ebook img

On Asanov's Finsleroid-Finsler metrics as the solutions of a conformal rigidity problem PDF

0.27 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On Asanov's Finsleroid-Finsler metrics as the solutions of a conformal rigidity problem

ON ASANOV’S FINSLEROID-FINSLER METRICS AS THE SOLUTIONS OF A CONFORMAL RIGIDITY PROBLEM CS. VINCZE Abstract. Finsleroid-Finslermetricsformanimportantclassofsingular(y-local)Finslermet- rics. They were introduced by G. S. Asanov [2] in 2006. As the special case of the general 6 construction Asanov produced singular (y - local) examples of Landsberg spaces of dimension 1 0 at least three that are not of Berwald type. The existence of regular (y - global) Landsberg 2 metricsthatarenotofBerwaldtypeisanopenproblemuptothisday;foradetailedexposition of the so-called unicorn problem in Finsler geometry see D. Bao [3]. n a In this paper we are going to characterize the Finsleroid-Finsler metrics as the solutions of J a conformal rigidity problem. We are looking for (non-Riemannian) Finsler metrics admitting 9 a (non-homothetic) conformal change such that the mixed curvature tensor of the Berwald 2 connection contracted by the derivatives of the logarithmic scale function is invariant. We provethatthe solutionsofclassatleast 2 onthecomplementofthe zerosectionareconformal ] C G to Finsleroid-Finsler metrics. D . h t Introduction a m In the paper we prove the following theorems. [ 1 Theorem A Let M be a manifold of dimension n 3 equipped with the Finslerian metric v function F and consider a function α: M R satisfy≥ing the regularity condition d α = 0 at a 7 p → 6 7 point p M. If the sectional curvature of the indicatrix hypersurface at p is positive and 1 ∈ 8 P˜l = Pl ijk ijk 0 . under the conformal change F˜ = eαF, where Pl is the mixed curvature tensor of the Berwald 1 ijk 0 connection, then F is a locally Riemannian metric function. 6 1 : Theorem B Let M be a manifold of dimension n 3 equipped with the Finslerian metric iv function F and consider a function α: M R satisfy≥ing the regularity condition dpα = 0 at a X → 6 point p M. If the sectional curvature of the indicatrix hypersurface at p is positive and r ∈ a P˜l α = Pl α ijk l ijk l under the conformal change F˜ = eαF, where α denotes the partial derivatives of α (depending l only on the position), then F is locally conformal to a Finsleroid-Finsler metric or it is a locally Riemannian metric function. Looking for results like Theorem A and Theorem B was originally motivated by the so-called Matsumoto’s problem [12] in 2001: are there conformally related (non-Riemannian) Berwald manifolds? The problem is closely related to the intrinsic characterization of Wagner manifolds [17], see also [20]. Wagner manifolds form a special class of generalized Berwald manifolds admitting alinear connection onthebase manifoldsuch that theparallel transports preserve the Finslerian norm of tangent vectors. Especially, the compatible linear connection of a Wagner manifold is semi-symmetric with a special (exact or at least closed) one-form in the usual decomposition of its torsion. Wagner manifolds can be also defined as conformally Berwald 1991 Mathematics Subject Classification. 