View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector laciteroehT retupmoC ecneicS Theoretical Computer Science 218 (1999) 61-81 nO nailebA serauqs dna snoitutitsbus om!rA *ipraC Istituto di Cibernetica de1 ,RNC vTioa iano 6, 80072 Arco ecileF ,)AN( Italy tcartsbA eW yduts snoitutitsbus gnivreserp nailebA eerf-erauqs sdrow dna eht erom lareneg noiton fo snoitutitsbus htiw dednuob nailebA .serauqs nI ,ralucitrap ew evorp eht ecnetsixe fo smhtirogla gnidiced rehtehw a noitutitsbus gnippam hcae rettel otni a tes fo ylevitatummoc tnelaviuqe sdrow sgnoleb ot eno fo eseht .sessalc @ 1999 reiveslE ecneicS .V.B llA sthgir .devreser Keywords: nailebA ;erauqs eerF ;dionom elbadiovA ytiraluger 1. noitcudortnI snoititepeR era eno of the niam scipot ni eht yduts of elbadiova seitiraluger ni words. ehT reader si referred ot ]l[ for a evisneherpmoc .yrammus nI ,erutaretil gnoma lareves snoitazilareneg of the noiton of ,noititeper na tnatropmi ecalp si deipucco yb nailebA .serauqs nA nailebA erauqs si the noitanetacnoc of two words hcihw are snoitatumrep of each other. tI si ylisae nees that, no a rettel-3 ,tebahpla yna word of htgnel 8 sniatnoc na nailebA .erauqs nO the ,yrartnoc the ecnetsixe of na gnidnenu word no 4 srettel tuohtiw nailebA serauqs gnoma sti factors k/ebA( square-free ,)drow derutcejnoc yb siidrE [5] ni 1961, was devorp yb nenGeK [7] erom naht 30 sraey .retal gnidnenU nailebA eerf-erauqs words no regral stebahpla had neeb ylsuoiverp dnuof [6,8]. nailebA snoititeper of regral tnenopxe were deredisnoc ni [41. ehT nailebA eerf-erauqs words detibihxe ni the detouq papers are deniatbo yb -reti noita of smsihprom gnivreserp nailebA eerf-erauqs words (Abelian square-free mor- phisms). An evitceffe noitaziretcarahc of nailebA eerf-erauqs smsihprom denifed no stebahpla htiw or erom srettel nac eb dnuof ni [2]. ehT erom lareneg noiton of a etinif noitutitsbus gnivreserp nailebA eerf-erauqs words (Abelian square-free * :liam-E .ti.rnc.an.bic.ouma@orntra 0304-3975/99/$-see tnorf rettam @ 1999 reiveslE ecneicS .V.B llA sthgir .devreser :IIP SO304-3975(98)00250-3 62 A. Carpil Theoretical Computer Science 218 (1999) 6141 substitution) was desu yb the rohtua ot evorp the laitnenopxe growth of nailebA -erauqs free words no 4 srettel [3]. lliT ,won noitareti of nailebA eerf-erauqs snoitutitsbus smees ot eb the ylno nwonk dohtem ot yllacitametsys ecudorp nailebA eerf-erauqs words. ehT mia of siht paper si the yduts of nailebA eerf-erauqs .snoitutitsbus eW ecudortni the erom lareneg noiton of a etinif noitutitsbus htiw dednuob nailebA ,serauqs .e.i of a etinif noitutitsbus hcus that the htgnel of the nailebA serauqs gnirrucco ni the segami of nailebA eerf-erauqs words si