ebook img

On ANOVA expansions and strategies for choosing the anchor poi PDF

13 Pages·2010·0.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On ANOVA expansions and strategies for choosing the anchor poi

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy AppliedMathematicsandComputation217(2010)3274–3285 ContentslistsavailableatScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc On ANOVA expansions and strategies for choosing the anchor point ⇑ Zhen Gaoa,b, Jan S. Hesthavenb, aResearchCenterforAppliedMathematics,OceanUniversityofChina,Qingdao266071,PRChina bDivisionofAppliedMathematics,BrownUniversity,Providence,RI02912,USA a r t i c l e i n f o a b s t r a c t Keywords: TheclassicLebesgueANOVAexpansionoffersanelegantwaytorepresentfunctionsthat ANOVAexpansion dependonahigh-dimensionalsetofparametersanditoftenenablesasubstantialreduc- AnchoredANOVAexpansion tionintheevaluationcostofsuchfunctionsoncetheANOVArepresentationisconstructed. Sparsegrid Unfortunately,theconstructionoftheexpansionitselfisexpensiveduetotheneedtoeval- High-dimensionalintegrals uatehigh-dimensionalintegrals.Awayaroundthisistoconsideranalternativeformula- tion, known as the anchored ANOVA expansion. This formulation requires no integrals buthasanaccuracythatdependssensitivelyonthechoiceofaspecialparameter,known astheanchorpoint. Wepresentacomparativestudyofseveralstrategiesforthechoiceofthisanchorpoint andarguethattheoptimalchoiceofthisanchorpointisthecenterpointofasparsegrid quadrature.Thischoiceinducesnoadditionalcostand,asweshallshow,resultsinanat- uraltruncationoftheANOVAexpansion.Theefficiencyandaccuracyisillustratedthrough severalstandardbenchmarksandthischoiceisshowntooutperformthealternativesover arangeofapplications. (cid:2)2010ElsevierInc.Allrightsreserved. 1.Introduction Theanalysis-of-variation–ANOVA–expansionprovidesanelegantwaytorepresentfunctionsthatdependonahigh- dimensional set of parameters. As such it has been used in numerous applications during the last decade to represent andefficientlymanipulatehigh-dimensionalproblemsandtoenableonetotakeadvantageoftheinherentlow-dimensional interdependence,oftenfoundinmanysuchproblems.In[6]itwasexploredinthecontextofhigh-dimensionalintegration methods, in [1] it was demonstrated in relation with parameterized partial differential equations and in [2] the ANOVA expansionwasutilizedtodevelopasensitivityindextoenabletheeffectivereductionofparametricdimensionalitywithout impactingtheaccuracyofthepredictedoutputfunction. However, the classic ANOVA expansion is projection based and this construction requires the use of high-dimensional integration,renderingthisconstructionveryexpensive.Toaddressthischallenge,analternativeformulation,namedthean- choredorDiracANOVAexpansion,hasbeenproposed[6].Itwasalsoconsideredin[4]underthenameCUT-HDMR.Itrelies onexpressingafunctionu(a)asasuperpositionofitsvaluesalonglines,planesandhyperplanepassingthroughananchor pointb= (b ,...,b ).Ascanbeexpected,thechoiceofthisanchorpointiscloselytiedtotheoverallefficiencyandaccuracy 1 p of the expansion