53C60, 58B20. Key words and phrases. Finsler spaces, Conformality, Finsleroid-Finsler metrics. 1 2 CS. VINCZE Finsler manifolds due to M. Hashiguchi and Y. Ychijyo [10], see also [14], [15] and [19]. The logarithm of the scale function (the logarithmic scale function) corresponds to the potential of the one-form in the torsion of the compatible linear connection up to a constant proportional term. It is clear that the scale function of the conformal change of a Finslerian metric function toa Berwaldian oneis uniquely determined (up toa constant homothetic term) if andonly if the conformality between two (non-Riemannian) Berwald manifolds must be trivial (homothetic). The first attempt to solve Matsumoto’s problem was given in [16], where the author investigated the consequences of the conformal invariance of the mixed curvature tensor of the Berwald connection (see Theorem A). It is a natural generalization of the original problem1. In what follows we generalize the basic results of [16] to prove Theorem B which gives the conformal characterization of Finsleroid-Finsler metrics [2]. The cronology of the basic steps: 1998 - the central symmetric version of the Finsleroid-Finsler metric in G. S. Asanov [1]. • 2003 - the non-symmetric version of the Finsleroid-Finsler metric in [16] as Asanov-type • Finslerian metric functions. They satisfy differential equation (46) of the generalized Matsumoto’sproblem(conformalinvarianceofthemixedcurvaturetensoroftheBerwald connection) for the Finslerian energy along special directions in the tangent spaces; see also [19]. 2006 - Asanov’s necessary and sufficient conditions for (non-symmetric) Finsleroid- • Finsler metrics to be of Landsberg but not of Berwald type; 2016 - non-symmetric Finsleroid-Finsler metrics as the solution of a conformal rigid- • ity problem (the invariance of the contracted mixed curvature tensor of the Berwald connection), see Theorem B and section 6.2. (the converse of the theorem); for a detailed exposition of the unicorn problem in Finsler geometry see D. Bao [3]. In what follows we give a characterization of Finsleroid-Finsler metrics as the singular non-Riemannian solutions of the conformal rigidity problem P˜l α = Pl α , where Pl ’s are the components of ijk l ijk l ijk the mixed curvature tensor of the Berwald connection and α ’s are the partial derivatives of the l ”logarithmic” scale function α depending only on the position. The basic steps of the proof are Theorem 1, Theorem 2, the solution of a Ricatty-type diffrential equation (sections 4.2, 4.4, 4.5 and 4.6) and Theorem 6. Acknowledgement The paper was motivated by the oral communication with Professor David Bao at the 50th Symposium on Finsler Geometry (21-25. Oct. 2015, Hiroshima, Japan). I would like to thank him for paying my attention to some correspondences between Asanov’s Unicorn metrics and Finsler metrics satisfying conformal rigidity properties. I am very grateful for his human and professional encouragement. TheworkissupportedbytheUniversity ofDebrecen’sinternalresearchprojectRH/885/2013. 