ebook img

On a move reducing the genus of a knot diagram PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On a move reducing the genus of a knot diagram

ON A MOVE REDUCING THE GENUS OF A KNOT DIAGRAM KENJIDAIKOKU,KEIICHISAKAI,ANDMASAMICHITAKASE Abstract. For a knot diagram we introduce an operation which does not increase the genusofthediagramanddoesnotchangeitsrepresentingknottype. Wealsodescribea conditionforthisoperationtocertainlydecreasethegenus.Theproofinvolvesthestudyof 2 arelationbetweenthegenusofavirtualknotdiagramandthegenusofaknotoiddiagram, 1 theformerofwhichhasbeenintroducedbyStoimenow,TchernovandVdovina,andthe 0 latterbyTuraevrecently.OuroperationhasasimpleinterpretationintermsofGausscodes 2 andhencecaneasilybecomputer-implemented. n a J 4 1. Introduction 2 Seifert[3]gaveanalgorithmtoconstructfromadiagram DofaknotK anorientable ] T surface bounded by the knot (see Definition 2.1). We call the surface constructed by G Seifert’s algorithm the canonical Seifert surface for D and its genus the genus g(D) of D. Thecanonicalgenusg (K)ofaknotK isdefinedtobetheminimalgenusofallpos- . c h siblediagrams. Itisanimportantknotinvariantandextensivelystudied(seeforexample t a [4]). By definition the canonical genus of a knot K gives an upper bound for the genus m g(K)ofK,thatistheminimumofgeneraofallpossibleSeifertsurfacesforK. [ In thispaper, we introducean operation,called the bridge-replacingmove, fora knot diagramwhichdoesnotchangeitsrepresentingknottypeanddoesnotincreasethegenus 2 ofthediagram(seeDefinition3.9andTheorem3.11).Anecessaryandsufficientcondition v fortheoperationtoactuallydecreasethegenusofthediagramisgiveninProposition3.14. 5 1 OurmoveisderivedfromTuraev’sideausingthenotionknotoid[6].Aknotoiddiagram 2 D◦ is a diagram which differs from usual knot diagrams in that the underlying curve is 3 an immersed interval rather than an immersed circle (see Definition 2.15). Turaev has . 1 constructed in [6, §2.5] the canonical surface for a given knotoid diagram by using an 1 analogousprocedureto the usualSeifertalgorithm(see Definition 2.16). The genusofa 1 knotoiddiagramisdefinedtobethegenusofitscanonicalsurface.In[6,§2.5]ithasbeen 1 suggestedthatthestudyofknotoiddiagramscanbeusedtoobtainagoodestimateforthe : v genusofaknot.For,ifwehaveadiagramDofanon-alternatingknotK whichcontainsa i X consecutivesequence Bofk over-orunder-crossingsegments(k ≥ 2),thenbyremoving B from D we can obtain the knotoid D◦ with genus g(D◦) ≥ g(K). In this context, we r B B a willproveinProposition3.5thattheinequalityg(D)≥g(D◦)alwaysholds,whichhasnot B been explicitly provenin [6, §2.5]. Moreover,the bridge-replacingmovefor (D,B)(see Definition3.9)provestoproducetheknotdiagramD˜ withthepropertyg(D˜ ) = g(D◦). B B B Thisimpliesg(D)≥ g(D˜ ),thatis,thebridge-replacingmoveisindeedusefultoobtaina B betterestimateforg (K)thantheonegivenbytheinitialdiagramD. c Fortheproof,wewillstudyin§3arelationbetweenthecanonicalsurfaceassociatedto aknotoiddiagramandthesurfaceassociatedtoacertainvirtualknotdiagram,whichhas beenintroducedbyStoimenow,TchernovandVdovina[5]throughGaussdiagrams. In§4,wediscussanexamplewhichsuggeststhatthebridge-replacingmoveisactually usefulforthedeterminationofthegenusofaknot. 