ebook img

On almost everywhere exponential summability of rectangular partial sums of double trigonometric Fourier series PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On almost everywhere exponential summability of rectangular partial sums of double trigonometric Fourier series

ON ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY OF RECTANGULAR PARTIAL SUMS OF DOUBLE TRIGONOMETRIC FOURIER SERIES 7 1 0 USHANGIGOGINAVAAND GRIGORIKARAGULYAN 2 n a J 0 Abstract. Inthispaperwestudythea.e. exponentialstrongsumma- 3 bility problem for the rectangular partial sums of double trigonometric Fourier series of thefunctions from LlogL . ] P A 1. Introduction . h t We denote the set of all non-negative integers by N. Let T := [ π,π) = a m R/2π and R := ( , ). Denote by L1(T) the class of all me−asurable functions f on R t−ha∞t a∞re 2π-periodic and satisfy [ 1 f := f < . v k k1 | | ∞ 0 ZT 1 7 The Fourier series of a function f L1(T) with respect to the trigonometric 8 ∈ system is 0 1. ∞ 0 (1) c einx, n 7 n=−∞ 1 X : where v 1 Xi cn := f(x)e−inxdx 2π r ZT a are the Fourier coefficients of f. Denote by S (x,f) the partial sums of the n Fourier series of f and let n 1 σ (x,f) = S (x,f) n k n+1 k=0 X be the (C,1) means of (1). Fejér [1] proved that σ (f) converges to f uni- n formly for any 2π-periodic continuous function. Lebesgue in [18] established almost everywhere convergence of (C,1) means if f L1(T). The strong ∈ 02010 Mathematics Subject Classification 42C10 . Keywordsandphrases: DoubleFourierseries,strongsummability,exponentialmeans. 1 2 USHANGIGOGINAVAANDGRIGORIKARAGULYAN summability problem, i.e. the convergence of the strong means n−1 1 (2) S (x,f) f(x)p, x T, p > 0, k n | − | ∈ k=0 X was first considered by Hardy and Littlewood in [9]. They showed that for any f Lr(T) (1< r < ) the strong means tend to 0 a.e. as n . The trigono∈metric Fourier ser∞ies of f L1(T) is said to be (H,p)-sum→m∞able at x T if the values (2) converge ∈to 0 as n . The (H,p)-summability pro∈blem in L1(T) has been investigated by M→arc∞inkiewicz [19] for p =2, and later by Zygmund [34] for the general case 1 p < . ≤ ∞ Let Φ : [0, ) [0, ), Φ(0) = 0, be a continuous increasing function. ∞ → ∞ We say a series with the partial sums s strong Φ-summable to a limit s if n n−1 1 lim Φ(s s ) = 0. k n→∞n | − | k=0 X In [20] Oskolkov first considered the a.e strong Φ-summability problem of Fourier series with exponentially growing Φ. Namely, he proved a.e strong Φ-summability of Fourier series if lnΦ(t)= O(t/lnlnt) as t . → ∞ In [21] Rodin proved Theorem R (Rodin). If a continuous function Φ: [0, ) [0, ), Φ(0) = ∞ → ∞ 0, satisfies the condition lnΦ(t) limsup < , t ∞ t→+∞ then for any f L1(T) the relation ∈ n−1 1 (3) lim Φ(S (x,f) f(x) ) = 0 k n→∞n | − | k=0 X holds for a. e. x T. ∈ Karagulyan [11, 12] proved that the exponential growth in Rodin’s theo- rem is optimal. Moreover, it was proved TheoremK(Karagulyan). Ifacontinuous increasing functionΦ : [0, ) ∞ → [0, ),Φ(0) = 0, satisfies the condition ∞ lnΦ(t) limsup = , t ∞ t→+∞ then there exists a function f L1(T), for which the relation ∈ n−1 1 limsup Φ(S (x,f) )= k n | | ∞ n→∞ k=0 X holds everywhere on T. ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 3 In this paper we study the exponential summability problem for the rect- angular partial sums of double Fourier series. Let f L1(T2) be a function ∈ with Fourier series ∞ (4) c ei(mx+ny), nm m,n=−∞ X where 1 c = f(x ,x )e−i(mx1+nx2)dx dx nm 4π2 1 2 1 2 ZT2Z are the Fourier coefficients of the function f. The rectangular partial sums of (4) are defined by M N S (f)= S (x ,x ,f)= c ei(mx1+nx2). MN MN 1 2 nm m=−Mn=−N X X We denote by LlogL T2 the class of measurable functions f, with (cid:0) (cid:1) f log+ f < , | | | | ∞ ZT2Z where log+u := I logu, u > 0. For the rectangular partial sums of (1,∞) two-dimensional trigonometric FourierseriesJessen,MarcinkiewiczandZyg- mund [10] has proved for any f LlogL T2 that ∈ 1 n−1m−1 (cid:0) (cid:1) lim (S (x ,x ,f) f(x ,x )) = 0 ij 1 2 1 2 n,m→∞nm − i=0 j=0 X X for a. e. (x ,x ) T2. They also showed that for every non-negative 1 2 ∈ function ω : [0, ) [0, ) satisfying ω(t) , ω(t) log+t −1 0 as ∞ → ∞ ↑ ∞ → t , there exists a function f such that f ω(f ) L1 T2 and the → ∞ | | | | ∈(cid:0) (cid:1) (C,1,1) means of double Fourier series of f diverge a.e.. (cid:0) (cid:1) The two dimensional a.e. strong rectangular (H,p)-summability, i.e. the relation n−1m−1 1 lim S (x ,x ,f) f(x ,x ) p =0 a.e. ij 1 2 1 2 n,m→∞nm | − | i=0 j=0 X X was proved by Gogoladze [8]for f LlogL T2 . These results show that in ∈ two dimensional case the optimal class of functions for (C,1,1) summability and strong summability coincide. That is th(cid:0)e cl(cid:1)ass of functions LlogL T2 . We prove the following (cid:0) (cid:1) Theorem. If a continuous increasing function Φ: [0, ) [0, ), Φ(0) = ∞ → ∞ 0, satisfies the condition lnΦ(t) (5) limsup < , t→+∞ t/lnlnt ∞ p 4 USHANGIGOGINAVAANDGRIGORIKARAGULYAN then for any f LlogL T2 the relation ∈ n−(cid:0)1m−(cid:1)1 1 (6) lim Φ(S (x ,x ,f) f(x ,x ) )= 0 ij 1 2 1 2 n,m→∞nm | − | i=0 j=0 X X holds for a. e. (x ,x ) T2. 1 2 ∈ As a corollary of this result we get the Gogoladze [8] theorem on a.e. Hp-summability of double Fourier series. From Jessen, Marcinkiewicz and Zygmund [10] theorem it follows that the class LlogL T2 in our theorem is necessary in the context of strong summability question. That is, it is not possible to give a larger convergence space than LlogL(cid:0) T(cid:1)2 . Our method of proof do not allow to get (6) under the weaker condition (cid:0) (cid:1) lnΦ(t) (7) limsup < . t→+∞ √t ∞ There is a conjecture that (7) is the optimal bound of Φ ensuring a.e. rect- angular strong summability (6) for every function f LlogL T2 . ∈ The results on strong summability and approximation by trigonometric (cid:0) (cid:1) Fourier series have been extended for several other orthogonal systems, see Schipp [23, 24, 25], Leindler [14, 15, 16, 17], Totik [26, 27, 28, 29], Gogi- nava,Gogoladze[5,6],Goginava,Gogoladze, Karagulyan[7],Gat,Goginava, Karagulyan [3, 4], Weisz [30]-[33]. 2. Auxiliary lemmas The notation a . b will stand for a < c b, where c > 0 is an absolute · constant. We shall write a b if the relations a . b and b . a hold at the ∼ same time. Everywhere below q > 1 will be used as the conjugate of p > 1, that is 1/p+1/q = 1. [a] denotes the integer part of a R. The maximal function of a function f L1(T) is defi∈ned by ∈ 1 Mf (x) := sup f(y) dy, I:x∈I⊂T|I| Z | | I where I is an open interval. The following one dimensional operators intro- duced by Gabisonia [2] are significant tools in the investigations of strong summability problems: q 1/q k [nπ] n n G(n)f(x):=   f (x+t) + f(x t) dt  , p k | | | − | Xk=1 kZ−1     n       G f(x):= supG(n)f(x). p p n∈N Oskolkov’s following lemma plays key role in the proof of the basic lemma. ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 5 Lemma 1 (Oskolkov, [20]). For any family of pairwise disjoint intervals ∆ T with centers c it holds the inequality k k ⊂ q |∆j| (8) x T : sup j |x−cj|+|∆j| > λ . exp( cλ), λ > 0, (cid:12)(cid:12) ∈ p>1 Pp(cid:16)lnln(p+2)(cid:17) (cid:12)(cid:12) −   (cid:12) (cid:12) (cid:12) (cid:12) where c(cid:12)>0 is an absolute constant. (cid:12) (cid:12) (cid:12) One can easily check that q 1/q q |∆j| |∆j| sup j |x−cj|+|∆j| . 1,sup j |x−cj|+|∆j| . p>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17)  p>1 Pp(cid:16)lnln(p+2)(cid:17)    Combining this with (8), we get   q 1/q |∆j| (9) sup j |x−cj|+|∆j| . 1. Tp>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17) Z Lemma 2. If f L1(T), then ∈ G f(x) 1 1/2 (10) x T :sup p > λ . f , λ > 0. ∈ plnln(p+2) λ k k1 (cid:12)(cid:26) p>1 (cid:27)(cid:12) (cid:18) (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) Proof. It i(cid:12)s enough to prove the same estim(cid:12)ate for the modified operators q 1/q k [nπ] n n (11) G′f(x):= sup  f (x+t) dt  . p n∈NXk=1kkZ−1 | |     n       Using the Calderon-Zygmund lemma, for the maximal function we get the relation ∞ (12) R := x T :Mf (x) > √λ = ∆ , λ > 0, λ k ∈ n o k[=0 where ∆ T are disjoint open intervals such that k ⊂ 1 (13) √λ f(t) dt 2√λ, ≤ ∆ | | ≤ k | | Z ∆k 1 (14) R f . | λ|≤ √λk k1 6 USHANGIGOGINAVAANDGRIGORIKARAGULYAN Denote δn := [(k 1)/n,k/n] and δn(x) := x+δn. Separating the terms in k − k k the sum (11) with k satisfying δn(x) R , we get k ⊂ λ q 1/q k n n (15) G′f(x) sup  f(x+t) dt  p ≤n∈Nk:δknX(x)⊂RλkkZ−1 | |     n       q 1/q k n n +sup  f(x+t) dt  n∈Nk:δknX(x)6⊂RλkkZ−1 | |     n   := I +II.    