1. Notations and terminology Let M be a manifold with local coordinates u1,...,un. The induced coordinate system of the tangent manifold TM consists of the functions x1,...,xn and y1,...,yn, where x’s refer to the coordinates of the base point and y’s denote the coordinates of the directions: ∂ v T M can be written as v = yi(v) , where x(v) = p. ∈ p ∂ui x(v) 1Bochner’s technic and the theory of geometric vector fields in the tangent spaces of a Finsler manifold give another way to solve the generalized Matsumoto’s problem in [18]. ON ASANOV’S FINSLEROID-FINSLER METRICS... 3 1.1. Finsler metrics. A Finsler metric is a continuous function F: TM R satisfying the → following conditions: F is smooth on the complement of the zero section (regularity), • F(tv) = tF(v) for all t > 0 (positive homogenity), • the Hessian • ∂2E g = ij ∂yi∂yj of the Finslerian energy function E = (1/2)F2 is positive definite at all nonzero elements v T M (strong convexity). It is called the Riemann-Finsler metric of the Finsler p ∈ manifold. In what follows we summerize some basic notations and facts we need to prove our theorems. As a general reference of Finsler geometry and the forthcoming list of quantities see [3] and [4]: 1 F is a Finsler metric function, E := F2 is the energy function, • 2 ∂F l = , • i ∂yi ∂2E g = is the Riemann-Finsler metric and its inverse gij = (g ) 1, • ij ∂yi∂yj ij − ∂ C = yl is the Liouville vector field, • ∂yl ∂g C = ij is the so-called first Cartan tensor2, l = glk . The first Cartan tensor is • ijk ∂yk Cij Cijk totally symmetric and yk = 0. It is also known that ijk C ∂glm (1) = 2gmk l = 2 lm ∂yi − Cik − Ci and, consequently, ∂ l ∂ l (2) Cjk Cik = 2 l m l m , where Ql = l m l m ∂yi − ∂yj CjmCik −CimCjk ijk CjmCik −CimCjk (cid:0) (cid:1) is the vv-curvature of the Cartan connection. 1.2. Geodesic spray coefficients: 1 ∂Fl ∂F 1 ∂2E ∂E (3) Gl = glm yk m F , i.e. Gl = glm yk . 2 ∂xk − ∂xm 2 ∂ym∂xk − ∂xm (cid:18) (cid:19) (cid:18) (cid:19) 1.3. Horizontal sections: δ ∂ ∂ ∂Gl = Gl , where Gl = . δxi ∂xi − i∂yl i ∂yi 2The Cartan tensor quantities are often defined as F ∂g ij A = ijk 2 ∂yk see e.g. [3] and [4]. The symbol follows [7] and [8]. ijk C 4 CS. VINCZE 1.4. The second Cartan tensor: (Landsberg tensor3) 1 δg 1 ∂g Pl = glm jm Gkg Gk g = glm jm 2Gk Gkg Gk g , ij 2 δxi − ij km − im jk 2 ∂xi − iCjkm − ij km − im jk (cid:18) (cid:19) (cid:18) (cid:19) where Gl = ∂Gli. ij ∂yj 1.5. The mixed curvature of the Berwald connection: ∂Gl Pl = Gl , where Gl = ij. ijk − ijk ijk ∂yk 1.6. An identity: F (4) Pl = l gklPm ij −2 m ijk Proof. Since ∂E Fl = , • m ∂ym ∂E 1 ∂E Gm = yk , • ∂ym 2 ∂xk 1 ∂2E ∂E g Gm = yk , • mi 2 ∂yi∂xk − ∂xi (cid:18) (cid:19) ∂ ∂E ∂E Gm g Gm = mi • ∂yi ∂ym − ∂xi (cid:18) (cid:19) we have ∂E Fl Pm = Gm = − m ijk ∂ym ijk ∂ ∂E ∂ ∂ ∂E Gm g Gm = Gm g Gm g Gm = ∂yk ∂ym ij − mk ij ∂yk ∂yj ∂ym i − mj i − mk ij (cid:18) (cid:19) (cid:18) (cid:18) (cid:19) (cid:19) ∂ ∂ ∂ ∂E Gm g Gm g Gm g Gm = ∂yk ∂yj ∂yi ∂ym − mi − mj i − mk ij (cid:18) (cid:18) (cid:18) (cid:19) (cid:19) (cid:19) ∂ ∂ ∂E ∂ g Gm g Gm = g 2 Gm g Gm g Gm = ∂yk ∂yj ∂xi − mj