2000MathematicsSubjectClassification. 57M25;68R15. Keywordsandphrases. knot,canonicalgenus,bridge-replacingmove,knotoid,virtualknot,Gaussdiagram, Gausscode. 1 2 KENJIDAIKOKU,KEIICHISAKAI,ANDMASAMICHITAKASE Figure1. Smoothingofthecrossings Figure2. Half-twistedbandsum 2. Preliminaries 2.1. Knots. Herewerecallsomewell-knownnotionsconcerningclassicalknotsinR3. ASeifertsurfaceforaknotKisaconnected,orientedsurfaceΣembeddedinR3whose boundary∂ΣcoincideswiththeknotK.RecallSeifert’salgorithmwhichproducesaSeifert surfaceΣ foraknotKfromagivendiagramD= D ofK: D K Definition2.1(Seifert’salgorithm[3]). GivenadiagramD= D ofaknotK,thecanon- K icalSeifertsurfaceΣ forK isthesurfaceobtainedinthefollowingway. D (i) DrawDinR2×{0}andorientDinanarbitraryway. (ii) Smoothallthecrossingsof DasinFigure1toobtainadisjointunionofembedded circlesintheplane(calledSeifertcircles). (iii) FilltheSeifertcircleswiththedisjointdisksinR3. (iv) Takethehalf-twistedbandsumsalongtheoriginalcrossings(Figure2)ofD. Thefollowingisobvious. Lemma2.2. GivenaknotdiagramD = D withncrossings,thegenusofthecanonical K SeifertsurfaceΣ ofDisgivenbytheformula D n−s +1 (1) g(Σ )= D , D 2 where s isthenumberoftheSeifertcirclesobtainedinthestep(ii)inDefinition2.1. D AccordingtoStoimenow,TchernovandVdovina[5],fortheGaussdiagramofaknot diagramDwecanconstructasurface,whichturnsouttobehomeomorphictothecanoni- calSeifertsurfaceΣ ,asexplainedbelow. D Definition 2.3. A Gauss diagram is an orientedcircle equippedwith some numbern of signed,orientedchordseachofwhichconnectsdistincttwopointsonthecircle(allthe2n pointsaredistinctwitheachother). ToeachknotdiagramD = D withncrossings,wecanassigntheGaussdiagramG K D withnchordsasfollows: (i) ConnectthepreimagesofeachcrossingofDbyachord. (ii) Choosetheorientationofeachchordfromtheoverpassbranchtotheunderpassone. (iii) Givetoeachchordthesign+or−dependingonwhetherthecorrespondingcrossing ispositive(theleftcrossinginFigure1)ornegative,respectively. Example2.4. Figure3showsaknotdiagram D ofthetrefoilknot3 anditsGaussdia- 1 gram.Theendpoint¯iofGcorrespondstotheover-arcofthecrossingiofD. Definition2.5. LetG beaGaussdiagram. ThecanonicalsurfaceΣ ofG isthesurface G (withexactlyoneboundarycomponent)obtainedinthefollowingway. (i) ConsideranannulusA=S1×[0,1]. (ii) TakeabandB =[0,1]×[0,1]foreachchordcofG. c ONAMOVEREDUCINGTHEGENUSOFAKNOTDIAGRAM 3 1 (cid:22)3 2 (cid:0) 2 1 (cid:0) (cid:22)1 3 (cid:0) (cid:22)2 3 Figure3. AknotdiagramDof3 anditsGaussdiagramG 1 Figure4. Σ′ fortheGaussdiagramGofFigure3 G (iii) Foreachchordcandǫ ∈ {0,1},glue{ǫ}×[0,1] ⊂ B to[x −δ,x +δ]×{0} ⊂ ∂A c ǫ ǫ (where x ,x ∈ S1 = R/Z are the endpointsof c, and δ > 0 is a sufficiently small 0 1 number)sothatΣ′ := A∪(cid:0)S B (cid:1)isoriented. G c c (iv) GluealltheboundarycomponentsofΣ′ butS1×{1} ⊂ ∂Awithdiskstoobtainan G orientedsurfaceΣ withoneboundarycomponent. G