ON A CONJECTURE OF ERDO¨S AND CERTAIN DIRICHLET SERIES TAPASCHATTERJEE1ANDM.RAMMURTY2 5 1 0 ABSTRACT. Letf :Z/qZ → Zbesuchthatf(a)= ±1for1 ≤a <q,andf(q) =0. ThenErdo¨s 2 conjecturedthatP f(n) 6=0.Forqeven,itiseasytoshowthattheconjectureistrue.Thecase n≥1 n n q ≡ 3(mod4)wassolvedbyMurtyandSaradha. Inthispaper,weshowthatthisconjectureis a truefor82%oftheremainingintegersq≡1(mod4). J 7 1. Introduction 1 InawrittencommunicationwithLivingston,Erdo¨smadethefollowingconjecture(see[5]): ] T iff isaperiodicarithmeticfunctionwithperiodq and N ±1 ifq ∤n, . h f(n)= t (0 otherwise, a m then ∞ [ f(n) L(1,f) = 6= 0 n 1 n=1 v X wheretheL-functionL(s,f)associatedwithf isdefinedbytheseries 5 8 ∞ 1 f(n) L(s,f) := . (1) 4 ns 0 n=1 X . In1973,Baker,BirchandWirsing(seeTheorem1of[1]),usingBaker’stheoryoflinearformsin 1 0 logarithms,provedtheconjectureforq prime. In1982,Okada[10]establishedtheconjectureif 5 2ϕ(q)+1 > q. Hence, if q is a prime power or a product of two distinct odd primes, the con- 1 jecture is true. In 2002, R. Tijdeman [12] proved the conjecture is true for periodic completely : v multiplicative functions f. Saradha and Tijdeman [11] showedthat if f is periodicand multi- i X plicative with |f(pk)| < p−1for everyprime divisor p of q and everypositive integerk, then r theconjectureistrue. a Itiseasytoseethat ∞ f(n) L(1,f) = n n=1 X q exists if and only if f(n) = 0. If q is even and f takes values ±1 with f(q) = 0, then n=1 q f(n)6= 0. Hencetheconjectureholdsforevenq. n=1 P In 2007, Murty and Saradha [8] proved that if q is odd and f is an odd integer valued odd P periodic function then the conclusion of the conjecture holds. In 2010, they proved that the 2010MathematicsSubjectClassification. 11M06,11M20. Keywordsandphrases. Erdo¨sconjecture,non-vanishingofDirichletseries,Okada’scriterion. 1ResearchofthefirstauthorwassupportedbyapostdoctoralfellowshipatQueen’sUniversity. 2ResearchofthesecondauthorwassupportedbyanNSERCDiscoverygrantandaSimonsfellowship. 1 2 TAPASCHATTERJEEANDM.RAMMURTY Erdo¨s conjecture is true if q ≡ 3 ( mod 4) (see Theorem 7 of [7]). Thus the conjecture is open onlyin caseswhereq ≡ 1(mod4). However,it seemsthat anovelideawill beneededtodeal withthesecases. Inthispaper,weadoptanewdensity-theoreticapproachwhichisorthogonal toearliermethods. Hereisthemainconsequenceofourmethod: Theorem1.1. LetS(X) = |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}|. Then S(X) liminf ≥ 0.82. X→∞ X/4 In other words, the Erdo¨s conjecture is true for at least 82 % of the integers q ≡ 1 (mod 4). OurmethoddoesnotextendtoshowthattheErdo¨sconjectureistruefor100 %ofthemoduli q ≡ 1 (mod 4). We examine this question briefly at the end of the paper. It seems to us that moreideasareneededtoresolvetheconjecturefully. These questions have a long history beginning with Baker, Birch and Wirsing [1]. Their work was generalized by Gun, Murty and Rath [4] to the setting of algebraic number fields. Theforthcomingpaper[2]givesnewproofsofsomeofthebackgroundresultsofthisarea. We alsoreferthereaderto[12]foranexpandedsurveyoftheearlyhistory. 