i − mk ij ∂xi jk − Cjmk i − mj ik − mk ij (cid:18) (cid:18) (cid:19) (cid:19) F 2P = 2g Pl Pl = l gklPm ijk kl ij ⇒ ij −2 m ijk (cid:3) as was to be proved 2. Conformality Definition 1. Let F˜, F: TM R be Finslermetrics. They are conformallyrelated if F˜(x,y) = eα(x)F(x,y), where α: M R→is a function (depending only on the position). → As an easy consequence of the conformality we have: E˜ = e2αE, g˜ = e2αg ˜k = k. ij ij ⇒ Cij Cij For the sake of simplicity let us use the following abbreviation: ∂α α = , m = 1,...,n. • m ∂um 3Following subsection 1.6. the Landsberg tensor is often defined as . 1 ∂Gl Aijk=−2Fli∂yji; see e.g. [3] and [4]. The symbol Pl follows [9] and [11]. ij ON ASANOV’S FINSLEROID-FINSLER METRICS... 5 Using (3) G˜l = Gl +ymα yl Eglmα . m m − According to its distinguished role let us introduce the gradient-type vector field ∂ (5) X = Xl , where Xl = glmα g Xl = α ∂yl m ⇒ lm m and Xlα = Xlg Xm = g(X,X) is just the Riemann-Finsler norm square of the vector field l lm X. Under this notation (6) G˜l = Gl +ymα yl EXl, m − ∂E ∂Xl (7) G˜l = Gl +α yl +ymα δl Xl E . i i i m i − ∂yi − ∂yi According to its distinguished role let us introduce the (vector valued) one-form ∂Xl (8) Xl = . i ∂yi We have 2gms l α = 2Xs l or, equivalently, ∂Xl ∂glm − Cis m − Cis (9) Xl = = α = 2 lmα = i ∂yi ∂yi m − Ci m  2gls mα  − Cis m and the second line of formula (9) gives the symmetry property  (10) g Xl = 2 mα g Xl = g Xl lk i − Cik m ⇒ lk i li k because of the symmetry of the first Cartan tensor. Therefore we also have the following cross- lifting formula (11) gklXmg = Xl. k mj j Finally (12) XsXl = 2XsXt l . s − Cst Using formula (7) ∂E ∂E ∂Xl (13) G˜l = Gl +α δl +α δl g Xl Xl Xl E i. ij ij i j j i − ij − ∂yi j − ∂yj i − ∂yj According to its distinguished role let us introduce the quantity ∂Xl ∂2Xl Xl = i = . ij ∂yj ∂yj∂yi Proposition 1. (Transformation formula for the Landsberg tensor) 1∂E 1∂E 1 1 1 P˜l = Pl ymα l +EXs l + Xl + Xl + g Xsyl + EXl + EglmXs g . ij ij − mCij iCjs 2∂yi j 2∂yj i 2 sj i 2 ij 2 im sj The proof is a long straightforward calculation; see [16] and Hashiguchi [9]. In terms of the first Cartan tensor glmXs g = glm∂Xms g = ∂glmXms gsj ∂glmXs g glmXs ∂gsj (1=1) im sj ∂yi sj ∂yi − ∂yi m sj − m ∂yi Xl +2 lmXs g 2glmXs g r (1=0) ij Ci m sj − m srCji Xl +2 lmXsg 2glmXsg r = Xl +2 l Xs 2Xl r. ij Ci j sm − r smCji ij Cis j − rCij 6 CS. VINCZE Therefore 1∂E 1∂E 1 (14) P˜l = Pl ymα l + Xl+ Xl+ g Xsyl+EXl +EXs l +E l Xs EXl r. ij ij− mCij 2∂yi j 2∂yj i 2 sj i ij iCjs Cis j− rCij Remark 1. Some further computation shows that Xl +Xs l + l Xs Xl r = 2Xs v l ij iCjs Cis j − rCij − ∇sCij where v denotes the v-covariant derivative with respect to the Cartan connection. Therefore ∇s 1∂E 1∂E 1 P˜l = Pl ymα l + Xl + Xl + g Xsyl 2EXs v l ij ij − mCij 2∂yi j 2∂yj i 2 sj i − ∇sCij andtheformulacorrespondstoformula(21)in[16]orformula(3.4C)in[9]; notethat[9]involves an extra minus sign in the definition of Pl (formula (2.14*), page 35). ij 3. Special conformal relationships I From now on we suppose that the Landsberg tensor satisfies the invariance prop- erty P˜lα = Plα ij l ij l under