reppu dednuob yb a .tnatsnoc nI order ot ebircsed the niam stluser of siht paper, we deen ot ecudortni emos .snoitinifed yehT lliw eb repeated, ni a erom lamrof ,yaw ni the txen .noitces owT words are dias ot eb commutatively equivalent fi yeht are snoitatumrep of each other, ekil e.g. abcab dna baabc. A etinif noitutitsbus si dias ot eb commuta- tively functional fi yna rettel si deppam otno a set of ylevitatummoc tnelaviuqe words. ehT ssalc of ylevitatummoc lanoitcnuf snoitutitsbus ylsuoivbo sniatnoc lla the -rom smsihp of free ,sdionom tub osla the nailebA eerf-erauqs snoitutitsbus deredisnoc ni [3]. A etinif noitutitsbus si dias ot eb commutatively injective fi words hcihw are ton ylevitatummoc tnelaviuqe are deppam otni words hcihw are ton ylevitatummoc -viuqe .tnela oT yna ylevitatummoc evitcejni etinif noitutitsbus ,C we nac ylevitceffe etaicossa a etinif set OZ (see Eq. (1 ,))l whose stnemele are selput detutitsnoc yb 3 srettel dna a .rotcev ehT niam tluser of siht paper si na evitceffe noitaziretcarahc of ylevitatummoc -cnuf lanoit nailebA eerf-erauqs .snoitutitsbus More ,ylesicerp we evorp that a ylevitatummoc lanoitcnuf noitutitsbus o si nailebA eerf-erauqs fi dna ylno fi ti seifsitas the gniwollof three :snoitidnoc 1. tI si ylevitatummoc .evitcejni 2. No ‘short’ nailebA erauqs srucco ni the segami of nailebA eerf-erauqs words. 3. ehT set bcsp does ton tcesretni a niatrec etinif set .T Here, yb ‘short’ nailebA erauqs we naem that at tsael eno of sti two ylevitatummoc tnelaviuqe sevlah srucco ni na egami of a .rettel erehT si a ecnereffid neewteb the cases where the deredisnoc etinif noitutitsbus si denifed no 4 srettel or .erom ,deednI fi (r si denifed no erom naht 4 ,srettel neht we nac ylticilpxe tsil the stnemele of the etinif set T detouq .evoba ,suhT the -erp suoiv noitaziretcarahc sevig na mhtirogla ot ediced whether a ylevitatummoc -cmif lanoit noitutitsbus si nailebA .eerf-erauqs ,fI no the ,yrartnoc o si denifed no 4 ,srettel neht we are ton elba ot evig ylticilpxe the stnemele of .T ,suhT hguohtla na -la mhtirog stsixe ot ediced whether a ylevitatummoc lanoitcnuf ,noitutitsbus denifed no 4 ,srettel si nailebA ,eerf-erauqs we do ton wonk how hcus a noisiced dluohs eb .nekat fI we redisnoc etinif snoitutitsbus hcihw are ton ylevitatummoc ,lanoitcnuf neht -noc snoitid 3-l evoba do ton eziretcarahc nailebA eerf-erauqs .snoitutitsbus ,revewoH we show that yna etinif noitutitsbus gniyfsitas snoitidnoc 3-l si nailebA .eerf-erauqs eW evig osla na evitceffe noitaziretcarahc of ylevitatummoc lanoitcnuf -utitsbus snoit htiw dednuob nailebA .serauqs ,deednI we show that a ylevitatummoc lanoitcnuf A. Carpil Theoretical Computer Science 218 (1999) 6141 63 