Example 2.6. Figure 4 shows Σ′ for the Gauss diagramG of Figure 3. Attaching two G disks along the boundary components of Σ′ other than S1 × {1} (the outermost circle), G weobtainthecanonicalsurfaceΣ ofG,whichishomeomorphictothecanonicalSeifert G surfaceofDshowninFigure3(asproveninProposition2.8). Remark2.7. ThecanonicalsurfaceforaGaussdiagramconstructedbyStoimenow,Tch- ernovandVdovinain[5]isaclosedsurface. Removingadisk(attachedalongS1×{1}) fromtheirsurface,weobtainthesurfacedefinedinDefinition2.5. Proposition2.8([5, Theorem2.5]). Foraknotdiagram D,thesurfacesΣ andΣ are D GD homeomorphictoeachother. Fortheproof,weintroducethenotionofacycleinaGaussdiagramwhichcorresponds toaSeifertcircleinSeifert’salgorithm. Definition2.9. LetGbeaGaussdiagram.AcycleinGisthecycleobtainedbyrepeating thefollowingsteps: startingfromsomeendpointxofachordc, (i) gototheotherendpointofcalongc, (ii) gotothenextendpointyalongthecirclewithrespecttoitsorientation, (iii) fromy,repeat(i)and(ii)aboveuntilcomingbackto xinthestep(ii). We will denote a cycle as a cyclic sequence {i ,i ,...,i } of endpointswhich appear in 1 2 2k theabovesteps(i)and(ii). Example 2.10. The Gauss diagram G of Figure 3 has two cycles {1¯,1,2¯,2,3¯,3} and {1,1¯,2,2¯,3,3¯}. Lemma2.11. GivenaGaussdiagramGwithnchords,thegenusofthecanonicalsurface Σ ofGisgivenbytheformula G n−s +1 (2) g(Σ )= G , G 2 where s isthenumberofthecyclesinG. G 4 KENJIDAIKOKU,KEIICHISAKAI,ANDMASAMICHITAKASE Proof. This formula is a consequence of the following facts: a cycle corresponds to a boundarycomponentofΣ′ towhichwegluetheboundaryofadiskinthefinalstep(iv)in G Definition2.5. Thusthenumberofdisksweglueinthestep(iv)inDefinition2.5isequal tothenumberofcyclesinG. (cid:3) ProofofProposition2.8. Itiseasytoobservethat • thenumberofthecrossingsofDandthatofthechordsinG arethesame, D • s = s (underthenotationsinLemmas2.2,2.11). D GD Thesefactsandformulas(1),(2)implythatthegenusofΣ isequaltothatofΣ . This D GD completestheproof,sincebothΣ andΣ haveexactlyoneboundarycomponent. (cid:3) D GD Remark2.12. Theformula(1)suggeststhat,toconstructaknotdiagramofsmallergenus fromagivenknotdiagram,weneedanoperationwhichdecreasesthenumberofthecross- ingsorincreasesthenumberofSeifertcircles. Theformula(2)givesasimilarsuggestion forGaussdiagrams. 2.2. VirtualknotsandtheGaussdiagrams. Definition2.13. AvirtualknotdiagramisagenericimmersionS1 #R2withonlytrans- verse doublepointsas its singularities, some of which are endowedwith over-or under- crossingdatabutothersarenot(see Figure6). A crossingendowedwithover-orunder- crossinginformationiscalledarealcrossing,andonewithoutsuchinformationiscalled avirtualcrossing. Seifert’salgorithmcannotbe appliedto a virtualknotdiagramasit is. Butthe Gauss diagramG ofavirtualknotdiagramD•canstillbedefinedinthesamewayasexplained D• afterDefinition2.3,exceptthatnochordsareassignedtovirtualcrossings(see[5,§2.1]). ThereforeinviewofProposition2.8,thefollowingdefinitionwouldbenatural. Definition2.14([5]). LetD• beavirtualknotdiagram. ThecanonicalsurfaceΣ ofD• D• is defined to be the canonicalsurface Σ of the Gauss diagramG of D•. The genus GD• D• g(D•)ofD• isdefinedtobethegenusofthecanonicalsurfaceΣ ofD•. D• 2.3. Turaev’sKnotoids. Definition2.15([6]). A knotoiddiagramis a genericimmersion f : [0,1] # R2 which hasonlytransversedoublepoints(endowedwithover-orunder-crossingdata)asitssin- gularities. Theendpoints f(0)and f(1)arecalledrespectivelythelegandtheheadofthe knotoiddiagram. SeethecentraldiagraminFigure6foranexampleofaknotoiddiagram.Inthediagram, PisthelegandQisthehead. In[6]asurfaceisproducedfromaknotoiddiagramD◦,in ananalogouswaytoSeifertalgorithmforknotdiagrams. Definition2.16([6]). Thecanonicalsurface Σ ofa knotoiddiagram D◦ is the surface D◦ obtainedasfollows.First,drawD◦ inR2×{0}⊂R3. Then: (i) OrientD◦ inanarbitraryway. (ii) SmoothallthecrossingsofD◦ asinFigure1toobtainadisjointunionofembedded circlesintheplane(alsocalledSeifertcircles)andanembeddedinterval(denotedby J). WecallJ theSeifertinterval. Jhasthesameendpointsx,yasD◦. (iii) Fill the Seifertcircleswith the disjointdiskslyingaboveR2 ×{0}, andtake a band J×[0,1]lyingbelowR2×{0}andmeetingR2×{0}alongJ×{0}≈ J. (iv) Take thehalf-twistedbandsumsalongtheoriginalcrossings(Figure2)of D◦. The resultingsurfaceΣ isthecanonicalsurfaceofD◦. D◦ TheboundaryofΣ istheunionofD◦with J×{1}∪{x,y}×[0,1]. D◦ Definition2.17. The genusg(D◦) of a knotoiddiagram D◦ isdefinedto be the genusof thecanonicalsurfaceΣ ofD◦. D◦ ONAMOVEREDUCINGTHEGENUSOFAKNOTDIAGRAM 5 3. Thebridge-replacingmove Themainoperationofthispaper,thebridge-replacingmove,isintroducedinthissec- tion. It is clear by definition that this operation does not change the representing knot types. TheobservationgiveninRemark2.12isakeyinprovingthatthisoperationdoes notincrease,andsometimescertainlydecreases,thegenusofaknotdiagram. Definition3.1. Anover-bridge(resp.under-bridge)oflengthk ofaknotdiagramDisa consecutivesequence B ofk over-crossing(resp.under-crossing)segmentsof D (see the leftmostdiagraminFigure6). Notation3.2. LetDbeadiagramofaknotKandBbeanover-orunder-bridgeofD. We denoteby D◦ the knotoiddiagramobtainedbyremoving(theinteriorof) Bfrom D. We B denotebyD• thevirtualknotdiagramobtainedfromDbyturningeachcrossingalong B B intoavirtualcrossing.SeeFigure6. Proposition3.3. UnderNotation3.2,wehave g(D◦)=g(D•). B B Proof. Ifwedenotebyδthenumberofdisksthatweregluedinthefinalstep(thestep(iv) inDefinition2.5)oftheconstructionofΣD• andbyγ thenumberofchordsintheGauss diagramGD•B, thentheEulercharacteristicχB(ΣD•B)of D•B isequalto δ−γ. We easily see thatδ equalsthe numberof Seifertcircles in Turaev’sconstructionof the Seifertsurface ΣEDu◦BlearncdhathraacttγereiqstuicalassthΣeDn•uamndbehreonfcecriosshsoinmgesoomfDor◦Bp.hTichtuosΣitDi•s.clearthatΣD◦B hasthesam(cid:3)e B B Remark 3.4. Given a knotoid diagram D◦, we can construct a virtual knot diagram by connectingthetwoendpointsofD◦ withanarbitrarypathalongwhichonlyvirtualcross- ings occur; then it is a natural idea to define the Gauss diagram of D◦ to be the Gauss