ebook img

On a conjecture of Gross and Zagier PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On a conjecture of Gross and Zagier

ON A CONJECTURE OF GROSS AND ZAGIER DONGHOBYEON,TAEKYUNGKIM,ANDDONGGEONYHEE ABSTRACT. LetE beanellipticcurvedefinedoverQofconductorN,letMbetheManinconstantofE,andCbe theproductoflocalTamagawanumbersofE atprimedivisorsofN. LetKbeanimaginaryquadraticfieldinwhich eachprimedivisorofNsplits,PKbetheHeegnerpointinE(K),andX(E/K)betheTate–ShafarevichgroupofEover K. Also,let2uK bethenumberofrootsofunitycontainedinK. In[11],GrossandZagierconjecturedthatifPKhas infiniteorderinE(K),thentheintegeruK C M (#X(E/K))1/2isdivisibleby#E(Q)tors.Inthispaper,weshowthat · · · thisconjectureistrue. 5 1 0 2 v CONTENTS o N 1. Introduction 2 2 Part1. E(Q)tors hasorderapowerof2 4 ] 2. PreliminariesforPart1 4 T 2.1. Kramer’sformula 4 N 2.2. IsogenyinvarianceoftheGross–Zagierconjecture 6 . h 3. E(Q) Z/2Z Z/4Z 7 tors t ≃ ⊕ a 4. E(Q) Z/2Z Z/2Z 8 tors m ≃ ⊕ 5. E(Q) Z/4Z 10 tors ≃ [ 5.1. Tamagawanumbers 10 2 5.2. (#X(E/K))1/2 11 v 5.3. Exceptionalcase 13 6 6. E(Q) Z/2Z 14 9 tors≃ 2 6.1. Tamagawanumbers 14 6 6.2. (#X(E/K))1/2 15 0 6.3. Exceptionalcase 17 . 1 0 Part2. E(Q) hasapointoforder3 18 5 tors 1 7. PreliminariesforPart2 18 : 7.1. Optimalcurves 18 v i 7.2. Cassels’theorem 18 X 8. E(Q) Z/2Z Z/6Z 18 tors r ≃ ⊕ a 9. E(Q)tors Z/3Z 20 ≃ 9.1. Tamagawanumbers 20 9.2. Maninconstants 20 9.3. (#X(E/K))1/2 20 References 21 Date:November3,2015. 2010MathematicsSubjectClassification. 11G05. Key words and phrases. elliptic curves, isogeny, optimal curves, Gross–Zagier conjecture, Birch and Swinnerton-Dyer conjecture, Mordell–WeilGroups,Tamagawanumbers,Maninconstant,descentonellipticcurves. ThefirstauthorwassupportedbyBasicScienceResearchProgramthroughtheNationalResearchFoundationofKorea(NRF)funded bytheMinistryofEducation(NRF-2013R1A1A2007694). ThesecondauthorwaspartiallysupportedbyGlobalPh.D.FellowshipProgram throughtheNationalResearchFoundationofKorea(NRF)fundedbytheMinistryofEducation(grantnumber2011-0007588). Thethird author was supported by Basic Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2013053914). 1 1. INTRODUCTION ThegoalofthispaperistoproveaconjecturemadebyGrossandZagierin[11]concerningcertaindivisibility amongarithmeticinvariantsofellipticcurves.Thisgivesatheoreticalevidencetothe“strongform”ofBirchand Swinnerton-Dyer conjecture, predicting that the leading coefficient of the Hasse–Weil L-function of an elliptic curveencodessomeprecisearithmeticinvariantsofthecurve. In[11],GrossandZagiergaveaformulaforthefirstderivativeats=1ofL-seriesofcertainmodularforms. In particular, they transferred the formula to the realm of L-functions of elliptic curves. So let E be an ellip- tic curve defined over Q with conductor N. For a negative square-free integer d, we consider the quadratic twist E ofE which isin generalnot isomorphictoE overQ butbecomesisomorphicoverthe imaginaryqua- d dratic field K =Q(√d). We denote the discriminant of K over Q by disc(K) which is equal to d when d 1 ≡ (mod 4)andto 4d otherwise. We also assumea close relationbetweenE andK in sucha way thateachprime number dividing N splits completely in K. This is called the Heegner condition or Heegner hypothesis in the literature, which we assume throughout this paper. The corresponding L-functions are also strongly related: we have L(E/K,s)=L(E/Q,s) L(E /Q,s). By computing root numbers, the Heegner condition forces that d · L(E/K,1)=0. Throughoutthispaper,weusethefollowingnotations. N istheconductorofE. • w istheNérondifferentialofE overQand w 2:= w w¯ isthecomplexperiod. • k k E(C)| ∧ | hˆ istheNéron–TateheightattachedtoE. R • M is the Manin constant of E, i.e., if f is the newformattached to E and p :X (N) E is a modular 0 • → parametrisation, then M is the ratio satisfying p w =M 2p if(t )dt . We have M Q and a famous ∗ × · ∈ conjectureofY.ManinisthatM=1forallstrongWeilcurvesE. Forgeneraldiscussionsontheconstant andcurrentstatusabouttheconjecture,see[1]. P E(K)istheHeegnerpointoverK.Thisdependsontheellipticcurveanditsmodularparametrisation K • ∈ chosen. 