and making this choice correctly becomes a key element of the formulation. Unfortunately, there is no knownrigorousresultofhowtomakethischoiceinaoptimalwayforgeneralfunctions. Recently,anumberoftechniquesformakingthischoicehavebeenproposed.Astraightforwardchoiceistouseananchor pointchosenrandomlyinthehigh-dimensionalspace.Whileusedwidelyitcannotbeexpectedtoyieldanoptimalchoice. ⇑ Correspondingauthor. E-mailaddresses:[email protected](Z.Gao),[email protected](J.S.Hesthaven). 0096-3003/$-seefrontmatter(cid:2)2010ElsevierInc.Allrightsreserved. doi:10.1016/j.amc.2010.08.061 Author's personal copy Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 3275 In[13],itissuggestedthattheoptimalanchorpointisfoundasthetrialpointwhoseoutputisclosesttothemeanofthe function,beingcomputedfromamoderatenumberofquasi-randomsamples.Arigorousalternative,basedonideasofopti- malweightsinquasiMonteCarlomethods,isproposedin[16]andshowntoyieldgoodresults.Unfortunately,thisapproach isonlyrigorousforfunctionsthatallowadimensionalvariableseparation.Bothoftheselattermethodsrequiresomecom- putationalworktoidentifytheanchorpoint. In this work, we propose to use the center point of a particular sparse grid quadrature as the anchor point and offer a comparativestudywiththepreviouslyintroducedmethodsmentionedabove.Anargumentforthisnewapproachisbased onthestructureoftheSmolyaksparsegridwhichiscloselyrelatedtotheanchoredANOVAexpansion[6].Thisanchorpoint canbecomputedaminimalcostandweshowthatitsuseleadstoaaverynaturaltruncationoftheanchoredANOVAexpan- sionwhenoneiscomputingintegralsoftheexpansion.Whilemostpastworkhaveassumedthattheparametersareuni- formlydistributedrandomvariables,wealsodiscusstheuseofthisapproachwhenappliedtocaseswheretheparameters aremoregeneralnon-uniformlydistributedrandomvariables. What remains of the paper is organized as follows. Section 2 introduces the ANOVA expansion based on the Lebesgue measureandtheDiracmeasure,respectively.WealsodiscussthestructureoftheSmolyaksparsegridinthispart.Section3 introducesfourstrategiesforthechoiceoftheanchorpointandinSection4wedemonstratetheefficiencyandaccuracyof theproposedanchorpointthroughseveralexamples.Section5containsafewconcludingremarks. 2.TheANOVAexpansion We begin by introducing the ANOVA expansion and its two different representations based on different product mea- sures. Without loss of generality, we take the integration domain D to be [0,1]p, and u2L2ðDÞ. Take t to be any subset ofcoordinateindicesP¼f1;...;pgwithjtjdenotingthecardinalityoft.Letalsoa denotethejtj-vectorthatcontainsthe t components of the vector a2[0,1]jtj indexed by t and take Ajtj to denote the jtj-dimensional unit hypercube defined as theprojectionofthep-dimensionalunithypercubeApontothehypercubeindexedbyt.Assumedltobeaprobabilitymea- sureonAp.ThenucanbeexpressedasanANOVAexpansion[4,13] X uðaÞ¼u þ uðaÞ; ð1Þ 0 t t t#P whereuðaÞ; t#Pisdefinedrecursivelythrough t t Z X uðaÞ¼ uðaÞdlða Þ(cid:2) u ða Þ(cid:2)u ; ð2Þ t t Pnt w w 0 Ap(cid:2)jtj w(cid:3)t startingwith Z Z u ¼ uðaÞdlðaÞ; uðaÞdlða Þ¼uðaÞ: ð3Þ 0 ; Ap A0 Heredlða Þindicatesintegrationoverallcoordinatesexceptindicescontainingt.ThetotalnumberoftermsintheANOVA Pnt expansionis2p. The ANOVA expansion is a finite and exact expansion of a general high-dimensional function [4,13]. Furthermore, the individualtermsintheexpansionaremutuallyorthogonal,i.e. Z uðaÞu ða ÞdlðaÞ¼d ð4Þ t t w w tw Ap and,asanaturalconsequenceofthis,eachtermexceptu hasazeromean 0 Z uðaÞdlðaÞ¼0; jtj>0: ð5Þ t t Ap The computational realization of the ANOVA expansion is achieved through the recursive expression, (2), and the use of orthogonality(4). 2.1.TheLebesgueexpansion IntheclassicANOVAexpansion,oneassumesdltobeaLebesguemeasureinEq.(1)andEqs.(2)and(3)yielditsreal- izationthroughhigh-dimensionalintegration. LetusdefinethetruncatedANOVAexpansionofordersas X uða;sÞ¼u þ uðaÞ; ð6Þ 0 t t t#P;jtj6s whereu(a)andu aredefinedabove. t t 0 Author's personal copy 3276 Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 Theconceptofaneffectivedimensionofaparticularintegrandwasintroducedin[7,8]andalsodiscussedin[9]asaway toreflectandutilizetheobservationthatmanyhigh-dimensionalfunctionsareeffectivelylow-dimensional.Itwasalsoob- servedthattheANOVAexpansionwasparticularlywellsuitedfrombringingoutthishiddenlowdimensionalnature. Theeffectivedimensionisthesmallestintegerp suchthat s X V ðuÞPqVðuÞ; ð7Þ t 0<jtj6ps whereq61.HereV(u)andV(u)aredefinedby t Z V ðuÞ¼ ðuðaÞÞ2da; VðuÞ¼XV ðuÞ; ð8Þ t t t t Ap jtj>0 andcanberecognizedasameasureofthevariabilityofuwhenconsideringagivensett. TherelationshipbetweentheaccuracyofthetruncatedANOVAexpansionandthesuperpositiondimensionismadeclear throughthefollowingresult[11,12,15]. Theorem1. Assumethatthefunctionu(a)hassuperpositiondimensionp basedonqandletu(a;p)denotethetruncatedANOVA s s expansionoforderp.Then s Errða;pÞ61(cid:2)q; s whereErr(a,p)isthenormalizedapproximationerrordefinedby s 1 Z Errða;pÞ¼ ½uðaÞ(cid:2)uða;pÞ(cid:4)2da: s VðuÞ Ap s Thisshowsthatifthesuperpositiondimensionissmall,p (cid:5)p,thefunctioncanbewellapproximatedbyjustafewterms s intheANOVAexpansion.Thisallowsonetoreducethecostofcomputingtheexpansionandreducethecostofthesubse- quentevaluationoftheexpansion. 2.1.1.Sparsesmolyakgrids Tocontrolthecomputationalcostofevaluatingtherequiredhigh-dimensionalintegrals,Eqs.(2)and(3),ahigh-dimen- sionalefficientquadratureruleneedtobeconsidered.HereweusesparsegridmethodsbasedontheSmolyakconstruction [10].Theseallowonetoconstructsparsemultivariatequadratureformulasbasedonsparsetensorproductsofone-dimen- sionalquadratureformulas. Considerthenumericalintegrationofafunctionu(a)overap-dimensionalunithypercubeAp=[0,1]p, Z I½u(cid:4):¼ uðaÞda: ð9Þ Ap Tointroducethealgorithm,wechooseaone-dimensionalquadratureformulaforaunivariatefunctionuas n1 Q1u¼Xl xu(cid:2)c1(cid:3); ð10Þ l i i i¼1 wherex representtheintegrationweightsandc1 reflectthequadraturepoints. i i Nowdefineasequence (cid:4) (cid:5) M1u¼ Q1(cid:2)Q1 u ð11Þ i i i(cid:2)1 withQ1u¼0andfori2N .Smolyak’salgorithmforthep-dimensionalquadratureformulaisthengivenas 0 + Qpu¼ X (cid:4)M1 (cid:6)(cid:7)(cid:7)(cid:7)(cid:6)M1 (cid:5)u; ð12Þ l k1 kp jkj16lþp(cid:2)1 forl2nandk¼ðk ;...;k Þ2np.Analternativeformofthislastexpressionis 1 p Qplu¼ X ð(cid:2)1Þlþp(cid:2)jkj1(cid:2)1(cid:6)jkpj(cid:2)(cid:2)1l(cid:7)(cid:4)Q1k1 (cid:6)(cid:7)(cid:7)(cid:7)(cid:6)Q1kp(cid:5)u: ð13Þ l6jkj16lþp(cid:2)1 1 Forotherequivalentexpressions,see[14]. Equation(13)clearlyonlydependsonfunctionvaluesatafinitenumberofpoints.Tohighlightthestructureofthequad- raturepoints,let (cid:8) (cid:9) cki ¼ cki;...;cki (cid:3)½0;1(cid:4); ð14Þ 1 n1 l Author's personal copy Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 3277 denote the one-dimensional quadrature grid corresponding to Q1u;16k 6p. The tensor product in Eq. (13) depends on ck1 (cid:8)(cid:7)(cid:7)(cid:7)(cid:8)ckp andtheunionofthese ki i Xp ¼ [ (cid:2)ck1 (cid:8)(cid:7)(cid:7)(cid:7)(cid:8)ckp(cid:3) ð15Þ l l6jkj16lþp(cid:2)1 iscalledthesparsegrid,usedtoevaluate(13).Ifckisanestedset,Xp (cid:3)Xp andEq.(15)simplifies l lþ1 Xp ¼ [ (cid:2)ck1 (cid:8)(cid:7)(cid:7)(cid:7)(cid:8)ckp(cid:3); ð16Þ l jkj1¼lþp(cid:2)1 which is more compact than Eq. (15). In this work we use a sparse grid based on the Gauss–Patterson quadrature points whenpossible.Thisishierarchicalandthemostefficientapproachwhenoneconsidersattainableaccuracyforagivencom- putationalcost[3,5]. ToillustratetheefficiencyandaccuracyoftheLebesgueANOVAexpansionandtheconceptoftheeffectivedimension,we considerap-dimensionaloscillatoryfunction, ! p X u ðaÞ¼cos 2px þ ca ; ð17Þ 1 1 i i i¼1 proposed in [18,19] as a suitable test function for high-dimensional integration schemes. Both c and x are generated as i 1 randomnumbersandweconsiderp=10asatestcase. Figure1showstheaccuracyandthecomputationalcostoftheLebesgueANOVAexpansionmeasuredinboththeL norm 2 andtheL norm.Clearly,the4th-ordertruncatedexpansionrepresentsthefunctionwelldowntoanaccuracybelow10(cid:2)10. 1 However,thisaccuracycomesatconsiderablecomputationalcostduetotheevaluationofthehigh-dimensionalintegrals. 2.2.TheDiracexpansion NowassumethatdlisaDiracmeasurelocatedattheanchorpointb=(b ,b ,...,b )2[0,1]p.Thisleadstowhatisknown 1 2 p astheanchoredortheDiracANOVAexpansion. TherecursiveformulaEq.(2)andtheinitialformulaEq.(3)nowtakestheforms X uðaÞ¼uðb ;...;b ;a ;b ;...;b ;a ;b ;...;b ;a ;b ;...;b Þ(cid:2) u ða Þ(cid:2)u ; ð18Þ t t 1 i1(cid:2)1 1 i1þ1 i2(cid:2)1 2 i2þ1 ijtj(cid:2)1 jtj ijtjþ1 p w w 0 w(cid:3)t and u ¼uðb ;b ...b Þ: ð19Þ 0 1 2 p ThecomputationalrealizationoftheanchoredANOVAexpansionisconsiderablymoreefficientthantheLebesgueANOVA expansionasthereisnoneedtoevaluatehigh-dimensionalintegralsinEqs.(18)and(19). LetusagainconsidertheexampleinEq.