ebook img

On a conjecture of Erd\"os and certain Dirichlet series PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On a conjecture of Erd\"os and certain Dirichlet series

ON A CONJECTURE OF ERDO¨S AND CERTAIN DIRICHLET SERIES TAPASCHATTERJEE1ANDM.RAMMURTY2 5 1 0 ABSTRACT. Letf :Z/qZ → Zbesuchthatf(a)= ±1for1 ≤a <q,andf(q) =0. ThenErdo¨s 2 conjecturedthatP f(n) 6=0.Forqeven,itiseasytoshowthattheconjectureistrue.Thecase n≥1 n n q ≡ 3(mod4)wassolvedbyMurtyandSaradha. Inthispaper,weshowthatthisconjectureis a truefor82%oftheremainingintegersq≡1(mod4). J 7 1. Introduction 1 InawrittencommunicationwithLivingston,Erdo¨smadethefollowingconjecture(see[5]): ] T iff isaperiodicarithmeticfunctionwithperiodq and N ±1 ifq ∤n, . h f(n)= t (0 otherwise, a m then ∞ [ f(n) L(1,f) = 6= 0 n 1 n=1 v X wheretheL-functionL(s,f)associatedwithf isdefinedbytheseries 5 8 ∞ 1 f(n) L(s,f) := . (1) 4 ns 0 n=1 X . In1973,Baker,BirchandWirsing(seeTheorem1of[1]),usingBaker’stheoryoflinearformsin 1 0 logarithms,provedtheconjectureforq prime. In1982,Okada[10]establishedtheconjectureif 5 2ϕ(q)+1 > q. Hence, if q is a prime power or a product of two distinct odd primes, the con- 1 jecture is true. In 2002, R. Tijdeman [12] proved the conjecture is true for periodic completely : v multiplicative functions f. Saradha and Tijdeman [11] showedthat if f is periodicand multi- i X plicative with |f(pk)| < p−1for everyprime divisor p of q and everypositive integerk, then r theconjectureistrue. a Itiseasytoseethat ∞ f(n) L(1,f) = n n=1 X q exists if and only if f(n) = 0. If q is even and f takes values ±1 with f(q) = 0, then n=1 q f(n)6= 0. Hencetheconjectureholdsforevenq. n=1 P In 2007, Murty and Saradha [8] proved that if q is odd and f is an odd integer valued odd P periodic function then the conclusion of the conjecture holds. In 2010, they proved that the 2010MathematicsSubjectClassification. 11M06,11M20. Keywordsandphrases. Erdo¨sconjecture,non-vanishingofDirichletseries,Okada’scriterion. 1ResearchofthefirstauthorwassupportedbyapostdoctoralfellowshipatQueen’sUniversity. 2ResearchofthesecondauthorwassupportedbyanNSERCDiscoverygrantandaSimonsfellowship. 1 2 TAPASCHATTERJEEANDM.RAMMURTY Erdo¨s conjecture is true if q ≡ 3 ( mod 4) (see Theorem 7 of [7]). Thus the conjecture is open onlyin caseswhereq ≡ 1(mod4). However,it seemsthat anovelideawill beneededtodeal withthesecases. Inthispaper,weadoptanewdensity-theoreticapproachwhichisorthogonal toearliermethods. Hereisthemainconsequenceofourmethod: Theorem1.1. LetS(X) = |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}|. Then S(X) liminf ≥ 0.82. X→∞ X/4 In other words, the Erdo¨s conjecture is true for at least 82 % of the integers q ≡ 1 (mod 4). OurmethoddoesnotextendtoshowthattheErdo¨sconjectureistruefor100 %ofthemoduli q ≡ 1 (mod 