2u isthenumberofrootsofunitycontainedinthefieldK. u =1forallimaginaryquadraticfieldsK K K • exceptwhenK=Q(√ 1)andK=Q(√ 3),inthesecaseswehaveu =2andu =3respectively. K K − − CistheTamagawanumberofE overQwhichisdefinedbytheproductC=(cid:213) C ofalllocalTama- pN p • | gawanumbers. NowthemaintheoremofGrossandZagier([11],TheoremI.6.3)hasthefollowingconsequence. Theorem1.1([11],TheoremV.2.1). w 2 hˆ(P ) K L′(E/K,1)= M2 ku2k d·isc(K)1/2. (1) · K·| | NowtheBirchandSwinnerton-Dyerconjecturecomesintothepicture.Weassumehereandthereafterthatthe HeegnerpointP hasinfiniteorder,sothatL(E/K,1)=0.Formoredetailsforthefollowingconjecture,werefer K ′ 6 [27],appendixC.16. Conjecture1.2(BirchandSwinnerton-Dyer). Iford L(E/K,s)=1,thentheTate–ShafarevichgroupX(E/K) s=1 ofE overK isfinite,andL(E/K,s)=BSD ,where ′ E/K w 2 C2 hˆ(P ) #X(E/K) K BSD = k k · · · . (2) E/K disc(K)1/2 [E(K):ZP ]2 K | | · Remark. In the literature, the factorC2 in the right hand side of the equation (2) is replaced by the Tamagawa numberofE overtheextensionK. However,bytheHeegnerhypothesis,anyprime pdividingN splitsinK like p=pp,andthusthenumberisequaltothesquareC2 oftheTamagawanumberofE overQ. Remark. TheTate–ShafarevichgroupX(E/K)isinfactfiniteinthiscase(cf.Theorem5in[15]). Equatingtheabovetwoformulae(1)and(2),GrossandZagierobtainedthefollowingconjecture. Conjecture1.3([11],ConjectureV.2.2,StrongGross–ZagierConjecture). IfP hasinfiniteorderinE(K),then K ZP hasfiniteindexinE(K)andwehave K [E(K):ZP ]=u C M (#X(E/K))1/2. (3) K K · · · 2 AstheorderoftherationaltorsionsubgroupE(Q) clearlydividestheindex[E(K):ZP ],theyalsoobtained tors K aweakerversionoftheconjecture,whichwecall“theGross–Zagierconjecture”throughoutthispaper. Conjecture1.4([11], ConjectureV.2.3, Weak Gross–ZagierConjecture). IfE(K) hasanalyticrank1, thenthe integeru C M (#X(E/K))1/2isdivisibleby#E(Q) . K tors · · · Rational torsion subgroupsof elliptic curves E over Q are completely classified by Mazur [21]: E(Q) is tors isomorphictooneofthefollowinggroups: Z/nZ for1 n 10, n=12, ≤ ≤ (Z/2Z Z/nZ forn=2,4,6,8. ⊕ In[18],Lorenziniobtainedthefollowingtheorem. Theorem1.5([18],Proposition1.1). LetE beanellipticcurvedefinedoverQwithaQ-rationalpointoforder k. Thenthefollowingstatementsholdwithatmostfiveexplicitexceptionsforagivenk. Theexceptionsaregiven bytheirlabelsinCremona’stable[7]. (a) Ifk=4,then2 C,exceptfor‘15a7’,‘15a8’,and‘17a4’. | (b) Ifk=5,6,or12,thenk C,exceptfor‘11a3’,‘14a4’,‘14a6’,and‘20a2’. | (c) Ifk=7,8,or9,thenk2 C,exceptfor‘15a4’,‘21a3’,‘26b1’,‘42a1’,‘48a6’,‘54b3’,and‘102b1’. | (d) Ifk=10,then50 C. | Withoutexception,k Cifk=7,8,9,10or12. | Fortheexceptionsofaboveproposition,wecancheckthat#E(Q) dividesC M, exceptfor‘15a7’,which tors · is considered in §5. So the only remaining cases for the validity of the conjecture are those when E(Q) is tors isomorphic to the following 6 groups: Z/2Z, Z/3Z, Z/4Z, Z/2Z Z/2Z, Z/2Z Z/4Z, and Z/2Z Z/6Z. ⊕ ⊕ ⊕ Ourgoalhereistoprovetheseremainingcases,thustocompletetheproofoftheconjecture. Main Theorem. Let E be an elliptic curve defined over Q such that the rational torsion subgroup E(Q) is tors isomorphictooneofthe6groups: Z/2Z,Z/3Z,Z/4Z,Z/2Z Z/2Z,Z/2Z Z/4Z,andZ/2Z Z/6Z. LetK ⊕ ⊕ ⊕ beanimaginaryquadraticfieldsuchthatE(K)isof(analytic)rank1andthatK satisfiestheHeegnercondition. Thentheconjecture1.4istrue,i.e.,#E(Q) dividesC M u (#X(E/K))1/2. tors k · · · Fromnowon, E alwaysdenotesanelliptic curvedefinedoverQ havingtorsionsubgroupisomorphicto one of the above6 groups, and K is always an imaginary quadraticfield such that ord L(E/K,s)=1 and that K s=1 satisfiestheHeegnerhypothesis. LetusbrieflyexplainhowtoprovetheMainTheorem. Thepresentarticleisdividedintotwoparts. Thefirst part(§2 §6)isdealingwiththecasethatE(Q) hasorderapowerof2.WhenE(Q) containsfull2-torsion tors tors ∼ subgroupE[2],i.e.,whenE(Q) Z/2Z Z/2Z,orZ/2Z Z/4Z,thesituationsarealoteasierthantheother tors ≃ ⊕ ⊕ cases, and we can prove the Main Theorem by computing Tamagawa numbers using Tate’s algorithm (§3 and §4). Fortheothercases, i.e., whenE(Q) Z/2ZorZ/4Z, therearecurveshavingTamagawanumbersnot tors ≃ divisibleby#E(Q) ,soweneedtocomputethesizeofthe2-torsionpartoftheTate–Shafarevichgroupsover tors K using Kramer’s formula. There are some ‘exceptionalfamilies’ for whichC (#X(E/K))1/2 does not have · enoughpowerof2. Forthesecases,weavoiddifficultiesbyconsideringisogenyinvarianceoftheGross–Zagier conjecture. Kramer’sformulaandtheisogenyinvariancearelocatedattheheartoftechniquesintheproof,soin thepreliminarysection§2wegivesufficientbackgroundtothesetechniques. The second part (§7 §9) is devoted to the case in which E(Q) has a rational torsion point of order 3. tors ∼ WhenE(Q) Z/2Z Z/6Z,wecanprovetheMainTheorembycomputingonlyTamagawanumbers(§8). tors ≃ ⊕ But whenE(Q) Z/3Z, thereare also curveshavingTamagawanumbersnotdivisibleby #E(Q) , so we tors tors ≃ needtocomputethelowerboundofthesizeofthe3-torsionpartofTate–ShafarevichgroupsoverKusingCassels’ formulaorneedtocomputetheManinconstantsusingthephenomenonthatoptimalcurvesdifferbya3-isogeny (§9). SameasPart1,preliminariesaresummarisedin§7. Allexpicitcomputationsin thispaperweredoneusingSageMathematicsSoftware[30]. Whenwe docom- putations with Weierstrass equations, we frequently change the variables of an equation to obtain another. In particular,whenweusetheclause“makeachangeofvariablesvia[u,r,s,t]”,itshouldbeunderstoodtotakethe changeofvariablesformulagivenby x=u2x +r and y=u3y +u2sx +t. ′ ′ ′ 3 Forthedetails,werefer[27],§III.1. Part1. E(Q) hasorderapowerof2 tors 2. PRELIMINARIES FORPART 1 2.1. Kramer’sformula. InthissubsectionweintroduceaformulaofKramer[16],anddiscusshowtomeasure thesizeoftheTate–Shafarevichgroupofellipticcurveusingit. Ofcoursethepurposeofthissectionistoprovide atooltoshowtheMainTheoremforthecasesE(Q) Z/2ZorZ/4Z. Thus,throughoutthissubsection,we tors ≃ assumeE(Q) Z/2ZorZ/4Z,andconsequentlyE(Q)[2] Z/2Z. tors SincetheTate≃–ShafarevichgroupX(E/K)isfinite(Theor≃em5in[15]),its2-primarypartX(E/K)[2¥ ]has perfectsquareorder. Soifwefindanon-trivialelementinX(E/K)[2],(orequivalentlydim X(E/K)[2] 1), F2 ≥ wecanimmediatelyseethat2 (#X(E/K))1/2. Sointhissubsection,weareconcentratingonhowtofindsuch | anon-trivialelement. Let pbeaprimenumber.Weusethefollowingnotations. i =dim CokerN=dim E(Q )/NE(K ),whereN:E(K ) E(Q )isthenormmap. Thisquantity • p F2 F2 p p p → p iscalledlocalnormindexofE at p. Let • F = x Sel2(E/Q):x N (cid:213) Sel2(E/K ) . p p ( ∈ ∈ pp !) | Thisgroupiscalledtheeverywhere-localnormgroup. NS istheimageofthenormmapSel2(E/K) Sel2(E/Q),whichwedonotneedinthispaper. ′ • → Theorem2.1([16],Theorem1). ThedimensionofX(E/K)[2](overF )isequalto 2 (cid:229) i +dim F +dim NS rankE(K) 2dim E(Q)[2], ℓ F2 F2 ′− − F2 wherethesumistakenoverallprimes(includinginfinity)ofQ. Backtoourcase. BecauserankE(K)=1andE(Q)[2] Z/2Z,byTheorem2.1,dim X(E/K)[2] 1ifand ≃ F2 ≥ onlyifthequantity (cid:229) i +dim F +dim NS ℓ F2 F2 ′ isgreaterthanorequalto4. 