noitutitsbus cr has dednuob nailebA serauqs fi dna ylno fi ti si ylevitatummoc evitcejni dna GZ does ton tcesretni a niatrec etinif set. nA gnitseretni ytreporp gninrecnoc ylevitatummoc lanoitcnuf snoitutitsbus htiw dednuob nailebA serauqs denifed no 5 or erom srettel si osla .dehsilbatse tI serusne that, ni order ot check the nailebA sseneerf-erauqs of na egami of na nailebA -erauqs free word, ti si tneiciffus ot check the nailebA sseneerf-erauqs of sti factors hcihw are segami of words of htgnel 2. A latnemadnuf elor ni the proof of the denoitnemerofa stluser si deyalp yb the ,ecnetsixe rednu elbatius ,snoitidnoc of nailebA eerf-erauqs words no 4 rettel of the mrof aubvc, where a, b, c are dengissa srettel dna ,u v are words whose Par&h srotcev evah na dengissa .ecnereffid sdroW of siht dnik are deniatbo yb gniylppa na gnitseretni ytreporp of evitucesnoc factors of the etinifni ecneuqes of ,nenareK yleman that the ecnereffid neewteb rieht Par&h srotcev segrevid htiw rieht .shtgnel emoS proofs deriuqer the dia of enihcam .noitatupmoc ehT elpmis dedeen codes were nettirw ni 2-aludoM dna delipmoc ni the MacMeth tnemnorivne no a Power hsotnicaM 7500/100. ehT paper si dezinagro as :swollof the cisab snoitinifed yrassecen for ruo esoprup are detneserp ni the txen .noitces noitceS 3 si detoved ot the noitcurtsnoc of nailebA eerf-erauqs words htiw a ralucitrap .erutcurts nI noitceS 4, we tneserp the niam ,stluser gninrecnoc nailebA eerf-erauqs snoitutitsbus dna snoitutitsbus htiw dednuob nailebA .serauqs 2. Preliminaries Let A eb a etinif set or alphabet. eW ,etoned ,ylevitcepser yb A* dna AZ the free monoid dna the free Z-module detareneg yb A. ehT stnemele of A are dellac letters dna those of A* words. nI ,ralucitrap the lartuen tnemele of A* or empty word si detoned yb E. eW yas that a word u E A* si a factor ,ylevitcepser( a prefix, a )xifus of rehtona word v E A* fi there tsixe x, y E A* hcus that v yux= ,ylevitcepser( v = ,y u .)un= A factor u of v si proper fi u # .v ehT sets of the factors, ,sexiferp sexiffus of a word w are ,detoned ,ylevitcepser yb ,)w(tcaF Pref(w), .)w(ffuS More ,yllareneg fi L Z A*, neht )L(tcaF = lJwEL ,)w(tcaF )GferP = UwEL Pref(w), )L(ffuS = LEwU .)w(ffuS ehT mirror image of a word w = ala2 . . . a,,, (ai E A, 1 d i < n) si the word wM = a,a,_l . . . al. ehT eludom-b AZ si yllaitrap ordered yb the noitaler ,< denifed yb ’u<u fi ’u - u has evitagen-non .stnenopmoc ehT eludombus-Z detareneg yb a tesbus V of AZ lliw eb detoned yb (V). 