4). We examine this question briefly at the end of the paper. It seems to us that moreideasareneededtoresolvetheconjecturefully. These questions have a long history beginning with Baker, Birch and Wirsing [1]. Their work was generalized by Gun, Murty and Rath [4] to the setting of algebraic number fields. Theforthcomingpaper[2]givesnewproofsofsomeofthebackgroundresultsofthisarea. We alsoreferthereaderto[12]foranexpandedsurveyoftheearlyhistory. 2. NotationsandPreliminaries Fromnowonwards,wedenotethefieldofrationalsbyQ,thefieldofalgebraicnumbersby Q,Euler’stotientfunctionbyϕandEuler’sconstantbyγ. Wesayafunctionf isErdo¨sianmod q iff isaperiodicfunctionwithperiodq and ±1 ifq ∤ n, f(n)= (0 otherwise. Alsowewillwritef(X) . g(X)tomean f(X) limsup ≤ 1. g(X) X→∞ Similarly,wewritef(x)& g(x)tomean f(X) liminf ≥ 1. X→∞ g(X) 2.1. Okada’scriterion. Proposition2.1. Lettheq-thcyclotomicpolynomialΦ beirreducibleoverthefieldQ(f(1),··· ,f(q)). q LetM(q)bethesetofpositive integerswhicharecomposedofprimefactorsofq. ThenL(1,f) = 0ifandonlyif f(am) = 0 m m∈M(q) X foreveryawith1≤ a < q,(a,q) = 1,and q f(r)ǫ(r,p) = 0 r=1 X (r,q)>1 ONACONJECTUREOFERDO¨S 3 foreveryprimedivisor pofq,where v (r) ifv (r)< v (q), p p p ǫ(r,p) = (vp(q)+ p−11 otherwise andforanyintegerr,v (r)istheexponentofpdividingr. p This Proposition is a modification, due to Saradha and Tijdeman [11], of a 1986 result of Okada[9]. NotethatOkadadeducedthesufficientcondition2ϕ(q)+1 > q statedintheintro- ductionfromhisoriginalversionofthiscriterion. 2.2. Wirsing’sTheorem. ThefollowingpropositionisduetoWirsing[13]. Proposition2.2. Letf beanon-negativemultiplicativearithmeticfunction,satisfying |f(p)|≤ Gforallprimesp, p−1f(p)logp ∼ τ logX, p≤X X withsomeconstantsG> 0,τ > 0and p−k|f(pk)| < ∞; p k≥2 XX if0 < τ ≤ 1,then,inaddition,thecondition |f(pk)| = O(X/logX) p k≥2 X X pk≤X isassumedtohold.Then X e−γτ f(p) f(p2) f(n)= (1+o(1)) (1+ + +···). logX Γ(τ) p p2 n≤X p≤X X Y 2.3. Mertens Theorem. We also need a classical theorem of Mertens in a later section. We recordthetheoremhere(seeforexample,p. 130of[6]): Proposition2.3. lim logX (1− 1) = e−γ. p X→∞ p≤X Q 3. ExceptionstotheconjectureofErdo¨s WesaythattheErdo¨sconjectureisfalse(modq),ifthereisanErdo¨sianfunctionf forwhich L(1,f) = 0. Thefollowingpropositionplaysafundamentalroleinourapproach. Proposition3.1. IftheErdo¨sconjectureisfalse(modq)withqodd,then 1 1 ≤ . ϕ(d) d|q X d≥3 4 TAPASCHATTERJEEANDM.RAMMURTY Proof. Bythehypothesis,thereisanErdo¨sianfunctionf modqforwhich,wehaveL(1,f) = 0. ApplyingOkada’scriterion,weget f(b) = 0. (2) b b∈M(q) X Letd = (b,q),sothatb = db with(b ,q/d) = 1. Then(2)canbewrittenas 1 1 1 f(db ) 1 −f(1) = . d b 1 Xd|q b1∈XM(q) d≥3 (b1,q/d)=1 Takingabsolutevalueofbothsides,weget 1 1 1 ≤ . (3) d b 1 Xd|q b1∈XM(d) d≥3 Noticethattheinnersumcanbewrittenas −1 1 1 1 1 d = 1+ + +··· = 1− = . b p p2 p ϕ(d) b1∈XM(d) 1 Yp|d (cid:18) (cid:19) Yp|d (cid:18) (cid:19) Hencefrom(3),weget 1 1 ≤ . ϕ(d) d|q X d≥3 (cid:3) Twoimmediatecorollariesoftheabovepropositionarethefollowing: Corollary 3.2. Ifq isaprimepoweroraproductoftwodistinctoddprimes,thentheErdo¨s conjectureistrue(modq). Proof. Thisisapleasantelementaryexercise. (cid:3) Hence we have recovered the two basic cases of the conjecture which were given in the introduction,ofcourse,alsoasaconsequenceofOkada’sCriterion. Letd(n)bethedivisorfunction,i.e. d(n)isthenumberofdivisorsofn. Corollary3.3. Ifthesmallestprimefactorofqisatleastd(q),thentheErdo¨sconjectureistrue forq. Proof. Letlbethesmallestprimefactorofq. Fromtheaboveproposition,iftheErdo¨sconjecture isfalse(modq),thenwehave 1 1 ≤ ϕ(d) d|q X d≥3 1 d(q)−2 < 1 = , ϕ(l) l−1 d|q X d≥3 ONACONJECTUREOFERDO¨S 5 thestrict inequality in thepenultimate stepcoming from thefact that q has at least twoprime divisors. Thus,l < d(q). Henceifl ≥ d(q),thentheErdo¨sconjectureistrue(modq). (cid:3) Notethat, theCorollary 3.3 was notknownpreviously. Itimplies that theconjectureis true for any squarefree number q with k prime factors, provided the smallest prime factor of q is greater than 2k. Proposition 3.1 opens the door for a new approach to the study of Erdo¨s’s conjecture. Letusconsiderthefollowing S (X) = |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureisfalse(modq)}| 1 Then,wehave 1 1 S (X) ≤ ≤ 1 1 ϕ(d) ϕ(d) q≤X d|q 3≤d≤X q≤X X X X X q≡1(mod4)d≥3 dodd q≡1(mod4) d|q 1 X 1 X 1 ≤ +O(1) ≤ +O ϕ(d) 4d ϕ(d)4d  ϕ(d) 3≤d≤X (cid:18) (cid:19) 3≤d≤X 3≤d≤X X X X dodd dodd   1 X ≤ +O(logX) ϕ(d)4d 3≤d≤X X dodd wherewehaveusedthewell-knownfactthat(seeforexample,p. 67of[6]) 1 = O(logX). ϕ(d) d≤X X Hence,weget X 1 S (X) . 1 4 dϕ(d) 3≤d X dodd X 1 1 . 1+ + +··· −1 4  pϕ(p) p2ϕ(p2)  podd(cid:18) (cid:19) Y   X 1 1 . 1+ + +··· −1 4  p(p−1) p3(p−1)  podd(cid:18) (cid:19) Y   X 1 1 1 . 1+ 1+ + +··· −1 4  p(p−1) p2 p4  podd(cid:18) (cid:18) (cid:19)(cid:19) Y   X p . 1+ −1 . 4  (p−1)(p2 −1)  podd(cid:18) (cid:19) Y   Theproductiseasilycomputednumerically andwehave: S (X) . 0.33(X/4).Asanimmedi- 1 atecorollarywegetthefollowing: 6 TAPASCHATTERJEEANDM.RAMMURTY Corollary3.4. |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}| & 0.67X. 4 3.1. Refinementusingthesecondmoment. Byconsideringhighermoments,wecanimprove the lower bound in theabove corollary. Webegin with the secondmoment. We include these estimatessincetheyareofindependentinterestandself-contained. Proposition3.5. |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}| & 0.78X. 4 Proof. Letusfirstconsiderthefollowinginequality: 2 1 S1(X) ≤   ϕ(d) q≤X d|q X X  q≡1(mod4)d≥3    1 ≤ ϕ(d )ϕ(d ) 1 2 qX≤X d1|Xq,d2|q q≡1(mod4)3≤d1,d2<q 1 ≤ 1 ϕ(d )ϕ(d ) 1 2 3≤d1X,d2≤X qX≤X d1,d2 odd q≡1(mod4) d1|q,d2|q 1 ≤ 1 ϕ(d )ϕ(d ) 1 2 3≤d1X,d2≤X qX≤X d1,d2 odd q≡1(mod4) [d1,d2]|q 1 X ≤ +O(1) . ϕ(d )ϕ(d ) 4[d ,d ] 3≤d1X,d2≤X 1 2 (cid:18) 1 2 (cid:19) d1,d2 odd Hence,wehave X 1 S (X) ≤ +O(log2X). 