diagramofsuchavirtualknotdiagram. AccordingtoProposition3.3,itturnsoutthatwe can alternativelydefinethe genusof a knotoiddiagram(Definition2.17)to be the genus ofitsGaussdiagram(justasStoimenow,TchernovandVdovina[5]definethegenusofa virtualknotdiagram). Proposition3.5. UnderNotation3.2,wehave g(D)≥g(D◦). B Proof. ByProposition3.3,itsufficestocomparethegeneraoftheGaussdiagramsG and D ofGD•. NotethatGD• isobtainedbyremovingfromGD thechordscorrespondingtothe B B crossingsalongB.InLemma3.6,wewillprovethatthegenusofanyGaussdiagramdoes notincreaseafteraremovalofachord.Thisimpliestheresult. (cid:3) Lemma 3.6. Let G be any Gauss diagram and G′ be the Gauss diagram obtained by removingfromGachordc. Thenwehaveg(G)≥g(G′). Inmoredetail,ifcappearstwiceinasinglecycleofG (asCase(i)inFigure5),then wehaveg(G)=g(G′)+1andhenceg(G)>g(G′). Otherwisewehaveg(G)=g(G′). Proof. InordertocomparethegeneraofGandofG′,weneedonlytoknowthechangeof thenumbersoftheirchordsandcyclesinconstructingG′fromGbyremovingthechordc (seetheformula(2)inLemma2.11andRemark2.12). Inthecasewherecappearstwiceinasinglecycle(sayα)ofG,thisαisoftheform α={w ,a,b,w ,b,a} 1 2 fora,b ∈ ∂c and some wordsw , w in the endpoints. Let f(w) (resp.l(w)) be the first 1 2 i i (resp. last) endpointcontained in w. Then the points a, b, f(w) and l(w) (i = 1,2) are i i i locatedonthecircleasCase(i)inFigure5. Afterthechordcisremoved(thenthepoints aandbarealsoremoved),thecycleαsplitsintotwocycles{w }and{w },because f(w ) 1 2 1 6 KENJIDAIKOKU,KEIICHISAKAI,ANDMASAMICHITAKASE (cid:3)(cid:3) (cid:3) (cid:3) (cid:3) l(w1)(cid:15) (cid:15)f(w2) l(w3)(cid:15) (cid:15)f(w3) (cid:11) (cid:12) a(cid:15) (cid:15)b a(cid:15) (cid:15)b (cid:11) (cid:13) f(w1)(cid:15) (cid:15)l(w2) f(w4)(cid:15) (cid:15)l(w4) (cid:3)(cid:3) (cid:3) (cid:3)(cid:3) (cid:3)(cid:3) Case (i) Case (ii) Figure 5. Thethickenedcurvesare the partsof thecircle ofthe Gauss diagramG. (resp. f(w ))appearsjustafterl(w )(resp.l(w )). Thusthenumberofcyclesincreasesby 2 1 2 one. Since the number of chords decreases by one after c is removed, we have g(G) = g(G′)+1bytheformula(2). Nextconsiderthecasewheresuchacycleasabovedoesnotexist.Thenthereareexactly twocycles(sayβ = {w ,a,b}andγ = {w ,b,a})ineachofwhichcappearsexactlyonce. 3 4 ThenβandγarelocatedasCase(ii)inFigure5. Thusaftertheremovalofc,thecycleβ isunifiedwithγbyaband-sumalongc,andtheresultisasinglecycle{w ,w }. Thusthe 3 4 numberofcyclesdecreasesbyone.Thustheformula(2)impliesthatg(G)=g(G′). (cid:3) Remark3.7. In[6,§1],itreadsthat“Thestudyofknotoiddiagramsleadstoanelementary butpossiblyusefulimprovementofthestandardSeifertestimatefromaboveforthegenus ofknot.” However,ithasnotbeenrigorouslyprovenin[6]thataknotoiddiagramalways gives an estimate not worse than “the usual Seifert estimate” with respect to the genus. Propositions3.5and3.3,whichdeducetheinequalityg(D)≥g(D◦),implementit. Notice B thatintroducingthenotionoftheGaussdiagramofaknotoidhasbeenthemainkeyinthe proof(seeRemark3.4). Remark3.8. Wedonotneedtoconsidertheremovalofany“sub-bridge”of Bsince,by Lemma3.6,the removalofthe whole Balwaysgivesa betterestimate ofthe genusthan anyremovalofasub-bridge. Now we introduce the bridge-replacing move for a knot diagram which does not in- crease(Theorem3.11),andinsomecasescertainlydecrease(Proposition3.13),thegenus ofthediagram(cf.