46 .A Carpil Theoretical Computer Science 218 (1999) 6131 ehT rebmun fo secnerrucco fo a rettel a E A ni a drow w E *A is detoned yb .,IW[ IW[ = CaEA wI ,I is eht htgnel fo w. ehT tes fo eht sdrow fo *A fo htgnel n is detoned yb .”A ehT noitacilppa + : *A + AZ denifed yb )w(e = ( JwI,),~A is a dionom msihprom fo *A otni eht evitidda erutcurts fo .AZ )w(/tI is said ot eb eht hkiraP vector fo eht drow w. ehT lenrek ecneurgnoc fo $ is detoned yb N and is said ot eb eht commutative equivalence no .*A roF yna u E AZ ew etoned yb )u(e eht sum fo eht stnenopmoc fo u and yb llul/ its naedilcuE .mron krameR that ))w($(‘!c = ,IW/ rof yna w ,*AE and )*A($ = {u E AZ 1 .}O>u roF yna w, ’w E ,*A ew tes ,w(d )’w = )’W&III - .ll)w(+ ehT noitcnuf A is a -oduesp scirtem no *A and eno has ,w(A )’w = 0 fi and ylno fi w N .’w An nailebA square is yna ytpme-non drow fo eht mrof ’w htiw r-r’. A drow is said ot eb nailebA square-free fi enon fo its srotcaf is an nailebA .erauqs eW shall etoned ylevitcepser yb )A(Y and )A(9 the tes fo eht nailebA squares and fo eht nailebA eerf-erauqs sdrow no eht tebahpla .A teL ,A B eb owt etinif .stebahpla A substitution a : *A +- *B is yna dionom -rom phism fo *A otni eht subset dionom fo B *. Its domain is eht tes )a(mad = w{ E *A I )w(a # .)0 ehT noitutitsbus a is #finite fi )A(a is a etinh subset fo .*B eW shall netfo yfitnedi a dionom msihprom h : *A +- ,*B htiw eht etinif noitutitsbus ’h denifed yb )w(’h = ,})w(h{ w E .*A eW kramer that, rof yna noitutitsbus a : *A + ,*B fi U, ’U E *A and u N ,’u neht ereht is a eno-ot-eno ecnednopserroc gnitaicossa yna drow fo )u(a htiw a ylevitatummoc tnelaviuqe drow fo .)’u(a A noitutitsbus a: *A +- *B is said ot eb commutatively injective fi ,*A&u( v E ,)u(a ’v E ,)’u(a v N )’v -+ u N ,’u .e.i fi sdrow hcihw era ton ylevitatummoc tnelaviuqe era deppam otni sdrow hcihw era ton ylevitatummoc .tnelaviuqe eW kramer that ti is ylevitceffe elbadiced rehtehw a etinif noitutitsbus a : *A )-- *B is ylevitatummoc .evitcejni ,deednI eht stnemele fo ))u(a(@ )*AEu( era eht sums CaEA ,ee,axnaCGCit,eC htiw e,aX 2 0 dna I&$(++) e,ux = .&.zJ enO sevired that a is ylevitatummoc evitcejni fi and ylno fi eht snoitulos fo eht raenil metsys CaEA ee,ax))o(a(,itEeC = AEoC ))aCaCIJEeC e+ay ni( eht gnirimes fo evitagen-non )sregetni era osla snoitulos fo eht raenil metsys {C eE$(a(a))Xa~e -- c ecti(c(a)) ,,,,y a E ,}A ,ro ,yltnelaviuqe fi and ylno fi eht -omoh suoeneg raenil metsys ylraenil sdneped no eht suoenegomoh raenil metsys C C .O=e,,,z &A e@(a(a)) A. Carpil Theoretical Computer Science 218 (1999) 61-81 65 htiW yna ylevitatummoc evitcejni noitutitsbus :JC A* --t B*, eno nac etaicossa a raenil noitacilppa d : (t&o(A))) + ZA, gnikam the gniwollof margaid :evitatummoc 4-f--- ‘ZA W(4A)N hcuS a raenil noitacilppa si denifed yb A&(:6 ))a(o(it& )e+. = ))+(+&( .A&,& ehT noitinifed si ,tnetsisnoc ni weiv of the suoiverp .skramer nI order ot yfilpmis ,noitaton we llahs kool at ?c as a yllaitrap denifed noitcnuf of .BZ A noitutitsbus rs : A* ---)B * si dias ot eb commutatively functional fi )rc(mod = A* .’vNvsaheno,)a(aE’v,v,AEallarof,dna ,ylraelC fi o si ylevitatummoc ,lanoitcnuf ,neht for lla w E A*, the words of a(w) are ylevitatummoc .tnelaviuqe Now, we ecudortni the niam stcejbo of siht paper. roF yna noitutitsbus CJ : A* -+ B*, the set Y(o) = Y(B) n )))A(F(o(tcaF si the set of the Abelian squares of rr. nI other ,smret Y(a) sniatnoc the nailebA serauqs gnirrucco ni the segami of nailebA -erauqs free words. A noitutitsbus a : A* + B* si dias ot eb htiw bounded Abelian squares fi )A(a $ ,}a{ dna Y(a) si a etinif set. ,fI ,revoerom Y(a) si ,ytpme neht a si na Abelian square-free .noitutitsbus fo nailebA square-free sdrow 3. Structure nI siht ,noitces we llahs tibihxe emos nailebA eerf-erauqs words htiw emos lufesu .seitreporp llA hguorht siht ,noitces sselnu yltnereffid stated, A lliw etoned the rettel-4 tebahpla }3,2,1,0{ dna h:A* -+A* the msihprom of ,nenareK denifed yb -3101202321201213121013010201031323023212320210=)0(h 010203212320231210212320232132303132120, )l(h = ,))O(@c h(2) = cp(h( 1 ))> h(3) = ,))2(@V where ’-‘ setoned the noitanetacnoc of words dna cp si the ’ralucric‘ msihpromotua decudni yb )0(~ = 1, cp( 1) = 2, (p(2) = 3, (p(3) = 0. ehT msihprom h si nailebA eerf-erauqs [7]. ,revoeroM ti si ylevitatummoc ,evitcejni dna therefore we nac redisnoc the raenil noitcnuf i : (t&h(A))) -+ ZA hcus that h$i = .+ 66 A. Carpil Theoretical Computer Science 218 (1999) 6141 Our tsrif laog si ot evorp that, yb yldetaeper gniylppa the msihprom of nenareK ot na nailebA eerf-erauqs word, eno sniatbo a word where gnol evitucesnoc factors are yrev far, morf each other, htiw respect ot the scirtem-oduesp A (cf. noitisoporP 1). ehT proof si rather lacinhcet dna seriuqer lareves steps. krameR that ,‘-mu=)u& where m .~~b,~)bl)~(hI(= ehT xirtam m si nevig yb 19 21 27 18 18 19 21 27 21 27 18 19 enO ylisae checks that mmT =491+ +U4971 12V, where dna T setoned xirtam .noitisopsnart ,yltneuqesnoC for lla u E ,)i(mad eno has 114=1 IlRu)mll = d (b>m>(Ru)m)T d T))u(ii()u(li94 + T))u(X(U)u(L4971 + T))u(L(V)u(L21 2 7llku)ll (1) for ,U V are detaicossa htiw evitisop denifed-imes citardauq .smrof ,revoeroM ecnis the mus of the stnemele of yna row of m si 85, eno has )u(d = )m)u&Q = .))u(&Q58 (2) Now redisnoc the set AY 3A= x AZ = ({ I ao,%az,u) ao,a1,a2 E4 UC @A). nI hcus a set, we nac ecudortni the noitaler R denifed as :swollof eno has (~o,~~,~z,u)R(~o,~t,~z,u’) (ai, bi E A, i = 0, 1,2, ,u U’ E ZA) fi there tsixe iX E *A hcus that juix E Pref ,))ib(h( i = 0, 1,2, (3) ’u = u(h - 4+0x2) + 2$(x1)). (4) tI dluohs eb raelc that, for