1 4 ϕ(d )ϕ(d )[d ,d ] 1 2 1 2 3≤d1X,d2≤X d1,d2 odd Byasimplenumericalcalculation,wededucethat X S (X) . 0.22 . 1 4 Hencetheconjectureholdsforatleast78%ofthepositiveintegerscongruentto1mod4. (cid:3) Similarlyonecancomputehigherfractionalmomentstogetanoptimalresult. Foranyr > 1, wehave r 1 S1(X) ≤   . ϕ(d) q≤X d|q X X  q≡1(mod4)d≥3    ONACONJECTUREOFERDO¨S 7 We studythis as a function of r. Using Maple we computed that the minimal value occurs at r ∼ 3.85(see[3])andweget X S (X) . 0.18 . 1 4 Thus,weget|{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureistrueforq}| & 0.82X,i.e. 4 S(X) liminf ≥ 0.82. X→∞ X/4 Hence, we have shown the theoremstated in the Introduction, i.e. the conjecture holds for at least82%ofthenumberscongruentto1mod4. 3.2. An alternative approach. In this subsection, we discuss an alternative approach to this problem. Itleadstoa slightlyweakerresult. Howeverthismethodis ofindependentinterest, so we record it here. We begin with a further refinement of Proposition 3.1 by considering fractional momentsthere. FromProposition3.1, wegetiftheErdo¨sconjectureis false forodd q,then 1 1 ≤ . ϕ(d) d|q X d≥3 Adding1bothsidesoftheaboveinequality,weget 1 2 ≤ , ϕ(d) d|q X whichcanberewrittenas 1 1 1 ≤ . 2 ϕ(d) d|q X Henceforanyα > 0,Proposition3.1canberewrittenas: Proposition3.6. IfErdo¨sconjectureisfalseforoddq,then α 1 1 1 ≤ . 2α  ϕ(d) d|q X   Asbefore,S (X) = |{q ≡ 1(mod4), q ≤ X|Erdo¨sconjectureisfalseforq}|. Thenfromthe 1 aboveproposition,weget α 1 1 S (X) ≤ . 1 2α  ϕ(d) q≤X d|q X X q≡1(mod4)   α Letf (q) = 1 andχbethenon-trivialDirichletcharactermod4. Thentheabove α d|q ϕ(d) inequalitybeco(cid:16)mes (cid:17) P 1 S1(X) ≤ 2α+1  fα(q)+ χ(q)fα(q). (4) q≤X q≤X X X  q odd q odd     8 TAPASCHATTERJEEANDM.RAMMURTY Again,notethatf (q)isamultiplicativearithmeticfunction. Onecancheckthatitalsosatisfies α all the other hypothesesof Wirsing’s theorem(Proposition 2.2) with G = 2α and τ = 1. So in lightofWirsing’stheorem,weget e−γ f (p) f (p2) α α f (q) ∼ X 1+ + +··· α logX p p2 q≤X p≤X(cid:18) (cid:19) X Y qodd p6=2 and e−γ χ(p)f (p) χ(p2)f (p2) α α χ(q)f (q)∼ X 1+ + +··· . α logX p p2 q≤X p≤X(cid:18) (cid:19) X Y qodd p6=2 Again,fromMertenstheoremweknowthat e−γ (1−1/p) ∼ . logX p≤X Y Hencewehave X f (p) f (p2) α α f (q) ∼ (1−1/p) 1+ + +··· α 2 p p2 q≤X p≤X (cid:18) (cid:19) X Y q odd p6=2 X ∼ p (say) 1 2 and X χ(p)f (p) χ(p2)f (p2) α α χ(q)f (q) ∼ (1−1/p) 1+ + +··· α 2 p p2 q≤X p≤X (cid:18) (cid:19) X Y q odd p6=2 X ∼ p (say). 2 2 Nowusingtheabovetwoinequality(4)becomes, X S (X) . (p +p ). 