the conformal change F˜ = eαF. As a direct consequence of formula (14) and the invariance property we have special expressions for Xl and the contracted quantities Xl α and ij ij l XjXl . ij Corollary 1. If P˜l = Pl then ij ij 1∂E 1 ∂E 1 (15) EXl = ymα l Xl Xl g Xsyl EXs l E l Xs +EXl m. ij mCij − 2∂yi j − 2∂yj i − 2 sj i − iCjs − Cis j mCij (cid:3) Proof. Equation (15) is a direct consequence of the transformation formula (14). Corollary 2. If P˜lα = Plα then ij l ij l (16) EXl α = ij l 1∂E 1∂E 1 ymα l Xl Xl g Xsyl EXs l E l Xs +EXl m α mCij − 2∂yi j − 2∂yj i − 2 sj i − iCjs − Cis j mCij l (cid:18) (cid:19) and (17) EXjXl = ij 1∂E 1 ∂E 1 Xj ymα l Xl Xl g Xsyl EXs l E l Xs +EXl m . mCij − 2∂yi j − 2∂yj i − 2 sj i − iCjs − Cis j mCij (cid:18) (cid:19) Proof. Equation (16) is a direct consequence of Corollary 1. Since the lowered second Cartan tensor P is totally symmetric we have that ijk Plα = glkP α (=5) XkP = XkP = XkPl g . ij l ijk l ijk ikj ik lj Using that g˜ = e2αg , the same computation results in ij ij 1 1 1 P˜lα = g˜lkP˜ α = XkP˜ = XkP˜ = XkP˜l g˜ = XkP˜l g , ij l ijk l e2α ijk e2α ikj e2α ik lj ik lj i.e. P˜lα = Pl α implies that ij l ij l XkPl g = XkP˜l g XkPl = XkP˜l . ik lj ik lj ⇒ ik ik (cid:3) This means, by Corollary 1, that formula (17) holds. ON ASANOV’S FINSLEROID-FINSLER METRICS... 7 3.1. The first basic step. Equations (16) and (17) will be the key formulas to conclude the linear dependence of the vector fields ∂ Xl∂F ∂ ∂ Xl C and XsXl (=12) 2XsXt l . ∂yl − F ∂yl s∂yl − Cst∂yl Since ∂F Xl∂E glmα ∂E ymα Xl = (=5) m = m ∂yl F ∂yl F ∂yl F we can also write that ∂ Xl∂F ∂ ymα ∂ ∂ ymα ∂ Xl C = Xl myl = Xl myl . ∂yl − F ∂yl ∂yl − F2 ∂yl ∂yl − 2E ∂yl Remark 2. Note that the projected vector field ∂ Xl∂F Xl C ∂yl − F ∂yl ∂ is obviously tangential to the indicatrix hypersurface. The vector field XsXl is also tan- s∂yl gential to the indicatrix because of formula (12) and the basic properties of the first Cartan tensor: XsXl∂F = XsXsl ∂E (=9) Xs 2Xt l ∂E , where l ∂E = glm ∂E = ym = 0. s∂yl F ∂yl F − Cst∂yl Cst∂yl Cmst∂yl Cmst (cid:18) (cid:19) To conclude the linear dependency we use the substitution of Xs systematically into the arguments of the difference tensor Bl = G˜l Gl . Especially we prove the following lemma ijk ijk − ijk which is the generalization of Lemma 5 in [16] (page 22). Lemma 1. If P˜lα = Pl α then ij l ij l 1 1 ymα ∂E XkXjBl α = Xlα Xsα XkXjα α + m XtXjα (ymα )Xlα + 3 ijk l 2 l i s − k j i 4E j t∂yi − m i l (cid:18) (cid:19) (cid:0) (cid:1) EXjXsXpXrQ j pisr where Bl = G˜l Gl ijk ijk − ijk is the difference tensor of the mixed curveture of the Berwald connection and Q = g Ql is pisr pl isr the lowered vv-curvature tensor of the Cartan connection. Proof. Let us introduce the abbreviation (18) Bl = G˜l Gl (1=3) α δl +α δl g Xl ∂EXl ∂EXl EXl . ij ij − ij i j j i − ij − ∂yi j − ∂yj i − ij Since ∂Bl ∂ (19) XkXjBl α = XkXj ijα = Xk XjBl α XkXjBl α ijk l ∂yk l ∂yk ij l − k ij l it is enough to compute the terms (cid:0) (cid:1) ∂ Xk XjBl α and XkXjBl α . ∂yk ij l k ij l By some direct calculations (cid:0) (cid:1) (20) XjBl α (1=8) Xjα α ∂EXjXlα ymα Xlα