yna tnemele a E ,AZ there are yletinif ynam 3/ E ~9 hcus that c&B, dna yeht are ylevitceffe .elbatupmoc A. Carpil Theoretical Computer Science 218 (1999) 61-81 16 ehT tseretni ni the noitaler R si detavitom yb the gniwollof lacinhcet .ammel Lemma 1 ipraC( [3]). fI eno has ,*AEv+,~s.,i~ AE2a,1a,oa dna 2a2sis E ,))w(h(tcaF a0 E ,)zrzsis(ferP la E Pref(szaz), then there exist r-1,r z E A*, bo, bl, b2 E A such that qr2b2 E ,)w(tcaF 22~2~.1~ E ,))zbzrir(h(tcaF bo E ,)zbqir(ferP bl E ,)zbq(ferP (~O~QWG~ $(a) - $f(sl )YWo,h,h VW) - WI 1). fI ~)u,2a,ia,sa(=a )~9 neht we etirw lllc]l dna &(a) daetsni of 11~11 dna ,)u(’L .ylevitcepser ,revoeroM we set Lemma 2. Suppose a, /? E YA, c&/3. l Zf lQcr)l< 1 then one has [e(B)1 d 1 and either llclll> llbll or llclll< m/6. l Zf l~‘(a)l<2 then one has le(fi)I ~2 and either ll~ll> llfill or llclil< a. Finally, if It(a)I >2 then one has lQP)I < le(cl)l. Proof. Set =1c ,ia,oa( a2, u), B = (bo,bl, b2, u’), (ai, bi E A, i = 0, 1,2, U,U’ E ZA). ,nehT there are ix E A* gniyfsitas (3) dna (4). nI weiv of (2), eno has 1 l4~)l - 2 + 2 IW = -8V5( a) - lxox2+l lllX12 < 85 (5) ecnis Jix\] - IxoII<84 dna llxl] - .48Gl)2x] ,tsriF we redisnoc the case where QI or)] d 1. nI weiv of (5), eno has \)P(tI < 1 dna Ixox2I - 21x11 .)58dom()rc(/= yB ,)l( lblI2 lb - )2xoW + lwa III - M~711811 -M, where M= xam II - .II)hW IcI(xox2) + xiEPref(h(A)), i=O, 2,I &xl 1x12-I 1 =!(a) (mod 85) eW edulcnoc that rehtie 1]3/]]>]1~]1 or ]]lc]] ]]?/]17> - (]a117>M - M, dna therefore, /la/l <M/6. yB enihcam ,noitatupmoc eno gets i = .6//m ehT case where (tI < 2 nac eb treated .ylralimis ,yllaniF fi (/(a)1 ,2> neht yb (5) eno gets ]e(cc)] > .I)?/(// 0 Lemma 3. For any CIE _!$‘Ath ere exists an integer n 20 such that whenever one has a = RlaRoa . . . Ra, (6) (ai E ?&, 0 <i <n) there exists an index j, 0 <j <n such that aj E 3’;. 68 .A CarpilTheoretical Computer Science 218 (1999) 61-81 .foorP ,tsriF ew yfirev eht tnemetats ni eht esac that 1)a(/l d 1. yB enihcam -atupmoc noit eno nac yfirev that eht tnemetats is eurt nehw llall< .6/m suhT ew esoppus II :0 II > 6/m and deecorp yb noitcudni no II 1c .II erehT era yletinif ynam 3/ E 9A hcus that .?/Rrc roF hcae eno fo ,meht eno has llall> llifll yb ammeL 2, and ,erofereht rof eht ekas fo ,noitcudni ew nac esoppus that ereht stsixe an regetni nb > 1 hcus that fi eno has b = alRa2R.. . Rcl,, (ai E L&, 1 <idn) neht aj E ’9 rof a elbatius ,j 1 <j<<nb. ,woN ti is raelc that fi n is eht lamixam ng and )6( is ,deifirev neht aj E ;9 rof a elbatius ,j 1 <j ,< n. nI eht esac that 1)a({l = 2, eno nac deecorp ni a ralimis .yaw ,yllaniF ni eht lareneg ,esac eno nac eveihca eht foorp yb making noitcudni no l4~)l. 0 ,woN ew era ydaer ot evorp eht