2. NotationsandPreliminaries Fromnowonwards,wedenotethefieldofrationalsbyQ,thefieldofalgebraicnumbersby Q,Euler’stotientfunctionbyϕandEuler’sconstantbyγ. Wesayafunctionf isErdo¨sianmod q iff isaperiodicfunctionwithperiodq and ±1 ifq ∤ n, f(n)= (0 otherwise. Alsowewillwritef(X) . g(X)tomean f(X) limsup ≤ 1. g(X) X→∞ Similarly,wewritef(x)& g(x)tomean f(X) liminf ≥ 1. X→∞ g(X) 2.1. Okada’scriterion. Proposition2.1. Lettheq-thcyclotomicpolynomialΦ beirreducibleoverthefieldQ(f(1),··· ,f(q)). q LetM(q)bethesetofpositive integerswhicharecomposedofprimefactorsofq. ThenL(1,f) = 0ifandonlyif f(am) = 0 m m∈M(q) X foreveryawith1≤ a < q,(a,q) = 1,and q f(r)ǫ(r,p) = 0 r=1 X (r,q)>1 ONACONJECTUREOFERDO¨S 3 foreveryprimedivisor pofq,where v (r) ifv (r)< v (q), p p p ǫ(r,p) = (vp(q)+ p−11 otherwise andforanyintegerr,v (r)istheexponentofpdividingr. p This Proposition is a modification, due to Saradha and Tijdeman [11], of a 1986 result of Okada[9]. NotethatOkadadeducedthesufficientcondition2ϕ(q)+1 > q statedintheintro- ductionfromhisoriginalversionofthiscriterion. 2.2. Wirsing’sTheorem. ThefollowingpropositionisduetoWirsing[13]. Proposition2.2. Letf beanon-negativemultiplicativearithmeticfunction,satisfying |f(p)|≤ Gforallprimesp, p−1f(p)logp ∼ τ logX, p≤X X withsomeconstantsG> 0,τ > 0and p−k|f(pk)| < ∞; p k≥2 XX if0 < τ ≤ 1,then,inaddition,thecondition |f(pk)| = O(X/logX) p k≥2 X X pk≤X isassumedtohold.Then X e−γτ f(p) f(p2) f(n)= (1+o(1)) (1+ + +···). logX Γ(τ) p p2 n≤X p≤X X Y 2.3. Mertens Theorem. We also need a classical theorem of Mertens in a later section. We recordthetheoremhere(seeforexample,p. 130of[6]): Proposition2.3. lim logX (1− 1) = e−γ. p X→∞ p≤X Q 3. ExceptionstotheconjectureofErdo¨s WesaythattheErdo¨sconjectureisfalse(modq),ifthereisanErdo¨sianfunctionf forwhich L(1,f) = 0. Thefollowingpropositionplaysafundamentalroleinourapproach. Proposition3.1. IftheErdo¨sconjectureisfalse(modq)withqodd,then 1 1 ≤ . ϕ(d) d|q X d≥3 4 TAPASCHATTERJEEANDM.RAMMURTY Proof. Bythehypothesis,thereisanErdo¨sianfunctionf modqforwhich,wehaveL(1,f) = 0. ApplyingOkada’scriterion,weget f(b) = 0. (2) b b∈M(q) X Letd = (b,q),sothatb = db with(b ,q/d) = 1. Then(2)canbewrittenas 1 1 1 f(db ) 1 −f(1) = . d b 1 Xd|q b1∈XM(q) d≥3 (b1,q/d)=1 Takingabsolutevalueofbothsides,weget 1 1 1 ≤ . (3) d b 1 Xd|q b1∈XM(d) d≥3 Noticethattheinnersumcanbewrittenas −1 1 1 1 1 d = 1+ + +··· = 1− = . b p p2 p ϕ(d) b1∈XM(d) 1 Yp|d (cid:18) (cid:19) Yp|d (cid:18) (cid:19) Hencefrom(3),weget 1 1 ≤ . ϕ(d) d|q X d≥3 (cid:3) Twoimmediatecorollariesoftheabovepropositionarethefollowing: Corollary 3.2. Ifq isaprimepoweroraproductoftwodistinctoddprimes,thentheErdo¨s conjectureistrue(modq). Proof. Thisisapleasantelementaryexercise. (cid:3) Hence we have recovered the two basic cases of the conjecture which were given in the introduction,ofcourse,alsoasaconsequenceofOkada’sCriterion. Letd(n)bethedivisorfunction,i.e. d(n)isthenumberofdivisorsofn. Corollary3.3. Ifthesmallestprimefactorofqisatleastd(q),thentheErdo¨sconjectureistrue forq. Proof. Letlbethesmallestprimefactorofq. Fromtheaboveproposition,iftheErdo¨sconjecture isfalse(modq),thenwehave 1 1 ≤ ϕ(d) d|q X d≥3 1 d(q)−2 < 1 = , ϕ(l) l−1 d|q X d≥3 ONACONJECTUREOFERDO¨S 5 thestrict inequality in thepenultimate stepcoming from thefact that q has at least twoprime divisors. Thus,l < d(q). Henceifl ≥ d(q),thentheErdo¨sconjectureistrue(modq). (cid:3) Notethat, theCorollary 3.3 was notknownpreviously. Itimplies that theconjectureis true for any squarefree number q with k prime factors, provided the smallest prime factor of q is greater than 2k. Proposition 3.1 opens the door for a new approach to the study of Erdo¨s’s conjecture. Letusconsiderthefollowing S (X) = |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureisfalse(modq)}| 1 Then,wehave 1 1 S (X) ≤ ≤ 1 1 ϕ(d) ϕ(d) q≤X d|q 3≤d≤X q≤X X X X X q≡1(mod4)d≥3 dodd q≡1(mod4) d|q 1 X 1 X 1 ≤ +O(1) ≤ +O ϕ(d) 4d ϕ(d)4d ϕ(d) 3≤d≤X (cid:18) (cid:19) 3≤d≤X 3≤d≤X X X X dodd dodd 1 X ≤ +O(logX) ϕ(d)4d 3≤d≤X X dodd wherewehaveusedthewell-knownfactthat(seeforexample,p. 67of[6]) 1 = O(logX). ϕ(d) d≤X X Hence,weget X 1 S (X) . 1 4 dϕ(d) 3≤d X dodd X 1 1 . 1+ + +··· −1 4 pϕ(p) p2ϕ(p2) podd(cid:18) (cid:19) Y X 1 1 . 1+ + +··· −1 4 p(p−1) p3(p−1) podd(cid:18) (cid:19) Y X 1 1 1 . 1+ 1+ + +··· −1 4 p(p−1) p2 p4 podd(cid:18) (cid:18) (cid:19)(cid:19) Y X p . 1+ −1 . 4 (p−1)(p2 −1) podd(cid:18) (cid:19) Y Theproductiseasilycomputednumerically andwehave: S (X) . 0.33(X/4).Asanimmedi- 1 atecorollarywegetthefollowing: 6 TAPASCHATTERJEEANDM.RAMMURTY Corollary3.4. |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}| & 0.67X. 4 3.1. Refinementusingthesecondmoment. Byconsideringhighermoments,wecanimprove the lower bound in theabove corollary. Webegin with the secondmoment. We include these estimatessincetheyareofindependentinterestandself-contained. Proposition3.5. |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}| & 0.78X. 4 Proof. Letusfirstconsiderthefollowinginequality: 2 1 S1(X) ≤ ϕ(d) q≤X d|q X X q≡1(mod4)d≥3 1 ≤ ϕ(d )ϕ(d ) 1 2 qX≤X d1|Xq,d2|q q≡1(mod4)3≤d1,d2<q 1 ≤ 1 ϕ(d )ϕ(d ) 1 2 3≤d1X,d2≤X qX≤X d1,d2 odd q≡1(mod4) d1|q,d2|q 1 ≤ 1 ϕ(d )ϕ(d ) 1 2 3≤d1X,d2≤X qX≤X d1,d2 odd q≡1(mod4) [d1,d2]|q 1 X ≤ +O(1) . ϕ(d )ϕ(d ) 4[d ,d ] 3≤d1X,d2≤X 1 2 (cid:18) 1 2 (cid:19) d1,d2 odd Hence,wehave X 1 S (X) ≤ +O(log2X). 