From the definition of R in the case δn(x) R it follows that λ k 6⊂ λ k n n f (x+t) dt √λ. | | ≤ kZ−1 n Thus we conclude ∞ 1/q 1/q 1 1 (16) II √λ . √λ . p√λ. ≤ kq q 1 ! k=1 (cid:18) − (cid:19) X Given x T set ∈ min k :δn(x) ∆ if k :δn(x) ∆ =∅, ki(x)= { k ⊂ i} if {k :δkn(x) ⊂ ∆i} 6=∅. (cid:26) ∞ { k ⊂ i} ∞ DenoteR := 3∆ andtakeanarbitrary point x T R . Onecaneasily λ k λ ∈ \ k=1 check theat if kiS(x) 6= ∞, then e k (x) i ∆ x c , i i ∋ n ∼ | − | ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 7 where c is the center of the interval ∆ . Thus for any x / R we obtain i i λ ∈ e q 1/q ∞ n (17) I = sup f (t) dt     n∈N Xi=1k:δknX(x)⊂∆i kδnZ(x) | |   k       q 1/q ∞ n sup f (t) dt     ≤ n∈N Xi=1 k:δknX(x)⊂∆i kδnZ(x) | |   k       q 1/q ∞ n ∆ 1 i sup | | f (t) dt ≤ n∈Ni=1ki(x)|∆i|Z | |   X ∆i     ∞ q 1/q n ∆ . √λsup | i| k (x) n i=1(cid:18) i (cid:19) ! X ∞ q 1/q ∆ . √λ | i| , x / R . λ x c + ∆ ∈ i=1(cid:18)| − i| | i|(cid:19) ! X e Using Chebyshev’s inequality, from (9), (16) and (17) it follows that G′f(x) x T R : sup p > λ λ ∈ \ plnln(p+2) (cid:12)(cid:26) p>1 (cid:27)(cid:12) (cid:12) (cid:12) (cid:12)(cid:12) e (cid:12)(cid:12) |∆j| q 1/q . x T R :√λ 1+sup j |x−cj|+|∆j| cλ (cid:12)(cid:12) ∈ \ λ  p>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17)  ≥ (cid:12)(cid:12) (cid:12) (cid:12) (cid:12)   (cid:12) e (cid:12)  q 1/q  (cid:12) (cid:12) |∆j| (cid:12) . (cid:12)1 sup j |x−cj|+|∆j| dx (cid:12) √λ p>1 (cid:16)P (cid:16)plnln(p+2(cid:17)) (cid:17) ZT 1 . , √λ for an appropriate absolute constant c > 0. Applying homogeneity, one can get G′f(x) f 1/2 (18) x T R : sup p > λ . k k1 , λ > 0. λ ∈ \ plnln(p+2) λ (cid:12)(cid:26) p>1 (cid:27)(cid:12) (cid:18) (cid:19) (cid:12) (cid:12) (cid:12) e (cid:12) (cid:12) (cid:12) 8 USHANGIGOGINAVAANDGRIGORIKARAGULYAN Consequently, from (14)-(18) we get G′f(x) x T : sup p > λ ∈ plnln(p+2) (cid:12)(cid:26) p>1 (cid:27)(cid:12) (cid:12)(cid:12)(cid:12) x T R :sup G′pf((cid:12)(cid:12)(cid:12)x) > λ + R˜ λ λ ≤ ∈ \ plnln(p+2) | | (cid:12)(cid:26) p>1 (cid:27)(cid:12) (cid:12) (cid:12) (cid:12) f 1/e2 f (cid:12) . (cid:12) k k1 + k k1. (cid:12) λ √λ (cid:18) (cid:19) Again using homogeneity, we obtain (10). (cid:3) We will need the following estimations. Lemma 3 (Gabisonia, [2]). If p > 1 and f L1(T2), then ∈ 1/p n−1 1 (19) S (x,f)p . G(n)f(x). n | j |  p j=0 X   Lemma 4 (Schipp, [22]). If f L1(T2), then ∈ 1/p n−1 1 (20) S (x,f) p . pG f(x). j 2 n | |  j=0 X   Rodin [21] proved the weak (1,1)-type estimate for the operators G f(x) p with a fixed p > 1. From this fact, applying a standard argument, one can derive Lemma 5 (Rodin, [21]). Let f LlogL(T). Then ∈ G (f) . 