decnuonna tluser gninrecnoc eht ecnatsid fo -noc evituces ,srotcaf htiw tcepser ot eht scirtem-oduesp ni sdrow deniatbo yb detareti A, noitacilppa fo eht msihprom fo .neniireK noitisoporP 1. For all integer n >O, there exists an integer k such that if one has r,r’ EA*, rr’ E ,)))A(9(kh(tcaF lrr’l>2 - 85k, then A(r, r’)>n. roF yna shall etoned yb ,,Z eht laminim gniyfsitas eht suoiverp .tnemetats n > 0, we k .foorP yB ammeL 3, ereht stsixe hcus that rof all lt E 9~ htiw lla[[ fi k>O <n, neht ’TEja rof emos ,j a=aoRalR...Ruk, O,<j<k. yB ,noitcidartnoc esoppus ,)))A(9(kh(tcaF I’rrI >2. 85k, r, r’ E A*, rr’ E A(r, r’) <n. teS q0 = 6 r’ = ,0,2a0,2r az,oEA fi ,s#’r r = q0U2,0, r2,0 = r’, az,oEA fi r’=E, and etoned yb tsrif rettel fo and .ylevitcepser yB ao,o,al,o the rl,orz,oaz,o rz,oaz,o, detareti noitacilppa fo ammeL 3, ew nac dnif 1( <i rl,i, rz,i E A*, ao,i, Ul,i, a2,i E A < k) hcus that (ao,i--l,ul,i--l,uz,i-l,Il/(r2,~-1) - ~(rl,i--1))R(uo,~,ul,~,u2,i,~(r2,i) - W+l,i)), i,oa E ,)i,aai,2riqWF iq E ,)i,2ai,zr(ferP i,2ai,2ri,ir E ,)))A(P(‘-kh(tcaF ’rr E ,))i,zai,2ri,ir(’h(tcaF rof 1 <i ecniS eno has ,j,oa( ,Z,ia ,j,za ))Z,ir($-)j,2r($ Gk. A(rl,o, qo) G A(r, r’)+ 1 Gn, E ;9 rof a elbatius ,j 0 <j that is, )j,zr(/lI - )j,ir(+ = - )j,za($& + )j,ia($i62 - <k, rof emos ,i6,06 82 E ,ro ,yltnelaviuqe bO+(UO,j) (0, 1) rl,jUl,j261 N ~2,jU0,jsaU2,j62. fI ,&<lj,irI neht eno has j,ir ,e= 60 = 1, Ij,zrI =26i - 60 - 82 < 1 and erofereht IZ,2aj,2rj,lrI ;2G fi Jj,zrI < 61, ht ne eno has j,2r = ,E 61 = 1, Ij,irI =60 + 82 - 261 <O and ,erofereht again, ,yllanA fi and Ij,zrI > 61 neht eno has Irl,jr2,ja2,jI ~2; Irl,jI > 60 A. Carpil Theoretical Computer Science 218 (1999) 6131 69 j,lr =Uo,j6'S, Q,j=Ul,j ,’SI‘ for elbatius ’S,S ,*AE ”j,taS N ai,j l--61ya2 .62 rl,jr2,ja2,j = yb the nailebA sseneer&rauqs of siht Q,jsoSUl,j6'Ul,j 1-61S'U2,j62U2,j l-*2 ~ao,~*Oa2,~ 1-g2, word, dna therefore, ,niaga Ij,zaj,2rj,tr] .2< sihT sdleiy a ,noitcidartnoc ecnis rr’ E tcaF ))j,zaj,2rj,tr(it( dna jrr’l<2.85j. q ehT stnemele of the set K = U,“=, ))0(kh(tcaF are the factors of Kertinen sequence. yB noitisoporP 1, eno sevired yletaidemmi the gniwollof ,yralloroc hcihw sevlos a noitseuq desiar ni [2]. Corollary 1. One has mil nim d(r,r’) = +oo. n++a ”AC/r IY’EK ehT gniwollof noitisoporp sedivorp lufesu noitamrofni no the erutcurts of the words of h2(S(A)). Proposition 2 ipraC( [3]). neuiG a, b E A, there exist 5, q E A* such that h2(b) = <au and, for all u, u E A* such that ubu E F(A), one has h2(u)&h2(u) E @(A). ylhguoR ,gnikaeps noitisoporP 2 serusne that fi w E h2(F(A)) dna aEA, neht we nac eteled eno ecnerrucco of the rettel a ni w gnivreserp sti nailebA .sseneerf-erauqs revoeroM hcus a noiteled nac eb