2.1.1. Local norm indices. For generalintroductionand useful facts aboutthe numbersi , we refer §4 of [19] p and§2of[16]. Weonlyconcernthosenumbersrelevanttooursituation. Theproofofthefollowingproposition canbefoundin§2of[16]. Proposition2.2. LetE beanelliptic curveoverQ with E(Q)[2] Z/2ZandletK =Q(√d)beanimaginary ≃ quadratic field satisfying the Heegner hypothesis. The local norm indices i for various primes ℓ are given as ℓ follows. 0 ifD <0, min (a) Onehasi¥ =i(C R)= | (1 ifD min>0. (b) Let pbeanoddprime. If pisagoodprimeforE andisramifiedinK,thenonehasi =dim E[2](k), p F2 wherekistheresiduefieldofQ . Otherwiseonehasi =0. p p 2 if(D ,d) =+1, (c) If 2 is a good prime for E and is ramified in K, then one has i = min Q2 where 2 (1 if(D min,d)Q2 =−1, ( , ) denotestheHilbertnorm-residuesymbol. Otherwise,onehasi =0. − − Q2 2 2.1.2. Everywhere-local norm group. Now we provide a way to compute the everywhere-localnorm group F . Thefollowingisthekey. Proposition2.3([16],Proposition7). Theeverywhere-localnormgroupF istheintersectionofSel2(E/Q)and Sel2(E /Q)insideH1(Q,E[2]) H1(Q,E [2]),whereE isthequadratictwistofE byd. d d d ≃ 4 LetE bethequadratictwistofE byd. Inparticular,supposeE isdefinedbytheWeierstrassequation d y2=x3+Ax2+Bx, (4) whichhasdiscriminantD =24B2(A2 4B).ThenE hastheWeierstrassequationoftheform d − y2=x3+Adx2+Bd2x. (5) Thediscriminantoftheaboveequation(5)isgivenbyD =16d6B2(A2 4B). d − Proposition 2.4. The 2-torsion subgroups E[2] and E [2] are canonically isomorphic as Gal(QQ)-modules. d | Consequently, the Galois cohomology groups H (Q,E[2]) and H (Q,E [2]) are isomorphic. In particular, we • • d identifyH1(Q,E[2])=H1(Q,E [2])inthesequel. d Proof. TheGalois-equivariantisomorphismE[2] E [2]isgivenby(t,0) (dt,0). (cid:3) d → 7→ Denote by P (resp. P ) the rational torsion point of order 2 in E (resp. E ) corresponding to (0,0) in the d d equation(4)(resp.(0,0)intheequation(5)). LetE (resp. E )betheellipticcurveE/ P (resp. E / P )andlet ′ d′ h i d h di f (resp. f )bethecanonicalquotient2-isogenyE E (resp.E E ). d → ′ d → d′ Proposition2.5. Therearecanonicalhomomorphisms H1(Q,E[f ]) H1(Q,E[2]), and H1(Q,E [f ]) H1(Q,E [2]), d d d → → andtheyinduce Self (E/Q) Sel2(E/Q), and Selfd(E /Q) Sel2(E /Q). d d → → Proof. Ifwedenotetheuniquedualrational2-isogenyoff byf ,thenwehaveacanonicalexactsequence ′ 0 E[f ] E[2] E [f ] 0. (6) ′ ′ −→ −→ −→ −→ This defines a canonical map H1(Q,E[f ]) H1(Q,E[2]) on cohomology groups, and it restricts to the map Self (E/Q) Sel2(E/Q)ofsubgroups.For→E andf theproofismutatismutandisthesame. (cid:3) d d → Proposition 2.6. There are canoncial isomorphisms H1(Q,E[f ]) Q /Q 2 and H1(Q,E [f ]) Q /Q 2. × × d d × × ≃ ≃ Moreover,theisomorphismsarecompatibleinthesensethatthefollowingdiagramiscommutative: H1(Q,E[f ]) // H1(Q,E[2]) 5 ❧❧❧❧❧❧∼❧❧❧❧❧❧❧❧5 Q×/Q×2≃H1(Q❘❘,❘m❘2❘)❘❘∼❘❘❘❘❘❘❘)) (cid:15)(cid:15) (cid:15)(cid:15) = H1(Q,E [f ]) // H1(Q,E [2]) d d d wheretheverticalmapinthemiddleisinducedbythecanonicalisomorphismintheProposition2.4. Proof. Clearlytheisomorphismsm E[f ] and m E [f ]arecompatibleinthesensethelefttrianglecom- 2 2 d d → → mutes. ByKummertheoryweknowH1(Q,m )=Q /Q 2,whencetheresultfollows. (cid:3) 2 × × Proposition2.7. LetG bethesubgroupofQ /Q 2 generatedbytheclassofA2 4B. ThenG isthekernelof × × − thehomomorphismsH1(Q,E[f ]) H1(Q,E[2])andH1(Q,E [f ]) H1(Q,E [2]). Thus, d d d → → Ker Self (E/Q) Sel2(E/Q) =G Self (E/Q) Self (E/Q). → ∩ ⊂ Similarly, (cid:0) (cid:1) Ker Selfd(E /Q) Sel2(E /Q) =G Selfd(E /Q) Self (E /Q). d d d d → ∩ ⊂ Proof. Weonlygiveapr(cid:0)oofforE andf . ForE andf(cid:1) ,everythingisthesameundermakingcertainnotational d d change.Fromtheshortexactsequence(6),wehavethelongexactsequenceofcohomologygroups: h 0 E(Q)[f ] E(Q)[2] E (Q)[f ] H1(Q,E[f ]) H1(Q,E[2]) H1(Q,E [f ]) ′ ′ ′ ′ → → → −→ → → →··· BecauseweonlyconsiderthoseellipticcurveswithE(Q)[f ]=E(Q)[2],themapE(Q)[2] E (Q)[f ]isthezero ′ ′ → map,andthisagainforcesusthath :E (Q)[f ] H1(Q,E[f ])isinjective.Theimageh (E (Q)[f ])isthekernel ′ ′ ′ ′ → ofH1(Q,E[f ]) H1(Q,E[2]). → 5 We claim thatthis kernelis equalto G. Write E(Q)[2]= O,P,Q,P+Q , where O is the identity of E and { } P E(Q), and similarly write E (Q)[f ]= O,T , where O is the identity of E . Clearly T E (Q). Since ′ ′ ′ ′ ′ ′ ∈ { } ∈ E(Q)[2] E (Q)[f ]issurjectivebutE(Q)[2] E (Q)[f ]isthezeromap,thepointQismappedontoT under ′ ′ ′ ′ → → E(Q)[2] E (Q)[f ]. Then,h (T) H1(Q,E[f ])isdefinedbythe1-cocyle ′ ′ → ∈ P ifs (Q)=P+Q=Q, s s (Q) Q= 6 7→ − (0 ifs (Q)=Q. However, this 1-cocycle corresponds to the 1-cocycle s s (√b)/√b defining an element H1(Q,m ), where 2 7→ A √A2 4B b=A2 4B, since in the Weierstrass equation (4), Q correspondsto the point − ± − ,0 and thus − 2 ! s (√A2 4B) s (Q)=Q if and only if s √A2 4B = √A2 4B. Clearly the 1-cocycle s − defining an − − 7→ √A2 4B elementH1(Q,m )correspon(cid:16)dstoA2 4(cid:17)BinQ /Q 2. − (cid:3) 2 × × − Recall (Proposition 2.3) that the everywhere-local norm group F is the intersection of two Selmer groups Sel2(E/Q)andSel2(E /Q)insideH1(Q,E[2])=H1(Q,E [2]). Inordertoidentifyelementsintheintersection, d d weneedtofindb Q /Q 2suchthatb Self (E/Q) Selfd(E/Q)bydescentarguments(cf. [27],chapterX). × × ∈ ∈ ∩ InordertoensurethisisnottheidentityelementinF ,weshouldcheckb G. Thiswillbedonewhenwedeal 6∈ withE(Q) Z/4ZorZ/2Z. tors ≃ 2.2. IsogenyinvarianceoftheGross–Zagierconjecture. LetEandE beisogenousellipticcurvesdefinedover ′ Q,andK beanimaginaryquadraticfieldsatisfyingtheHeegnerhypothesis. Weconsiderthosecurveswithfixed modularparametrisationsp :X (N) E andp :X (N) E . 0 ′ 0 ′ → → Proposition2.8. Letq :E E bearationalisogeny. ′ → (a) IfthestrongGross–Zagierconjecture(Conjecture1.3)istrueforE thenitisalsotrueforE . ′ (b) Supposethatq respectsmodularparametrisationsofE andE ,i.e.,p =q p .Thenwehave ′ ′ ◦ M2 C2 #X(E/K) M2 C2 #X(E /K) · · = ′ · ′ · ′ . (7) [E(K):ZP ]2 [E (K):ZP ]2 K ′ K′ (c) Let pbeaprime. If (i) ord #E(K) =ord #E(Q) ,and p tors p tors (ii) ord #E(Q) ord u C M (#X(E/K))1/2 , p tors p K ≤ · · · then (cid:16) (cid:17) ord #E (Q) ord u C M #X(E /K) 1/2 . p ′ tors p K ′ ′ ′ ≤ · · · Inparticular, ifE(K) =E(Q) , andif(cid:16)the weakGro(cid:0)ss–Zagierc(cid:1)onje(cid:17)cture(Conjecture1.4) forE is tors tors true,thenitisalsotrueforE . ′ Proof. (a)IsogenouscurvesE andE havethesameL-functionsandthesameBSD formulae,i.e.,L(E/K,s)= ′ L(E /K,s) and BSD =BSD (cf. Conjecture 1.2). The latter is a theoremof Cassels [5]. As the strong ′ E/K E/K ′ Gross–Zagierconjectureisobtainedbysimplyequatingtheseformulae,itisclearlyisogenyinvariant. (b)LetP betheHeegnerpointforE definedbyP =q (P ). SinceL(E/K,s)=L(E /K,s),wehave K′ ′ K′ K ′ ′ ′ w 2 hˆ(P ) M2 K k k · = . w 2 hˆ(P ) M2 k ′k · K′ ′ Similarly,fromBSD =BSD ,weget E/K E/K ′ w 2 hˆ(P ) #X(E /K) C2 [E(K):ZP ]2 K ′ ′ K k k · = · · . kw ′k2·hˆ(PK′) #X(E/K)·C2·[E′(K):ZPK′]2 Equating,weobtaintheequation7. (c) Let P (resp. P) be a generator of the group E(K)/E(K) (resp. E (K)/E (K) ), and let P =n P ′ tors ′ ′ tors K (resp. P =n P). AsP =q (P )=nq (P),theindexn isdivisiblebyn . Theassumption(i)ord #E(K) = K′ ′ ′ K′ K ′ p tors 6 ord #E(Q) impliesthatord [E(K) :E(Q) ]=0. Bytheequation7,wehave p tors p tors tors u2 M2 C2 #X(E/K) u2 M2 C2 #X(E /K) K· · · = K· ′ · ′ · ′ , (#E(Q)tors)2·[E(K)tors:E(Q)tors]2 nn′ 2·(#E′(Q)tors)2·[E′(K)tors:E′(Q)tors]2 (cid:16) (cid:17) andbytheassumption(ii)thelefthandsideoftheaboveequationisa p-adicinteger.Thus, n ord u C M #X(E /K) 1/2 ord ′ #E (Q) [E (K) :E (Q) ] p K· ′· ′· ′ ≥ p n · ′ tors · ′ tors ′ tors (cid:16) (cid:0) (cid:1) (cid:17) ord (cid:18)#E (Q(cid:0)) . (cid:1) (cid:19) p ′ tors ≥ (cid:3) Remark. By[9]Corollary4or[25],Theorem2,foragivenellipticcurveE definedoverQ,thereareatmost4 quadraticfieldsK suchthatE(K) =E(Q) . tors tors 6 3. E(Q) Z/2Z Z/4Z tors ≃ ⊕ Inthissection,weprovetheMainTheoremforthecaseswhenE(Q) isisomorphictoZ/2Z Z/4Z. tors ⊕ Theorem3.1. SupposethatE(Q) isisomorphictoZ/2Z Z/4Z. Thenthe order8=#E(Q) dividesthe tors tors ⊕ TamagawanumberCofE,exceptforthecurve‘15a3’,inwhichcaseC M=8. · From[17],table3,suchellipticcurvescanbeparametrisedbyoneparameterl Qby ∈ y2+xy l y=x3 l x2, (8) − − a 2 1 16a 2 b 2 wherel = = − ,withpositiveintegersa ,b havingnocommonprimedivisor,anda /b = b −16 16b 2 6 (cid:18) (cid:19) 1/4. ThediscriminantoftheequationisD =l 4(1+16l )=0. Notethatsincewetakea andb relativelyprime, 6 therearenocommonprimedivisorof16a 2 b 2and16b 2except2. − Proposition3.2. Let pbeaprime. (a) Ifm:=ord l >0, thenthe reductionofE modulo pis (split)multiplicativeoftypeI . Consequently p 4m theTamagawanumberat pofE isC =4m. p (b) Supposethat p=2. Ifm:=ord l <0,thenmisalwayseven,andtheminimalWeierstrassequationat p 6 pisgivenby y2+pzxy upzy=x3 ux2, (9) − − where u Z satisfying l =upm in Z , and where z is a positive integer. The reduction type of the ∈ ×p p equationmodulo pisI withn=2z,whenceC =2z. n p Proof. (a)ThiscanbeshownbydirectlyapplyingTate’salgorithm(see[26],§IV.9)totheWeierstrassequation (8). (b) Since gcd 16a 2 b 2,16b 2 is a power of 2, if m = ord l =ord (16a 2 b 2)/16b 2 <0 then the p p − − exponent m is always even. Changing Weierstrass equation (cf. [18], proof of Proposition 2.4), we get the (cid:0) (cid:1) (cid:0) (cid:1) equation(9). WeuseTate’salgorithmagainforthisequationtoobtaintheminimalityandreductiontype. (cid:3) Let S= pprimes:ord l >0 , T = pprimes:p=2,ord l <0 . p p 6 Proposition 3.2 says that(cid:8)Theorem 3.1 is true w(cid:9)hen (i) #S (cid:8)2; or (ii) #S=1 and #T (cid:9)1. Thus the following ≥ ≥ propositionshowsTheorem3.1. Proposition3.3. With possible finite numberofexceptions, we have #S 1 and moreover if T =0/, then #S ≥ ≥ 2. The exceptions are exactly the following curves: ‘15a1’, ‘15a3’, ‘21a1’, ‘24a1’, ‘48a3’, ‘120a2’, ‘240a3’, ‘240d5’,and‘336e4’.Butinanycaseincludingtheseexceptions,wehave8 C M. | · 7 Proof. Write b =2nb with n 0 and b odd. The conditionT =0/ is equivalentto the conditionb =1. We ′ ′ ′ ≥ dividetheproofaccordingtothevalueofn. Suppose n=0. In this case 16a 2 b 2 is odd and so gcd 16a 2 b 2,16b 2 =1. Suppose that there is no − − primedividing16a 2 b 2. We thenhave16a 2 b 2= 1. Thisispossibleonlyif a =0, a contradiction. For − − ± (cid:0) (cid:1) thesecondstatement, assumeb =1. Inthiscase, we getl =(16a 2 1)/16. Ifthereisonlyoneoddprime p − dividing16a 2 1,thenwemusthave4a 1=1,acontradiction(a Z ). >0 − 16a 2 4−b 2 4a 2 b 2 ∈ Supposen=1.Wehavel = − ′ = − ′ ,andgcd 4a 2 b 2,16b 2 =1. Iftherewerenoodd 16 4b 2 16b 2 − ′ ′ primedividing4a 2 b 2,wewouldh·ave′4a 2 b 2= ′ 1,whencea(cid:0)=0,acontradict(cid:1)ion.Ifb =2(equivalently ′ ′ − − ± b =1), and if there were only one prime dividing 4a 2 b 2, then either one of the relations 2a 1=1 or ′ ′ − − 2a +1= 1wouldhold.Thuswemusthavea =1. Inthiscasewegetthecurve‘48a3’,havingC =C =4. 