[6,§2.5]). Definition3.9(thebridge-replacingmove). LetDbeadiagramofaknotK withanover- bridge (resp. under-bridge) B. Then we define an operation, called the bridge-replacing movefor(D,B),whichreplacestheover-bridge(resp.under-bridge)Bintoanotherover- bridge(resp.under-bridge)B˜,asfollows. TakeanorientationonthediagramDandconsiderthe(oriented)knotoiddiagram D◦ B byremovingBfromD(seeFigure6).LetJbetheorientedSeifertintervalofD◦,obtained B by the smoothingprocess(the step (ii) in Definition 2.16), from the leg P to the head Q (seeFigure7)inD◦. B NowthenewbridgeB˜ fromQtoPisconstructedjustalongJsothatitgoesontheright (resp.left)sideofJifatallpossible,andisallowedtooverpass(resp.underpass)onlythe arcsofwhich J consists. ThustheunionD◦ ∐B˜ providesanewknotdiagram,whichwe B denotebyD˜ (seeFigure8).ClearlyD˜ representsthesameknottypeK asDdoes. B B Remark 3.10. In Definition 3.9, in fact, it is not so important which side of J the new bridgegoeson(althoughitisessentialthatthenewbridgedoesnotcausecrossingsoutside J). We have adopted the convention here so that we can treat over-bridges and under- bridgessymmetrically.ThissystematictreatmentwillbeconvenientinAlgorithmA.6. ONAMOVEREDUCINGTHEGENUSOFAKNOTDIAGRAM 7 8 8 8 B B QÆ Æ (cid:15) (cid:15) 4 5 4 5 P 1 1 1 3 2 3 2 3 2 7 6 7 6 7 6 Æ (cid:15) D DB DB Figure 6. A diagram D of 8 , a knotoid diagram D◦ obtained by re- 20 B movinganover-bridgeB=(45)fromD,andadiagramD• ofthevirtual B knotobtainedbyturningthecrossings4,5alongBintovirtualcrossings. ThedottedarrowinDisabypassforB(seeProposition3.14). Q P Figure 7. The diagramobtainedbysmoothingall the crossingsof D◦. B ThethickenedcurveistheSeifertintervalJ. Thedottedcurvewillbea guideforthenewbridgeB˜ inthenewdiagramD˜. B~ Figure8. ThediagramD˜ of8 obtainedbyreplacingBwithB˜ 20 Regardingtheabovebridge-replacingmove,ourmainclaimisthefollowing. Theorem3.11. Let Dbeaknotdiagramwithanover-orunder-bridge BandD˜ bethe B knotdiagramobtainedbythebridge-replacingmovefor(D,B).Thenwehave g(D)≥g(D˜ ). B To prove Theorem 3.11, we just need to combine Lemma 3.12 below with Proposi- tions3.3and3.5. 8 KENJIDAIKOKU,KEIICHISAKAI,ANDMASAMICHITAKASE Lemma3.12. LetDbeaknotdiagramwithanover-orunder-bridgeB.LetD˜ betheknot B diagramobtainedbythebridge-replacingmovefor(D,B)andD◦ betheknotoiddiagram B obtainedbyremovingfromDtheinteriorofB. Thenwehave g(D˜ )=g(D◦). B B Proof. WeusethenotationsinNotation3.2andDefinition3.9. SincethenewbridgeB˜ passesonlythearcswhichconfigurestheSeifertintervalJ,the SeifertalgorithmforthenewknotdiagramD˜ = D◦ ∐B˜ providesthesameresultthatthe B B SeifertalgorithmforD◦ does,exceptinthepartwithwhichJ isinvolved. B Assume that the new bridge B˜ has length k, that is, B˜ passes k times the arcs which