(17).InFig.2weillustratethaterrorsareagainreducedtobelow10(cid:2)12withthe 4th-order anchored ANOVA expansion with the anchor point taken to be (0,0,...,0). With a comparable accuracy, the 102 102 100 100 10−2 10−2 10−4 10−4 10−6 10−6 10−8 10−8 10−10 10−10 10−12 L2 error 10−12 L2 error L∞ error L∞ error 10−14 10−14 1 2 3 4 5 6 0 1000 2000 3000 4000 5000 6000 7000 order of ANOVA expansion computational time Fig.1. Ontheleft,weshowtheL andtheL errorsofthe6th-ordertruncatedLebesgueANOVAexpansionwithincreasingnumberofterms.Theright 2 1 showstheassociatedcomputationaltime. Author's personal copy 3278 Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 102 102 100 100 10−2 10−2 10−4 10−4 10−6 10−6 10−8 10−8 10−10 L2 error 10−10 L2 error 10−12 L∞ error 10−12 L∞ error 1 2 3 4 5 6 0 2 4 6 8 10 12 order of ANOVA expansion computational time Fig.2. Ontheleft,weshowtheL andtheL errorsofthe6th-ordertruncatedanchoredANOVAexpansionwithanincreasingnumberofterms.Theright 2 1 showstheassociatedcomputationaltime. anchoredANOVAexpansionisachievedatafractionofthetimerequiredfortheclassicANOVAexpansion.Forhigherdimen- sionalproblems,thegaincanbeexpectedtobeevenmoresignificant. 3.Strategiesforchoosingtheanchorpoint AkeyelementintheanchoredANOVAexpansionisthechoiceoftheanchorpointasthisdirectlyimpactstheaccuracyof theANOVAexpansionandthetruncationdimensionand,hence,thetotalcostofevaluatingtheexpansion. Anumberofstrategieshavebeenproposedforchoosingtheanchorpointandwewillbrieflysummarizethesebelowbe- forearguingforanalternativeapproach. Asimpleapproachistorandomlychooseapointastheanchorpoint.Thisisclearlystraightforwardandwithnegligible cost.However,therearenoguaranteesfortheaccuracyofthisapproachand,asweshallsee,itgenerallyleadstoanANOVA expansionofpoorquality, In[13]itwassuggestedtochoseananchorpointbasedonamoderatenumberoffunctionevaluationstoestimatethe mean,denotedu(cid:2), througha numberofquasi-randomtrialpoints in[0,1]p. The anchorpointis thenchosento be thetrial pointwhoseoutputisclosesttothemeanofthefunction.Thisguaranteesthatthezeroordertermapproximatesthefunc- tionasaccurateaspossiblebutdoesnotofferanyguaranteesforthequalityofthehigherorderterms.Whilethereisacost associatedwiththecomputationoftheanchorpointthroughthesampling,anobviousadvantageisthatthisgeneralizesto thecaseofnon-uniformlydistributedparameters.Inthe followingweshallrefer tothemeananchorpointasone chosen usingthisapproach. In[16],analternativeapproachforchoosingtheanchorpointforamorerestrictedclassofproblemofthetype p Y uðaÞ¼ uðaÞ; ð20Þ j j j¼1 wasdeveloped.Thistechnique,basedonanalysisborrowedfromquasiMonteCarlomethods,isexpressedbydefiningthe dimensionalweightsc,j=1,...,p,as j ku (cid:2)uðbÞk c ¼ j j j 1; uðbÞ–0: ð21Þ j juðbÞj j j whereb= (b ,b ,...,b )istheanchorpoint.Withthegoaltominimizec,[16]provesthefollowingresult. 1 2 p j Lemma2. Assumethattheanchored-ANOVAexpansionistruncatedatorderv~ andthatp satisfies v~ ! p p X X Y Y c ¼ð1(cid:2)p Þ ð1þcÞ(cid:2)1 : ð22Þ j v~ j m¼v~þ1jSj¼m j2S j¼1 Then,therelativeerrorinL canbeestimatedas 1 ku(cid:2)PjSj6v~uSkL1 6ð1(cid:2)p Þ Yp ð1þcÞ(cid:2)1! Yp jujðbjÞj!: ð23Þ kuk v~ j kuk L1 j¼1 j¼1 j L1 Author's personal copy Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 3279 Furthermore,forone-signedfunctionswiththeanchorpointb= (b ,b ,...,b )selectedas 1 2 p 1 uðbÞ¼ ðmaxuðaÞþminuðaÞÞ; ð24Þ j j 2 ½0;1(cid:4) j j ½0;1(cid:4) j j thecorrespondingc minimizestheweightsinEq.(21). j Thismethodislimitedtofunctionswithseparatedvariables,(20),andthecomputationof(24),albeitone-dimensionalin nature,canbecostly.Whiledevelopedforuniformlydistributedparameters,thisapproachcanbeextendedtoincludemore generaldistributionsbygeneralizingthetheorywithappropriateL norms.Inthefollowing,weshallrefertotheextremum 1 anchorpointasonechosenusingthisapproach. 3.1.Anchorpointascenterofsparsegridquadrature Anintuitivealternativeistosimplychoosethecentroidpointintheparameterspace.Foruniformlydistributedparam- etersthiscanbeexpectedtoworkwell.However,forthemoregeneralsituationwithnon-uniformlydistributedvariables,it isreasonabletogeneralizethischoiceoftheanchorpointtothatofthecentroidofthelowestdimensionaltensorialGaussian quadratureinthep-dimensionalspace.Thequadratureshouldbechosentoreflectthepropermeasureassociatedwiththe non-uniformlydistributedparameter. Assimpleaschoosingtheanchorasthecentroidofthetensorialquadratureis,itsutilizationishighlightedwhenrecalling thatoneoftenseekstobeabletoeffectivelycomputemomentsoftheANOVAexpandedfunctionusingsparsegrids.Aswe shall show in the following theorem, there is a strong connection between between the anchored ANOVA expansion, the sparsegridSmolyakconstruction,andtheanchorpointbasedonthecentroid. Theorem3. Letu(a)beap-dimensionalintegrablefunctionwhichisrepresentedbytheanchoredANOVAexpansionlocatedatthe anchorpointb= (b ,...,b ),chosentobethecentroidoftheSmolyaksparsegrid.Then,alltermsoforderl+16porhigherare 1 p identicallyzerowhenevaluatedatthep-dimensionall+1levelsparseSmolyakgrid. Proof. Letdl,i=1,2,...,pbeaDiracmeasureonAianddefinetheaveragingoperator i Z ðCuÞðaÞ¼ uða ;...;a ÞdlðaÞ¼uða ;...;b;...;a Þ: ð25Þ i 1 p i i 1 i p Ai Lettheidentitybedecomposedas Y Y X Y X Y Y I¼ ðC þðI(cid:2)CÞÞ¼ C þ ðI(cid:2)CÞ C þ ðI(cid:2)CÞðI(cid:2)CÞ C þ(cid:7)(cid:7)(cid:7)þ ðI(cid:2)CÞ: ð26Þ i i i i j i j k i i i i i–j i<j k–i;j i Eachtermof(1)isgeneratedbyeachofthecomponentsofthisdecomposition(26)[17], Y u ¼ Cu; 0 i i Y u ¼ðI(cid:2)CÞ Cu; 1 i j i–j . . . . . . . . . Y ul ¼ðI(cid:2)CL1ÞðI(cid:2)CL2Þ...ðI(cid:2)CLlÞ CMu; ð27Þ M–L Y u ¼ðI(cid:2)C ÞðI(cid:2)C Þ...ðI(cid:2)C Þ C u; lþ1 ðLþ1Þ1 ðLþ1Þ2 ðLþ1Þlþ1 N N–ðLþ1Þ . . . . . . . . . Y u ¼ ðI(cid:2)CÞ: p i i Withoutlossofgenerality,weconsiderthefirsttermofthel+1ordertermoftheanchoredANOVAexpansion, Y u ðaÞ¼ðI(cid:2)C ÞðI(cid:2)C Þ...ðI(cid:2)C Þ C uðaÞ lþ1 ðLþ1Þ1 ðLþ1Þ2 ðLþ1Þlþ1 N N–ðLþ1Þ Z ¼ðI(cid:2)C ÞðI(cid:2)C Þ...ðI(cid:2)C Þ uða ;...;a Þdlða Þ ðLþ1Þ1 ðLþ1Þ2 ðLþ1Þlþ1 Ap(cid:2)n 1 p N ¼ðI(cid:2)C ÞðI(cid:2)C Þ...ðI(cid:2)C Þuða ;...;a ;b ;...;b Þ: ð28Þ ðLþ1Þ1 ðLþ1Þ2 ðLþ1Þlþ1 1 lþ1 lþ2 p wheren=p(cid:2)l(cid:2)1.ObservethatEq.(28)containsatmostl+1variables(a ,...,a ). 1 l+1 Author's personal copy 3280 Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 Thel+1levelsparsegridisgivenby(15) [ Xp ¼ ðck1 (cid:8)(cid:7)(cid:7)(cid:7)(cid:8)ckpÞ: ð29Þ lþ1 ðlþ1Þ6jkj16lþp Assumenowthattherearel+1variablesthatarenotsolelydefinedatthecentroid.Then k P2;i¼1;...;lþ1 i k ¼1;j¼lþ2;...;p j Xlþ1 Xp jkj ¼ k þ k; 1 i j i¼1 j¼lþ2 ð30Þ Xlþ1 Xp P 2þ 1; i¼1 j¼lþ2 ¼2(cid:8)ðlþ1Þþp(cid:2)ðlþ1Þ; ¼pþlþ1: whichcontradictsjkj 6lþpin(29).Therefore,atleastforonewehavek =1,i=1,...,l+1,i.e.,c =b mustbethecentroid 1 i i i fora. i Withoutlossofgenerality,leta bethisone.Eq.