1+ f log f . k 2 k1 | | | | ZT For any function f L1(T2) define ∈ G (x ,x ;f) = G f (x ), G (x ,x ;f)= G f (x ), p,1 1 2 p x2 1 p,2 1 2 p x1 2 G(n)(x ,x ;f) = G(n)f (x ), G(n)(x ,x ;f) = G(n)f (x ), p,1 1 2 p x2 1 p,2 1 2 p x1 2 where f () = f(,x ) and f () = f(x , ) are considered as functions on x2 · · 2 x1 · 1 · x and x respectively. Similarly one dimensional partial sums of f(x ,x ) 1 2 1 2 with respect to each variables will be denoted by S (x ,x ,f)= S (x ,f ), S (x ,x ,f)= S (x ,f ). n,1 1 2 n 1 x2 n,2 1 2 n 2 x1 ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY 9 Lemma 6. If f LlogL(T2), then ∈ 1/p n−1m−1 1 S (x ,x ,f)p (cid:12) nm i=0 j=0 | i,j 1 2 | ! (cid:12) (cid:12)(cid:12)(cid:12)spu>p1ns,mu∈pN P Pp2lnln(p+2) > λ(cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)   (cid:12) 1/2 (cid:12) (cid:12) (cid:12) (cid:12) 1 (cid:12) . 1+ f log+ f , λ >0. λ  | | | | ZT2Z    Proof. Using (19), (20) and generalized Minkowsi’s inequality, we get n−1m−1 n−1m−1 1 1 S (x ,x ,f) p = S (x ,x ,S (f)) p i,j 1 2 i,1 1 2 j,2 nm | | nm | | i=0 j=0 i=0 j=0 X X X X m−1 1 p (n) G (x ,x , S (f)) ≤ m p,1 1 2 | j,2 | Xj=0 (cid:16) (cid:17) p 1/p m−1 1 G(n) x ,x , S (f)p ≤  p,1  1 2 m | j,2 |   j=0 X       1/pp m−1 1 G x ,x , S (f)p  p,1 1 2 j,2  ≤ m | |  j=0 X    . pp(G (x ,x ,G (f)))p.   p,1 1 2 2,2 Hence we obtain 1/p n−1m−1 1 S (x ,x ,f)p  nm i=0 j=0 | i,j 1 2 | !  Ω = (x1,x2)∈ T2 :spu>p1ns,mu∈pN P Pp2lnln(p+2) > λ        G (x ,x ,G (f))  (x ,x ) T2 : sup p,1 1 2 2,2 > λ ,  1 2 ⊂ ∈ plnln(p+2) (cid:26) p>1 (cid:27) 10 USHANGIGOGINAVAANDGRIGORIKARAGULYAN then, applying Lemma 2 and 5, we conclude Ω = I (x ,x )dx dx = dx I (x ,x )dx Ω 1 2 1 2 2 Ω 1 2 1 | | TZ2 ZT ZT 1/2 1 . G (x ,x ,f)dx dx 2,2 1 2 1 2 λ  ZT ZT   1/2 1 . 1+ f (x ,x ) log+ f(x ,x ) dx dx 1 2 1 2 1 2 λ  | | | |  ZT ZT    1/2 1 . 1+ f (x ,x ) log+ f(x ,x ) dx dx . 1 2 1 2 1 2 λ  | | | |  TZ2    Lemma is proved. (cid:3) 3. Proof of Theorem 1 Let L := L T2 be Orlicz space of functions on T2 generated by the M M Young function M(t) = tlog+t. Itis known that L is aBanach space with (cid:0) (cid:1) M respect to the Luxemburg norm f f := inf λ : λ > 0, M | | 1 < . k kM  λ ≤  ∞  XZ (cid:18) (cid:19)  According to a theorem from ([13], Chap. 2, theorem 9.5) we have 0,5 1+ M( f ) f 1+ M( f )  | |  ≤ k kM ≤ | | TZ2 ZT2   provided f = 1. Hence from Lemma 6 we conclude k kM 1/p n−1m−1 1 S (f)p (cid:12) nm i=0 j=0 | i,j | ! (cid:12) f 1/2 (21) (cid:12)(cid:12)(cid:12)(cid:12)spu>p1ns,mu∈pN pP2loPglog(p+2) > λ(cid:12)(cid:12)(cid:12)(cid:12). (cid:18)k λkM(cid:19) . (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)   (cid:12) (cid:12)   Indeed, (cid:12)at first we deduce the case of f = 1, then(cid:12)using a homogeneity (cid:12) k kM (cid:12) argument, we get the inequality in the general case.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.