configuresJ. Then,inapplyingtheSeifertalgorithmfortheknotdiagramD˜ ,considering B theorientationsofJ andofB˜,wehave(k+1)newSeifertcircles(insteadofJ)inthepart withwhichJ isinvolved.Thisimpliesthatg(D˜ )isequaltog(D◦). (cid:3) B B Next we study the condition for the bridge-replacing move to certainly decrease the genus. Anover-bridge(resp.under-bridge)ofaGaussdiagramGoflengthkisaconsecutive sequence of endpointsv0,...,vk+1 on the orientedcircle ofG such that v1,...,vk are the initial(resp.terminal)pointsofthechordsofG. Proposition3.13. LetG be aGaussdiagramwith anover-orunder-bridgev0,...,vk+1, and letG′ be the Gauss diagramobtainedby removing all the chordsc with v ∈ ∂c for i some1 ≤ i ≤ k. Theng(G) > g(G′)ifandonlyifthereisatleastonecycleαofG ofthe form α={...vivi+1...vjvj+1...} forsome0≤i, j≤k. Proof. ThisisaconsequenceofLemma3.6.Ifsuchacycleαasaboveexists,thenCase(i) inFigure5happensforatleastonechordchavingitsendpointbetweenvivi+1 andvjvj+1, andhencethegenuscertainlydecreases.Conversely,supposeanytwooftheportionsvivi+1 (0 ≤ i ≤ k)donotbelongtothesamecycleinG. Thenanychordcwithv ∈ ∂cisplaced i asCase(ii)inFigure5. Thusanyremovalofthemdoesnotdecreasethegenus. (cid:3) Inthecaseofknotdiagrams,theconditioninProposition3.13canbestatedasfollows. Proposition3.14. LetDbeadiagramofaknotK withanover-orunder-bridgeB. Then the bridge-replacingmove for B certainly decreases the genus if and only if there exists a collectionoforientedarcs in D whichconstitute, afterthe smoothingprocess (step(ii) in Seifert’s algorithm, Definition 2.1), a (well-oriented) path connecting two crossings includedinB.Wecallsuchacollectionofarcsabypass. ForexampleintheleftmostdiagramofFigure6,theexistenceofthebypass(dotted)for the over-bridge B(thickened)ensuresthatthe bridge-replacingmovefor (D,B)decrease the genus of the diagram. In fact, the diagram shown in Figure 8 obtained from that in Figure6bythebridge-replacingmoveforBdetectsthegenus2of8 . 20 4. Anexample Theknot16 ,whichisthe306917thnon-alternating16crossingknotintheHoste- 686716 Thistlethwaite table [1], is referred to in Stoimenow’s recent paper [4, §10.3] as a knot whose (canonical) genus has not been determined (to be whether 2 or 3) yet. Here we demonstrateanapproachtothisproblemusingbridge-replacingmoves. Indeeditsgenus turnsouttobe2(seeRemark4.1). Intheknotdiagramof16 showninFigure9,thatisdrawnbyKnotscape[1]and 686716 has genus 5, we can find three over-bridges (thickened) each of which has a favorable bypass (see Proposition 3.14). In fact we can check that the bridge-replacing move for ONAMOVEREDUCINGTHEGENUSOFAKNOTDIAGRAM 9 Figure 9. The knot 16 . This diagram has Dowker-Thistlethwaite 686716 code(DTcode)410-26-22-18220-26-32-281430-6-12-824 Figure10. Adiagramwithgenus5 Figure11. Aminimalcrossingdiagramwithgenus3of16 . ItsDT 686716 codeis-122622-1428-2-2030-248-32-1641018-6 one of the three bridges produces a new diagram with genus 4. In this case, however, suchamoveforonebridgedestroysthebypassesoftheothertwobridgesandapparently wecannotperformfurtherbridge-replacingmoves. Toavoidthisweprecookthediagram