(28)becomes l+1 u ðaÞ¼ðI(cid:2)C Þ...ðI(cid:2)C Þuða ;...a;b ;b ;...;b Þ; lþ1 ðLþ1Þ1 ðLþ1Þlþ1 1 l lþ1 lþ2 p ¼ðI(cid:2)C Þ...ðI(cid:2)C Þ½Iuða ;...a;b ;b ;...;b Þ; ðLþ1Þ1 ðLþ1Þl 1 l lþ1 lþ2 p (cid:2)C uða ;...a;b ;b ;...;b Þ(cid:4); ð31Þ ðLþ1Þlþ1 1 l lþ1 lþ2 p ¼ðI(cid:2)C Þ...ðI(cid:2)C Þ½uða ;...a;b ;b ;...;b Þ(cid:2)uða ;...a;b ;b ;...;b Þ(cid:4); ðLþ1Þ1 ðLþ1Þl 1 l lþ1 lþ2 p 1 l lþ1 lþ2 p ¼0: Itisnotdifficulttoconcludethatallm>l+1ordertermsoftheexpansionarezerobyrepeatingthisargument.Thiscom- pletestheproof. h ApartfrommakingtheconnectionbetweentheANOVAexpansionandtheSmolyaksparsegridclear,animportantimpli- cationofthisresultfollowsforevaluationofthemomentsoftheanchoredANOVAexpansionsinceonecandecideexactly howmanylevelsofthesparsegridismeaningfulforanexpansionofacertainlength.Note,however,thattheaboveresult doesnotofferanymeasureoftheaccuracyoftheexpansionand,hence,theresultingmoment. 4.Numericalexamples Inthefollowingweconsideracomparativestudyofthedifferentapproachesforchoosingtheanchorpoint.Wedothis usingstandardhigh-dimensionaltestfunctionsandalsoofferadirectcomparisonoftheaccuracyoftheanchoredANOVA expansiontothatoftheLebesgueANOVAexpansionforahigh-dimensionalsystemofordinarydifferentialequations. 4.1.Integrationofhigh-dimensionalfunctions TomeasuretheaccuracyoftheANOVAexpansionwedefineameasureofrelativeerrorofanintegralas jR uðaÞda(cid:2)R u ðaÞdaj (cid:2)tr ¼ Ap jR uðaÞAdpajtr ; ð32Þ Ap whereu (a)isthetruncatedANOVAexpansion. tr Weconsidertheclassictestfunctions[18,19]andoneadditionaltestexample: (cid:9) ProductPeakfunction:u ðaÞ¼Qp ðc(cid:2)2þða (cid:2)nÞ2Þ(cid:2)1, 2 i¼1 i i i (cid:9) CornerPeakfunction:u ðaÞ¼(cid:2)1þPp ca(cid:3)(cid:2)ðpþ1Þ, 3 i¼1 i i (cid:4) (cid:5) (cid:9) Gaussianfunction:u ðaÞ¼exp (cid:2)Pp c2ða (cid:2)nÞ2 , 4 i¼1 i i i (cid:9) Continuousfunction:u ðaÞ¼exp(cid:2)(cid:2)Pp cja (cid:2)n(cid:3)j, 5 i¼1 i i i (cid:9) Quadraturetestexample:u6ðaÞ¼(cid:4)1þ1p(cid:5)pQpi¼1ðaiÞ1p. wheretheparametersc= (c ,...,c )andn= (n ,...,n )aregeneratedrandomly.Theparameternactsasashiftparameter 1 p 1 p andtheparameterscareconstrained.See[18,19]forthedetails.Recallthatthetestfunctionu isdefinedinEq.(17). 1 Author's personal copy Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 3281 4.1.1.Uniformlydistributedvariables Inthefirstsetoftests,weassumethatallvariables,a,i=1,2,...,10,areuniformlydistributedrandomvariablesdefined i on[0,1]p.Weusea10-dimensional7-levelsparsegridsbasedontheone-dimensionalGauss–Pattersonquadraturepointsto computetheintegralsandconsiderthistobetheexactsolution.6-levelsparsegridsareusedtointegratetheanchoredAN- OVAexpansionbasedondifferentchoicesoftheanchorpoint. InFig.3weillustratetherelativeerroroftheintegralsrecoveredwithdifferentchoicesoftheanchorpoint.Notethatfor most cases, the accuracy reaches 10(cid:2)6 with the exception of the fifth test function where all choices lead to less accurate (i)101 (ii)100 center points center