1 4 ϕ(d )ϕ(d )[d ,d ] 1 2 1 2 3≤d1X,d2≤X d1,d2 odd Byasimplenumericalcalculation,wededucethat X S (X) . 0.22 . 1 4 Hencetheconjectureholdsforatleast78%ofthepositiveintegerscongruentto1mod4. (cid:3) Similarlyonecancomputehigherfractionalmomentstogetanoptimalresult. Foranyr > 1, wehave r 1 S1(X) ≤ . ϕ(d) q≤X d|q X X q≡1(mod4)d≥3 ONACONJECTUREOFERDO¨S 7 We studythis as a function of r. Using Maple we computed that the minimal value occurs at r ∼ 3.85(see[3])andweget X S (X) . 0.18 . 1 4 Thus,weget|{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}| & 0.82X,i.e. 4 S(X) liminf ≥ 0.82. X→∞ X/4 Hence, we have shown the theoremstated in the Introduction, i.e. the conjecture holds for at least82%ofthenumberscongruentto1mod4. 3.2. An alternative approach. In this subsection, we discuss an alternative approach to this problem. Itleadstoa slightlyweakerresult. Howeverthismethodis ofindependentinterest, so we record it here. We begin with a further refinement of Proposition 3.1 by considering fractional momentsthere. FromProposition3.1, wegetiftheErdo¨sconjectureis false forodd q,then 1 1 ≤ . ϕ(d) d|q X d≥3 Adding1bothsidesoftheaboveinequality,weget 1 2 ≤ , ϕ(d) d|q X whichcanberewrittenas 1 1 1 ≤ . 2 ϕ(d) d|q X Henceforanyα > 0,Proposition3.1canberewrittenas: Proposition3.6. IfErdo¨sconjectureisfalseforoddq,then α 1 1 1 ≤ . 2α ϕ(d) d|q X Asbefore,S (X) = |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureisfalseforq}|. Thenfromthe 1 aboveproposition,weget α 1 1 S (X) ≤ . 1 2α ϕ(d) q≤X d|q X X q≡1(mod4) α Letf (q) = 1 andχbethenon-trivialDirichletcharactermod4. Thentheabove α d|q ϕ(d) inequalitybeco(cid:16)mes (cid:17) P 1 S1(X) ≤ 2α+1 fα(q)+ χ(q)fα(q). (4) q≤X q≤X X X q odd q odd 8 TAPASCHATTERJEEANDM.RAMMURTY Again,notethatf (q)isamultiplicativearithmeticfunction. Onecancheckthatitalsosatisfies α all the other hypothesesof Wirsing’s theorem(Proposition 2.2) with G = 2α and τ = 1. So in lightofWirsing’stheorem,weget e−γ f (p) f (p2) α α f (q) ∼ X 1+ + +··· α logX p p2 q≤X p≤X(cid:18) (cid:19) X Y qodd p6=2 and e−γ χ(p)f (p) χ(p2)f (p2) α α χ(q)f (q)∼ X 1+ + +··· . α logX p p2 q≤X p≤X(cid:18) (cid:19) X Y qodd p6=2 Again,fromMertenstheoremweknowthat e−γ (1−1/p) ∼ . logX p≤X Y Hencewehave X f (p) f (p2) α α f (q) ∼ (1−1/p) 1+ + +··· α 2 p p2 q≤X p≤X (cid:18) (cid:19) X Y q odd p6=2 X ∼ p (say) 1 2 and X χ(p)f (p) χ(p2)f (p2) α α χ(q)f (q) ∼ (1−1/p) 1+ + +··· α 2 p p2 q≤X p≤X (cid:18) (cid:19) X Y q odd p6=2 X ∼ p (say). 2 2 Nowusingtheabovetwoinequality(4)becomes, X S (X) . (p +p ). 