intothediagramshowninFigure10. ThenwecanperformforthediagraminFigure10 bridge-replacingmovestwice successively, first with respect to the bridge A and second withrespectto B,sothatweobtainadiagramwithgenus3,butwith20crossings,ofthe knot16 (thenumberofthecrossingsofthisdiagramcanbepareddownto18bythe 686716 secondReidemeistermove). Nowwecaninterpretthebridge-replacingmoveintermsofGausscodes,ofwhichwe give a detailed account in Appendix A. By using the interpretation, we develop a small Pythonprogramwhich,foraninputtedGausscode,performsallpossiblebridge-replacing moves(andreducesexcessivecrossingsinpairsbythesecondReidemeistermoves).With 10 KENJIDAIKOKU,KEIICHISAKAI,ANDMASAMICHITAKASE Figure12. ASeifertsurfacefor16 withgenus2 686716 theaidoftheprogram(andwithsomeheuristicprocedures),wehavefoundthe diagram showninFigure11oftheknot16 ,thathasgenus3andminimal(thatis,16)crossings. 686716 Remark4.1. InspiredbyFigures10and11,MikamiHirasawafoundSeifertsurfacesof genus 2 for the knot 16 (by probing for “compression disks”). Figure 12 depicts 686716 one of such (possibly non-canonical) Seifert surfaces with genus 2. By an estimate via polynomialinvariants,thesesurfacesturnouttoattainthegenus2oftheknot1. Wedonot know,however,if thecanonicalgenusoftheknotcangodownto 2. Namely,we donot knowwhetheranyoftheseSeifertsurfacesfor16 withgenus2canberealizedasa 686716 canonicalone. AppendixA. Thebridge-replacingmoveintermsofGausscodes We give an interpretationof the bridge-replacingmove, introducedin §3, in terms of Gausscodes. Wewillfollowtheconventionof[2]forGausscodes. DefinitionA.1. Aunitisawordoflengththreeoftheform“αβγ,”where • “α”iseitherthecharactersOorU(whichindicate“over”or“under”information), • “β”isanaturalnumber(thelabelofacrossing), • “γ”isthesign+or−(thesignofacrossing). AGausscodeoflengthnisacyclicsequenceof2nunitsX ...X suchthat: 1 2n (i) Itincludesndistinctnaturalnumbersandeachnumberappearsexactlytwice. (ii) Ifthenumberk(whichappearstwice)appearsinsomeunitincludingthecharacterU (resp.O),thenkmustappearintheotherunitincludingO(resp.U). (iii) Foreachnumberk,thetwounitsincludingkhavethesamesign. ToanorientedknotdiagramD= D withncrossings,wecanassociatetheGausscode K X = X ...X oflengthnasfollows:labelallthecrossingsas1,2,...,n,andgoalongD D 1 2n accordingtotheorientation(startingfromanarbitrarypointb).Wewillmeeteachcrossing exactlytwicebeforewecomebacktob. Thei-thunitX consistsof i • thecharacterOorUdependingonwhetherweoverpassorunderpassthei-thcross- ingrespectively, • thenaturalnumberktakenfromthelabelofthei-thcrossing,and • the sign + or − depending on whether the i-th crossing is positive or negative respectively. ThefollowingdefinitionismotivatedbythenotionofcyclesinGaussdiagrams(Defi- nition2.9). DefinitionA.2. LetC = X ...X beaGausscode. AcycleinC isacyclicsequenceof 1 2n unitsinCobtainedinthefollowingsteps: startingfromsomeunitX, i 1ThisshouldbededucedalsofromacalculationoftheknotFloerhomology.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.