EXjXl α ij l j i − ∂yi j l − m i l − ij l 8 CS. VINCZE because of ∂E ∂E Xj = gjmα = ymα and Xjg Xl = α Xl. ∂yj m∂yj m ij i Using formula (16) 1∂E EXjXl α = ymα Xj l α XjXlα ij l m Cij l − 2∂yi j l− 1Xj∂EXlα 1Xjg Xsylα EXsXj l α E l XjXsα +EXl α Xj m (5=),(9) 2 ∂yj i l − 2 sj i l − i Cjs l − Cis j l m l Cij 3 1∂E ymα Xlα XjXlα E l XjXsα EXsXj l α +EXlα Xj r. −2 m i l − 2∂yi j l − Cis j l − i Cjs l r l Cij On the other hand Xlα Xj r (=9) 1Xlα Xr, XsXj l α (=9) 1XsXlα , r l Cij −2 r l i i Cjs l −2 i s l l XjXsα (1=0) 1g XrXjXs = 1g XrXjXs = 1α XrXs Cis j l −2 sr i j −2 sj i r −2 s i r and, consequently, 3 1∂E 1 (21) EXjXl α = ymα Xlα XjXlα + EXlXmα . ij l −2 m i l − 2∂yi j l 2 i l m From equations (20) and (21) 1∂E 1 1 (22) XjBl α = Xjα α XjXlα + ylα Xsα EXmXlα . ij l j i − 2∂yi j l 2 l i s − 2 l i m Using the previous formula ∂ 1 1∂E 1∂E (23) Xk XjBl α = Xk Xjα α g XjXlα XjXlα XjXl α + ∂yk ij l k j i − 2 ik j l − 2∂yi k j l − 2∂yi jk l (cid:18) (cid:19) (cid:0) (cid:1) 1 1 1 ∂E 1 1 Xk α Xsα + ylα Xs α XmXlα EXmXlα EXmXl α = 2 k i s 2 l ik s − 2∂yk l i m − 2 lk i m − 2 l ik m (cid:18) (cid:19) 1 1∂E 1∂E XkXjα α α XjXlα XkXjXlα XjXkXl α + k j i − 2 i j l − 2∂yi k j l − 2∂yi jk l 1 1 1 1 1 Xlα Xsα + ylα XkXs α ymα XsXlα EXkXmXlα EXmXkXl α = 2 l i s 2 l ik s − 2 m l i s − 2 lk i m − 2 l ik m 1 1∂E 1∂E α XjXlα XkXjXlα XjXkXl α + 2 i j l − 2∂yi k j l − 2∂yi jk l 1 1 1 1 1 Xlα Xsα + ylα XkXs α ymα XsXlα EXlXkXmα EXkXl Xmα . 2 l i s 2 l ik s − 2 m l i s − 2 i lk m − 2 ik l m Each term containing Xl means second order partial derivatives of Xl with respect to y’s. To ij reduce the order of the partial differentiation in the first, the second and the third indicated terms we can directly use formula (21); for example (by replacing the free index i with j in (21)) (24) XkXl α (2=1) 1 3ymα Xlα 1 ∂EXkXlα + 1EXlXmα jk l E −2 m j l − 2∂yj k l 2 j l m (cid:18) (cid:19) and we have similar expressions coming from the terms 1 3 1∂E 1 XkXmα = ymα Xtα XkXtα + EXtXmα lk m E −2 m l t − 2∂yl k t 2 l t m (cid:18) (cid:19) and 1 3 1∂E 1 XkXs α = ymα Xlα XkXlα + EXlXmα . ik s E −2 m i l − 2∂yi k l 2 i l m (cid:18) (cid:19) ON ASANOV’S FINSLEROID-FINSLER METRICS... 9 For the last indicated term EXjXl Xtα (1=7) ij l t Xj ymα l 1∂EXl 1∂EXl 1g Xsyl EXs l E l Xs +EXl m Xtα (=9) mCij − 2∂yi j − 2∂yj i − 2 sj i − iCjs − Cis j mCij l t (cid:18) (cid:19) 1 1∂E 1 1 ymα Xl Xtα XjXlXtα ymα XlXtα α XsylXtα m −2 i l t − 2∂yi j l t − 2 m i l t − 2 s i l t− (cid:18) (cid:19) 1 1 EXs Xl Xtα EXj l XsXtα +EXl Xm Xtα i −2 s l t − Cis j l t m −2 i l t (cid:18) (cid:19) (cid:18) (cid:19) because of 1Xj∂EXl (=5) 1gjmα ∂EXl = 1ymα Xl and ylXt = 0; 2 ∂yj i 2 m∂yj i 2 m i l see (9) and the basic property yl = 0 of the first Cartan tensor. Therefore ijl C 1∂E EXjXl Xtα = ymα XlXtα XjXlXtα EXj l XsXtα ij l t − m i l t − 2∂yi j l t − Cis j l t and we have by substituting the expressions of XkXl α (see (24)), XkXmα , XkXs α and jk l lk m ik s EXjXl Xtα in formula (23) ij l t ∂ 1 1∂E 1 1 Xk XjBl α = (XkXjα )α XjXlXtα + Xlα Xsα ymα XlXtα ∂yk ij l 2 k j i − 2∂yi j l t 2 l i s − 2 m i l t− (cid:0) (cid:1) 1∂E 2 1 ymα XjXlα + XjXlXmα + 2∂yi −E m j l 2 j l m (cid:18) (cid:19) 1 3 1∂E 1 ylα ymα Xlα XtXjα + EXlXmα 2E l −2 m i l − 2∂yi j t 2 i l m − (cid:18) (cid:19) 1 3 1 ymα Xtα Xl + EXlXtXmα 2 −2 m l t i 2 i l t m − (cid:18) (cid:19) 1 1∂E ymα XlXtα XjXlXtα EXj l XsXtα . 