1 2α+2 1 2 Finally usingMaple (see[3]), we findthat thequantity onthe righthand sideis minimized at α ∼ 8.11andweget X S (X) . 0.20 . 1 4 Hence,weget S(X) liminf ≥ 0.80. X→∞ X/4 Remarks. Onecannothopetoobtain100%bythesemethods. Infact,onecanshowthatthere isapositivedensity(albeitsmall)ofqforwhichtheinequalityofProposition3.1holds. Indeed, since 1 1 ≥ 1+ ϕ(d) p−1 d|q p|q (cid:18) (cid:19) X Y we can make the product( and hence the sum)arbitrarily large by ensuringthat q is divisible byall theprimesinan initial segment. Wecan evenensurethattheseprimesare congruentto ONACONJECTUREOFERDO¨S 9 1(mod4). Wethentakenumberswhicharedivisiblebythisq andcongruentto1(mod4)and deducethatforallthesenumbers,theinequalityinthepropositionholds. Sincetheproducton therightdivergesslowlytoinfinityaswegothroughsuchnumbersq,weobtaininthisway,a smalldensityofnumbersforwhichtheinequalityholds. Acknowledgements. WethankMichaelRothforhishelponusingtheMaplelanguageaswell asSanoliGun,PurusottamRathandEkataSahafortheircommentsonanearlierversionofthis paper. Wealsothanktherefereeforhelpfulcommentsthatimprovedthequalityofthepaper. REFERENCES [1] A.Baker,B.J.BirchandE.A.Wirsing,OnaproblemofChowla,J.NumberTheory5(1973),224-236. [2] T.ChatterjeeandM.R.Murty,Non-vanishingofDirichletserieswithperiodiccoefficients,J.NumberTheory,145 (2014),1–21. [3] T.ChatterjeeandM.R.Murty,Maplecodeatwww.mast.queensu.ca/murty/maplecode.pdf. [4] S.Gun,M.R.MurtyandP.Rath,LinearindependenceofHurwitzzetavaluesandatheoremofBaker-Birch-Wirsing overnumberfields,ActaArithmetica,155(2012),no.3,297–309. [5] A.Livingston,TheseriesP∞ f(n) forperiodicf,Canad.Math.Bull.8(1965)413–432. n=1 n [6] M.RamMurty,ProblemsinAnalyticNumberTheory,2ndedition,Springer,2008. [7] M.RamMurtyandN.Saradha,Euler-LehmerconstantsandaconjectureofErdo¨s,J.NumberTheory130(2010), 2671-2682. [8] M. Ram Murty and N. Saradha, Transcendental values of the digamma function, J. Number Theory 125 (2007) 298–318. [9] T.Okada,Dirichletserieswithperiodicalgebraiccoefficients,J.LondonMath.Soc.(2)33(1986),no.1,13-21. [10] T.Okada,Onacertaininfiniteseriesforaperiodicarithmeticalfunction,ActaArith.40(1982)143–153. [11] N.SaradhaandR.Tijdeman,Onthetranscendenceofinfinitesumsofvaluesofrationalfunctions,J.LondonMath. Soc.(3)67(2003),580-592. [12] R.Tijdeman, SomeapplicationsofDiophantineapproximation, NumberTheoryfortheMilleniumIII,MA,2002, pp.261–284. [13] E.Wirsing,DasasymptotischeVerhaltenvonSummenu¨bermultiplikativeFunktionen,Math.Ann.143(1961)75-102. (T.Chatterjee)DEPARTMENTOFMATHEMATICS,INDIANINSTITUTEOFTECHNOLOGYROPAR,PUNJAB-140001, INDIA. (M. Ram Murty) DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN’S UNIVERSITY, KINGSTON, ON- TARIO,CANADA,K7L3N6. E-mailaddress,TapasChatterjee:[email protected] E-mailaddress,M.RamMurty:[email protected]