2 3 − Supposen 5. InthiscasewecantakeanotherWeierstrassequation(cf. Equation(9))ofE ofthefollowing ≥ form: y2+2nxy 2nuy=x3 ux2, (10) − − where u= a 2 22n 4. This equation has discriminant D = (22n+16u)22nu4 and c =22n+4u+16u2+24n, − 4 − so ord (D )=2n+4 and ord (c )=4. Moreover, by [27], Proposition VII.5.5, since its j-invariant has order 2 2 4 8 2n<0, E haspotentiallymultiplicativereductionmodulo2. Ifthisequation(10)isminimalattheprime2, − thenthecurvehasadditivereductionmodulo2(ord (c )>0). Tate’salgorithmsaysthatE hasreductionoftype 2 4 I for some k, with Tamagawa number 2 or 4. Suppose that the equation (10) is not minimal modulo 2. Then ∗k wecantransform(10)intoaminimalmodelmodulo2,whichhasdiscriminantoforder2n+4 12=2n 8at − − 2andc oforder0. Sincetheorderoftheminimaldiscriminantisevenand>0,andsinceE hasmultiplicative 4 reduction(ord c =0),we haveevenC byTate’salgorithm. AsC isevenand4 C forsomeodd p S,the 2 4 2 2 p | ∈ proofofthiscaseiscompleted. Remainingcases(n=2,3,and4)canbeshownsimilarly. (cid:3) 4. E(Q) Z/2Z Z/2Z tors ≃ ⊕ Inthissection,weprovetheMainTheoremforthecaseswhenE(Q) isisomorphictoZ/2Z Z/2Z. tors ⊕ Theorem4.1. SupposethatE(Q) isisomorphictoZ/2Z Z/2Z. Thenthe order4=#E(Q) dividesthe tors tors ⊕ TamagawanumberCofE,exceptfortwocurves‘17a2’and‘32a2’.Forthesetwocaseswehave4=C M. · Following[17],wecantakeaWeierstrassmodeloftheform y2=x(x+a)(x+b), (11) wherea,b Zwitha=b=0=a. Notethataandbisingeneralnotrelativelyprime. Thediscriminantofthe ∈ 6 6 6 equation(11)isD =16(a b)2a2b2andc =16a2 16ab+16b2. Letc=a b=0.Ifthereisaprimepdividing 4 − − − 6 bothaandb,thenbychangingtheequationvia[p,0,0,0]ifnecessary,weassumemin(ord a,ord b)=1. p p WefirstinvestigatetheTamagawanumberC forprimes pdividingabc. p Proposition4.2. Let pbeaprime. Assumethateither(i) p aand p∤bc;or(ii) p band p∤ac. Thenwehave | | thefollowing. (a) If pisodd,thenE hasreductionoftypeIordpD =I2ordp(a) modulo p,withevenTamagawanumberat p. (b) Supposethatp=2.Ifm:=ord a=4andifb 1 (mod 4),thenEhasgoodreductionmodulo2,whence 2 ≡ C =1. Otherwise,C iseven. 2 2 Proof. Weonlygivetheproofforthecase(i). Bythesymmetryoftherolesofaandbintheequation,thecase (ii)followsimmediately. (a)ThisisimmediatefromTate’salgorithm. (b)Supposethat2 aand2∤bc. We doa case-by-casestudy. Inordertohelpreaderstore-constructproofs | oftheresultsinthefollowingtable,weremarkthatwemostlyapplyTate’salgorithmtotheWeierstrassequation (11),whileforthecasem=4andb 1 (mod 4)andform 5,weapplythealgorithmtoanotherWeierstrass a+b 1 ≡ab ≥ equationy2+xy=x3+ − x2+ x. 4 24 8 m b mod4 ReductionTypeofE at p=2 C 2 1 1or3 III 2 1 I 2or4 2 ∗n 3 I 2 ∗0 1 III 2 3 ∗ 3 I 2or4 ∗n 1 I (good) 1 0 4 3 I 2or4 ∗n 5 1or3 I even 2m 8 ≥ − (cid:3) Proposition4.3. Let pbeaprimesuchthat p cand p∤ab. | (a) If pisodd,thenE hasreductionoftypeIordpD =I2ordp(c) modulo p,withevenTamagawanumberat p. (b) Supposethat p=2. Ifm:=ord c=4andifa b 3 (mod 4),thenE hasgoodreductionmodulo2, 2 ≡ ≡ whenceC =1. Otherwise,C iseven. 2 2 Proof. Wemakeachangeofvariablesvia[1, a,0,0],togetanotherequation − y2=x3+( 2a+b)x2+a(a b)x. (12) − − (a)ImmediatefromTate’salgorithmappliedtoequation(12). (b)Let p=2. Similarasaboveproposition,theresultsfromTate’salgorithmappliedtotheequation(12)are summarised as follows. In particular, when dealing with the cases a b 3 (mod 4) and m 4, we use the 2c b 1 ac ≡ ≡ ≥ equationy2+xy=x3+− − − x2+ xinstead. 