2 − m i l t − 2∂yi j l t − Cis j l t (cid:18) (cid:19) Now the formula has been free from the second order terms containing Xl . On the other hand ij XkXjα Bl (1=8) XkXj 2α α g Xlα ∂EXlα ∂EXlα EXl α . k l ij k i j − ij l − ∂yi j l − ∂yj i l − ij l (cid:18) (cid:19) To set the formula free from Xl we use formula (16): ij 1∂E 1∂E 1 EXl α = ymα l α Xlα Xlα g Xsylα EXs l α E l Xsα + ij l mCij l − 2∂yi j l − 2∂yj i l − 2 sj i l − iCjs l − Cis j l EXl mα (1=0) g Xsymα 1∂EXlα 1 ∂EXlα + 1EXsg Xm + 1Eg XmXs+ mCij l − js i m − 2∂yi j l − 2∂yj i l 2 i jm s 2 sm i j EXl mα mCij l and, consequently, 1∂E 1 ∂E XkXjα Bl = XkXj 2α α g Xlα Xlα Xlα + k l ij k i j − ij l − 2∂yi j l − 2∂yj i l (cid:18) (cid:19) 1 1 XkXj g Xsymα EXsg Xm Eg XmXs EXl mα = k js i m − 2 i jm s − 2 sm i j − mCij l (cid:18) (cid:19) 1∂E 2XkXjα α g XkXjXlα XkXjXlα +g XkXjXsymα k i j − ij k l − 2∂yi k j l js k i m− 10 CS. VINCZE 1 1 EXsg XkXjXm Eg XmXkXjXs EXl mXkXjα 2 i jm k s − 2 sm i k j − mCij k l because of ∂E ∂E XkXj = 2XkXt j = 2XkXtym = 0. k∂yj − Ctk∂yj − Cmtk Using the symmetry property EXsg XkXjXm (1=0) EXsg XkXjXm i jm k s i sm k j it follows that 1∂E XkXjα Bl = 2XkXjα α g XkXjXlα XkXjXlα +g XkXjXsymα k l ij k i j − ij k l − 2∂yi k j l js k i m− EXsg XkXjXm EXl mXkXjα (1=0) i jm k s − mCij k l 1∂E 2XkXjα α g XkXjXlα XkXjXlα +g XkXjXsymα k i j − kj i l − 2∂yi k j l jk s i m− EXsg XkXj Xm EXl mXkXjα = i jk m s − mCij k l 1∂E 2XkXjα α Xjα Xlα XkXjXlα +Xjα Xsymα k i j − i j l − 2∂yi k j l s j i m− EXsXj α Xm EXl mXkXjα . i m j s − mCij k l Finally ∂ 3 3 ∂E 3 Xk XjBl α XkXjα Bl = XkXjα α + ymα XtXjα + Xlα Xsα ∂yk ij l − k l ij −2 k j i 4E m j t∂yi 2 l i s− (cid:0) (cid:1) 3 3 3 (ymα )2Xlα + EXj l XsXtα + EXsXj α Xm, 4E m i l 2 Cis j l t 4 i m j s where 3EXsXj α Xm (=9) 3EXt sXj Xmα . 4 i m j s −2 Cit m s j Therefore ∂ 3 3 ∂E 3 Xk XjBl α XkXjα Bl = XkXjα α + ymα XtXjα + Xlα Xsα ∂yk ij l − k l ij −2 k j i 4E m j t∂yi 2 l i s− (cid:0) (cid:1) 3 3 (ymα )2Xlα + E Xj l XsXtα Xt sXj Xmα , 4E m i l 2 Cis j l t − Cit m s j where (cid:0) (cid:1) Xj l XsXtα Xt sXj Xmα = 2XpXjXsXrQ Cis j l t − Cit m s j j pisr as a straightforward computation shows4. (cid:3) 4 Xj l XsXtα Xt sXj Xmα (=5)Xj l XsXtα Xt sXj Xmg Xr (1=0) Cis j l t− Cit m s j Cis j l t− Cit m s jr Xj l XsXtα Xt sXjXmg Xr (1=0)Xj l XsXtα Xt sXjXmg Xr = Cis j l t− Cit r s jm Cis j l t− Cit r j ms Xj l XsXtα Xt XjXmXr =XjXs l Xtα Xt Xm (=5)XjXs l Xtα gtrα Xm = Cis j l t− Cmit r j j Cis l t− Cmit s j Cis l t− rCmit s XjXs l Xtα α r Xm =XjXs l Xt(cid:0) t Xm α (=9)XjX(cid:1)s l 2X(cid:0)p t t 2Xp m (cid:1)α = j Cis l t− rCmi s j Cis l −Cmi s t j Cis − Cpl −Cmi − Cps t −2X(cid:0)pXjXjs CilsCptl−Cmt iC(cid:1)pms αt =−(cid:0)2XpXjXjsQtipsαt(cid:1)=−2XpXjX(cid:0)jsQtip(cid:0)sXrgrt =(cid:1)−2XpX(cid:0)jXjsXrQi(cid:1)p(cid:1)sr = (cid:0) 2(cid:1)XpXjXjsXrQpisr because of Qipsr =−Qpisr.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.