a univalent function f(z) of the form (1.1), the kth root transform is defined by ∞ (cid:88) (2.13) F(z)=[f(zk)]1/k =z+ b zkn+1 (z ∈∆). kn+1 n=1 Following, we consider the problem of finding sharp upper bounds for the Fekete- Szeg¨o coefficient functional associated with the kth root transform for functions in the class BS(α). In order to prove next result, we need the following lemma due to Keogh and Merkes [5]. Further we denote by P the well-known class of analytic functions p(z) with p(0)=1 and Re(p(z))>0, z ∈∆. Lemma 2.1. Let the function g(z) given by g(z)=1+c z+c z2+··· , 1 2 be in the class P. Then, for any complex number µ |c −µc2|≤2max{1,|2µ−1|}. 2 1 The result is sharp. Theorem 2.3. Let 0 ≤ α < 1, f ∈ BS(α) and F is the kth root transform of f defined by (2.13). Then, for any complex number µ, (cid:26) (cid:12) (cid:12)(cid:27) (2.14) (cid:12)(cid:12)b2k+1−µb2k+1(cid:12)(cid:12)≤ 21k max 1,(cid:12)(cid:12)(cid:12)2(µk−1) +1(cid:12)(cid:12)(cid:12) . The result is sharp. Proof. Using (1.2), we first put ∞ (cid:88) (2.15) 1+F (z)=1+ B zn, α n n=1 where B =1, B =0, B =α, and etc. Since f ∈BS(α), from Definition 1.1 and 1 2 3 definition of subordination, there exists w ∈B such that (2.16) zf(cid:48)(z)/f(z)=1+F (w(z)). α We now define 1+w(z) (2.17) p(z)= =1+p z+p z2+··· . 1−w(z) 1 2 Since w ∈B, it follows that p∈P. From (2.15) and (2.17) we have: (cid:18) (cid:18) (cid:19)(cid:19) 1 1 1 1 (2.18) 1+F (w(z))=1+ B p z+ B p2+ B p − p2 z2+··· , α 2 1 1 4 2 1 2 1 2 2 1 where B = 1 and B = 0. Equating the coefficients of z and z2 on both sides of 1 2 (2.16) and substituting B =1 and B =0, we get 1 2 1 (2.19) a = p , 2 2 1 and (cid:18) (cid:19) 1 1 1 (2.20) a = p2+ p − p2 . 3 8 1 4 2 2 1 8 R.KARGAR,A.EBADIANANDJ.SOKO´L(cid:32) A computation shows that, for f given by (1.1), (cid:18) (cid:19) 1 1 1k−1 (2.21) F(z)=[f(z1/k)]1/k =z+ a zk+1+ a − a2 z2k+1+··· . k 2 k 3 2 k2 2 From equations (2.13) and (2.21), we have 1 1 1k−1 (2.22) b = a and b = a − a2. k+1 k 2 2k+1 k 3 2 k2 2 Substituting from (2.19) and (2.20) into (2.22), we obtain 1 b = p , k+1 2k 1 and (cid:18) (cid:19) 1 k−1 b = p − p2 , 2k+1 4k 2 k 1 so that (cid:20) (cid:18) (cid:19) (cid:21) 1 1 2(µ−1) (2.23) b −µb2 = p − +2 p2 . 2k+1 k+1 4k 2 2 k 1 Letting (cid:18) (cid:19) 1 2(µ−1) µ(cid:48) = +2 , 2 k theinequality(2.14)nowfollowsasanapplicationofLemma2.1. Itiseasytocheck that the result is sharp for the kth root transforms of the function (cid:18)(cid:90) z F (w(t)) (cid:19) (2.24) f(z)=zexp α dt . t 0 (cid:3) Putting k =1 in Theorem 2.3, we have: Corollary 2.2. (Fekete-Szeg¨o inequality) Suppose that f ∈BS(α) and 0≤α<1. Then, for any complex number µ, (2.25) (cid:12)(cid:12)a3−µa22(cid:12)(cid:12)≤ 21max{1,|2µ−1|}. The result is sharp. It is well known that every function f ∈ S has an inverse f−1, defined by f−1(f(z))=z, z ∈∆ and f(f−1(w))=w (|w|<r ; r <1/4), 0 0 where (2.26) f−1(w)=w−a w2+(2a2−a )w3−(5a3−5a a +a )w4+··· . 2 2 3 2 2 3 4 Corollary 2.3. Let the function f, given by (1.1), be in the class BS(α) where 0≤α<1. Also let the function f−1(w)=w+(cid:80)∞ b wn be inverse of f. Then n=2 n (2.27) |b |≤1, 2 and 3 (2.28) |b |≤ . 3 2 ON BOOTH LEMNISCATE OF STARLIKE FUNCTIONS 9 Proof. Relation (2.26) give us b =−a and b =2a2−a . 2 2 3 2 3 Thus, we can get the estimate for |b | by 2 |b |=|a |≤1. 2 2 For estimate of |b |, it suffices in Corollary 2.2, we put µ = 2. Hence the proof of 3 Corollary 2.3 is completed. (cid:3) References [1] Ali,R.M.Lee,S.K.RavichandranV.andSupramanian,S.TheFekete-Szego¨coefficientfunc- tional for transforms of analytic functions,Bull.IranianMath.Soc.35(2009),119–142. [2] Booth,J.ATreatiseonSomeNewGeometricalMethods,Longmans,GreenReaderandDyer, London,Vol.I(1873)andVol.II(1877). [3] Kargar,R.Ebadian,A.andSoko´(cid:32)l,J. On subordination of some analytic functions,Siberian MathematicalJournal,57(2016),599–605. [4] Kargar,R.Ebadian,A.andSok´o(cid:32)l,J. Radius problems for some subclasses of analytic func- tions,ComplexAnal.Oper.Theory,DOI10.1007/s11785-016-0584-x. [5] Keogh,F.R.andMerkes,E.P. Acoefficientinequalityforcertainclassesofanalyticfunctions, Proc.Amer.Math.Soc.20(1969),8–12. [6] Kuroki, K. and S. Owa, S. Notes on New Class for Certain Analytic Functions, RIMS Kokyuroku1772,2011,pp.21–25. [7] Piejko,K.andSok´o(cid:32)l,J.Hadamardproductofanalyticfunctionsandsomespecialregionsand curves,J.Ineq.Appl.2013,2013:420. [8] Robertson, M.S. Certain classes of starlike functions, Michigan Mathematical Journal 76 (1954),755–758. [9] W.Rogosinski,W. Onthecoefficientsofsubordinatefunctions,Proc.LondonMath.Soc.48 (1943),48–82. [10] Savelov,A.A. Planar curves,Moscow(1960)(InRussian). Department of Mathematics, Payame Noor University, Tehran, Iran E-mail address: [email protected] (RahimKargar) Department of Mathematics, Payame Noor University, Tehran, Iran E-mail address: [email protected] (AliEbadian) University of Rzeszo´w, Faculty of Mathematics and Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszo´w, Poland E-mail address: [email protected] (JanuszSoko´(cid:32)l)