points 100 mean points 10−1 mean points random points random points 10−1 10−2 extremum points e error 1100−−32 ve error 1100−−43 relativ 10−4 relati 10−5 10−5 10−6 10−6 10−7 10−7 10−8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 order of ANOVA expansion order of ANOVA expansion (iii)100 (iv)100 center points center points 10−1 mraenadno mpo pinotisnts 10−1 mraenadno mpo pinotisnts extremum points 10−2 10−2 error error 10−3 e 10−3 e v v ati ati 10−4 el el r r 10−4 10−5 10−5 10−6 10−6 10−7 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 order of ANOVA expansion order of ANOVA expansion (v)101 (vi)100 100 10−1 10−1 10−2 error 10−2 error 10−3 e e v v ati 10−3 ati 10−4 el el r r 10−4 center points 10−5 center points mean points mean points 10−5 random points 10−6 random points extremum points extremum points 10−6 10−7 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 order of ANOVA expansion order of ANOVA expansion Fig.3. Relativeerrorsofthetestfunctionscomputedusingdifferentstrategiesforchoosingtheanchorpoint.Allvariablesareassumedtobeuniformly distributed.(i)u ,(ii)u ,(iii)u ,(iv)u ,(v)u ,(vi)u . 1 2 3 4 5 6 Author's personal copy 3282 Z.Gao,J.S.Hesthaven/AppliedMathematicsandComputation217(2010)3274–3285 result.Thisisassociatedwiththisparticulartestfunction,iscausedbyalimitedsmoothnessintherandomvariablesandhas alsobeenreportedbyotherauthors[20]. Whiletherearedifferencesamongtheresults,thechoiceofthecentroidastheanchorappearstobesuperiortothealter- nativetechniquesinallcases.WealsonotethattheresultsconfirmtheresultinTheorem3,i.e.,witha6-levelsparsegridwe shouldnotexpectanyadditionalimprovementsintheaccuracyoftheintegralswhenusingmorethan5termsintheANOVA expansion, (i) 102 (ii) 101 center points center points 101 mean points 100 mean points random points random points 100 10−1 or 10−1 or err err 10−2 e 10−2 e v v ati ati 10−3 el 10−3 el r r 10−4 10−4 10−5 10−5 10−6 10−6 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 order of ANOVA expansion order of ANOVA expansion (iii) 102 (iv) 101 center points center points 101 mean points 100 mean points random points random points 100 10−1 or 10−1 or err err 10−2 e 10−2 e v v ati ati 10−3 el 10−3 el r r 10−4 10−4 10−5 10−5 10−6 10−6 0 1 2 3 4 5 6 7 8 0 1 2order o3f ANO4VA exp5ansion6 7 8 order of ANOVA expansion (v) 101 (vi) 101 center points center points mean points 100 mean points random points random points 100 10−1 or or err err 10−2 e 10−1 e v v ati ati 10−3 el el r r 10−4 10−2 10−5 10−3 10−6 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 order of ANOVA expansion order of ANOVA expansion Fig. 4. Relative errors of the test functions computed using different strategies for choosing the anchor point. All variables are assumed to be beta- distributedwithc=1/2,s=1/3.(i)u ,(ii)u ,(iii)u ,(iv)u ,(v)u ,(vi)u . 1 2 3 4 5 6

Description:
This article appeared in a journal published by Elsevier. The classic Lebesgue ANOVA expansion offers an elegant way to represent functions that depend on
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.