4 16 m aandb mod4 ReductionTypeofE at p=2 C 2 1 any III 2 2 a 1 (mod 4)orb 1 (mod 4)(orboth) I forsomek 2or4 ≥ ≡ ≡ ∗k 2or3 III 2 ∗ 4 a b 3 (mod 4) I (good) 1 0 ≡ ≡ 5 I even 2m 8 − (cid:3) Proposition4.4. Letpbeaprimedividingtwoofa,b,orc.Thenclearlyitdividesthethird.Bychangingvariables intheequation(11)via[p,0,0,0]ifnecessary,weassumemin(ord a,ord b)=1. ThenE hasreductionoftype p p I forsomek,withevenTamagawanumber. ∗k Proof. Ifm=n,thenwemayassumem>n=1withoutanylossofgenerality. ByTate’salgorithm,inthiscase 6 E hasreductionoftypeI withTamagawanumber2or4. Ifm=n=1,thenwecanwritea= pa andb= pb ∗k ′ ′ with(a,p)=(b,p)=1. Hence, ′ ′ ifa b (mod p),thenE hasreductionoftypeI modulo pwithTamagawanumber4; • ′6≡ ′ ∗0 ifa b (mod p),thenE hasreductionoftypeI modulo pwithTamagawanumber2or4. • ′≡ ′ ∗k (cid:3) RecallthatEisanellipticcurvedefinedbytheequationy2=x(x+a)(x+b)withdiscriminantD =16a2b2c2= 6 0wherea,b,c:=a b Z. Wealsohaveassumedthatmin(ord a,ord b) 1forallprimesp. Let p p − ∈ ≤ S:= pprimes:ord a>0,ord b>0 . p p If #S 2, then by Proposition 4.4, then(cid:8)the Tamagawa numberC of E i(cid:9)s divisible by 4. Thus the following ≥ propositionshowsTheorem4.1. Proposition 4.5. Suppose that #S 1. Then 4 C with only two exceptions: ‘17a2’ and ‘32a2’. But in both ≤ | exceptions,wehaveC=M=2. Proof. ProofsaresimilartoProposition3.3. (cid:3) 9 5. E(Q) Z/4Z tors ≃ Theorem5.1. IfE isanellipticcurvedefinedoverQ,havingrationaltorsionsubgroupE(Q) isomorphicto tors Z/4Z,thentheorder4=#E(Q) dividesu C M (#X(E/K))1/2. tors K · · · 5.1. Tamagawanumbers. InordertoproveTheorem5.1,wefirstconsiderTamagawanumbersofE. From[17],table3,suchellipticcurvescanbeparametrizedbyoneparameterl by y2+xy l y=x3 l x2, − − where the discriminant of the equation l 4(1+16l )=0. This is the same as in section 3, but without further 6 restrictiononl . Letl =a /b ,witha ,b Zandgcd(a ,b )=1. ByProposition3.2(a),wemayassumea =1. ∈ SowebeginwiththefollowingWeierstrassequation y2+b xy b 2y=x3 b x2, (13) − − withb Z. NotethatthiscurvehasdiscriminantD =(16+b )b 7andc =(16+16b +b 2)b 2. Ifb = 1,then 4 ∈ ± we haveeither‘15a8’or ‘17a4’,bothofwhichhaveM=4. So we mayassumethatthereisatleastoneprime dividingb . Let p be a prime dividing b , and let m:=ord b >0. Write b = pmu, for some u Z with gcd(u,p)=1. p ∈ UsingTate’salgorithmappliedtoWeierstrassequationsy2+pz+1xy pz+2u−1y=x3 pu−1x2(whenm=2z+1 − − isodd)ory2+pz+1xy pz+2u 1y=x3 pu 1x2(whenm=2ziseven),wecanfigureoutthereductiontypesand − − − − Tamagawanumbersatprimes p b forE. | m p additionalconditions ReductionTypeofE at p C p m=2z+1forz Z any I 4 ∈ ≥0 ∗1 p=2 I even 2z 6 m=2zforz Z u 3 (mod 4)andm=8 I (good) 1 ∈ >0 p=2 ≡ 0 otherwise bad even So,inthesequel,weassume ord b isevenforallprime p; p • thenumberofoddprimesdividingb is 1. • ≤ Moreover,ifℓisanoddprimedividingb +16,thenE hasreductionoftypeIordℓ(b +16) atℓ.1 Wefurthermore assumethroughoutthissection,that ifℓisanoddprimedividingb +16,thenord (b +16)isodd. ℓ • Supposethatthereisnooddprimepdividingb ,i.e.,b = 2mforsomepositiveintegerm.Aswecanseeinthe ± abovetable,inordertoavoid4 C,wemayassumem=2ziseven. ApplyingTate’salgorithmtotheWeierstrass | equation(13),wehavethefollowingresults. b Curve TamagawaNumber ManinConstant 22 ‘40a3’ C C =2 1 2 2 5 · · 24 ‘32a4’ C =2 2 2 22zwithz 3 C =4 2 ≥ 22 ‘24a4’ C C =2 1 2 2 3 − · · 24 singularcurve − 26 ‘24a3’ C C =2 1 1 2 3 − · · 28 ‘15a7’ C C =1 1 2 3 5 − · · 22zwithz 5even C =2(z 4) 2 − ≥ − 22zwithz 5odd C =2(z 4) 2 − ≥ − Sowhen b isapowerof2,thenweonlyneedtodealwiththecasesb = 22z with(i)z=4or(ii)z 3being | | − ≥ odd. 1ThiscanbealsoshownbyTate’salgorithm,appliedtotheequationy2+b xy (b +16)2y=x3 (b +96)x2+192(b +16)x 128(b + − − − 24)(b +16)forE. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.