1 2α+2 1 2 Finally usingMaple (see[3]), we findthat thequantity onthe righthand sideis minimized at α ∼ 8.11andweget X S (X) . 0.20 . 1 4 Hence,weget S(X) liminf ≥ 0.80. X→∞ X/4 Remarks. Onecannothopetoobtain100%bythesemethods. Infact,onecanshowthatthere isapositivedensity(albeitsmall)ofqforwhichtheinequalityofProposition3.1holds. Indeed, since 1 1 ≥ 1+ ϕ(d) p−1 d|q p|q (cid:18) (cid:19) X Y we can make the product( and hence the sum)arbitrarily large by ensuringthat q is divisible byall theprimesinan initial segment. Wecan evenensurethattheseprimesare congruentto ONACONJECTUREOFERDO¨S 9 1(mod4). Wethentakenumberswhicharedivisiblebythisq andcongruentto1(mod4)and deducethatforallthesenumbers,theinequalityinthepropositionholds. Sincetheproducton therightdivergesslowlytoinfinityaswegothroughsuchnumbersq,weobtaininthisway,a smalldensityofnumbersforwhichtheinequalityholds. Acknowledgements. WethankMichaelRothforhishelponusingtheMaplelanguageaswell asSanoliGun,PurusottamRathandEkataSahafortheircommentsonanearlierversionofthis paper. Wealsothanktherefereeforhelpfulcommentsthatimprovedthequalityofthepaper. REFERENCES [1] A.Baker,B.J.BirchandE.A.Wirsing,OnaproblemofChowla,J.NumberTheory5(1973),224-236. [2] T.ChatterjeeandM.R.Murty,Non-vanishingofDirichletserieswithperiodiccoefficients,J.NumberTheory,145 (2014),1–21. [3] T.ChatterjeeandM.R.Murty,Maplecodeatwww.mast.queensu.ca/murty/maplecode.pdf. [4] S.Gun,M.R.MurtyandP.Rath,LinearindependenceofHurwitzzetavaluesandatheoremofBaker-Birch-Wirsing overnumberfields,ActaArithmetica,155(2012),no.3,297–309. [5] A.Livingston,TheseriesP∞ f(n) forperiodicf,Canad.Math.Bull.8(1965)413–432. n=1 n [6] M.RamMurty,ProblemsinAnalyticNumberTheory,2ndedition,Springer,2008. [7] M.RamMurtyandN.Saradha,Euler-LehmerconstantsandaconjectureofErdo¨s,J.NumberTheory130(2010), 2671-2682. [8] M. Ram Murty and N. Saradha, Transcendental values of the digamma function, J. Number Theory 125 (2007) 298–318. [9] T.Okada,Dirichletserieswithperiodicalgebraiccoefficients,J.LondonMath.Soc.(2)33(1986),no.1,13-21. [10] T.Okada,Onacertaininfiniteseriesforaperiodicarithmeticalfunction,ActaArith.40(1982)143–153. [11] N.SaradhaandR.Tijdeman,Onthetranscendenceofinfinitesumsofvaluesofrationalfunctions,J.LondonMath. Soc.(3)67(2003),580-592. [12] R.Tijdeman, SomeapplicationsofDiophantineapproximation, NumberTheoryfortheMilleniumIII,MA,2002, pp.261–284. [13] E.Wirsing,DasasymptotischeVerhaltenvonSummenu¨bermultiplikativeFunktionen,Math.Ann.143(1961)75-102. (T.Chatterjee)DEPARTMENTOFMATHEMATICS,INDIANINSTITUTEOFTECHNOLOGYROPAR,PUNJAB-140001, INDIA. (M. Ram Murty) DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN’S UNIVERSITY, KINGSTON, ON- TARIO,CANADA,K7L3N6. E-mailaddress,TapasChatterjee:[email protected] E-mailaddress,M.RamMurty:[email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.