operated ni yna dexiferp tnemges of w gnignoleb ot h2(A). sihT tluser si yrev lufrewop fi denibmoc htiw noitisoporP 1, hcihw serusne that fi w E hk(F(A)) htiw a egral k, neht nailebA sseneerf-erauqs si devreserp yb lareves snoiteled of ,srettel yrev far eno morf ,rehtona dedivorp each ,noiteled ,enola sevreserp nailebA .sseneerf-erauqs nI the leuqes of siht ,noitces we llahs esu siht euqinhcet ot ecudorp suoirav nailebA eerf-erauqs words htiw emos gnitseretni .seitreporp Before, we deen a lacinhcet .ammel Lemma 4. Ifcp:A*+A* s1’ an Abelian square-free morphism, then no proper factor of the word )210210(~( si an Abelian square. Proof. yB ,noitcidartnoc esoppus ,q‘-7&=)210210(q r N r’#e, 5126, <,r,r’,vEA*. nehT eno has ,j)O(~]c]51 [t7)<\(p(2)1, esiwrehto the nailebA erauqs rr’ dluow rucco ni 4412012) or .)10210(~( < dna q are, ,ylevitcepser a xiferp of q(O) dna a xhtus of (p(2). ,suhT )210(~ = ,lr@ for emos u E A*, dna =’m .k&u enO has Irl = jr’1 = ju~@l/2 > 14 ,dna therefore, r = us, r’ =s’u, qf = ss’, for emos s,s’ E A*. ,revoeroM s N s’ ecnis these words are deniatbo yb gniteled u ni the ylevitatummoc 70 .A Carpil Theoretical Computer Science 218 (1999) 61-81 tnelaviuqe words r dna r’. sihT sdleiy a ,noitcidartnoc ecnis ss’ = lr si a factor of 4420). 1 roF yna tebahpla A we enifed the stesbus ~cd(tF ), (zF )~9 of ~9 as .swollof enO has )u,2a,ra,oa( )AY_(~~E fi there tsixe ZU,~U *AE hcus that u = $(aow > - 44UlU2), ~OW~l~2~2 E F(A) (7) dna )u,2a,la,oa( E )~~(zF fi there tsixe yletinifni ynam sriap )ZU,IU( *AE x *A hcus that (7) si .deifirev ,ylsuoivbO &(_f&) L .)~Y(t9 Lemma 5. teL XL = )u,za,la,oa( E &_ - .)~9(39 Then there exist arbitrarily large n such taht one can factorize )O(”h = &~a& =)2(”h &~a,& =)02(”h <lalri, htiw ,*AE:<,i< ,2,1,O=i and 114K5:50~0) - 653. ~(r;b) - u/I .foorP Let ,OU 1u eb the shortest sexiferp of )0(h hcihw do ton niatnoc ao, ,la -cepser ,ylevit dna the shortest of )2(h hcihw do ton niatnoc a2. nehT xif ,ib cj E A ~2 suffix (1 ,p<i< 1 ,)q<j< hcus that lb($ 2b . ..bp)-$(c~c2...cq)=u++(~+1C/(~~v2a2). yB noitisoporP 2, for a yltneiciffus egral ,n eno nac ezirotcaf )l(”h = ..2t2b,tlbot . ptpb =soclslc2s2. qsqc.. htiw ti,Sj E ,*A ,litI 2/> * q+pI58 dna IS~I ,jSr-jS ,itl-it ,os)O(”h ,)2(”hps,ot)O(”h )2(”hqt E .)A(P (8) Set s=s@q ***sq, t = 1tot . . . ,,t h”(O) = UO~OVO= ulalrl, h”(2) = ~2~2~2, 1~ = vlosh’V)vl, ~2 = mtr2. enO has ICl(aoul) - ti(~u2) = Il/(aorosh”G’h > - $(almtvlz) = @4a2u2> - Il/(f~o) =u dna )2(”ht)02(”hs)O(”h = uoaoyosh”(2)u~a~~~t~~a~02 = vouou~a~u2a2v2. enO tonnac evah )2(”ht)02(”hs)O(”h E ,)A(P for ylirartibra egral ,n ,esiwrehto yb the suoiverp ,noitauqe eno dluow evired cx = )u,2a,ta,oa( E .)~9455 ,suhT we esoppus
Description: