ebook img

On a classical limit of q-deformed Whittaker functions PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview On a classical limit of q-deformed Whittaker functions

On a classical limit of -deformed Whittaker functions q Anton Gerasimov, Dimitri Lebedev and Sergey Oblezin 1 1 0 2 Abstract. WeprovideaderivationoftheGiventalintegralrepresentationoftheclassicalglℓ+1- n Whittaker function as a limit q →1 of the q-deformed glℓ+1-Whittaker function represented as a a sum over the Gelfand-Zetlin patterns. J 4 2 ] Introduction G A . Theq-deformedgl -Whittaker functionscanbedefinedaseigenfunctions oftheq-deformedgl - h ℓ+1 ℓ+1 t Toda chains [Ru], [Et]. Among various eigenfunctions there exists a special class of eigenfunctions a m with the support in the positive Weyl chamber. By analogy with the classical case we call such functions the class one q-deformed gl -Whittaker functions. In [GLO1] an explicit representation [ ℓ+1 1 of the class one q-deformed glℓ+1-Whittaker function as a sum over the Gelfand-Zetlin patterns was proposed. This representation has remarkable integrality and positivity properties. Precisely v 7 each term in the sum is a positive integer multiplied by a weight factor qwt and a character of the 6 torus Uℓ+1. This allows to represent the q-deformed gl -Whittaker function as a character of a 5 1 ℓ+1 4 C∗ Uℓ+1-module (i.e. it allows a categorification). The interpretation of the q-deformed glℓ+1- × . Whittaker function as a character shall be considered as a q-version of the Shintani-Casselman- 1 0 Shalika formula [Sh], [CS]. Indeed in the limit q 0 the q-deformed gl -Whittaker function ℓ+1 → 1 can be identified with the non-Archimedean Whittaker function and the representation of the q- 1 deformed Whittaker function as a character reduces to the standard Shintani-Casselman-Shalika : v formula for non-Archimedean Whittaker function [Sh], [CS]. i X In the limit q 1 the q-Whittaker functions reproduces the classical Whittaker functions. It r → a was pointed out in [GLO1] that in this limit an explicit sum type representation of the class one q-deformed gl -Whittaker function turns into the Givental integral representation for the class ℓ+1 one gl -Whittaker function [Gi] (see also [GKLO]). Thus the Givental integral representation ℓ+1 shall be considered as the Archimedean counterpart of the Shintani-Casselman-Shalika formula (for more details on this interpretation see [GLO2], [GLO3], [G]). In this note we provide a precise description of the q 1 limit reducing the q-deformed gl -Whittaker function to its ℓ+1 → classical analog and explicitly demonstrate that the Givental integral representation arises as a limit of the sum representation of the q-deformed gl -Whittaker function. This result is given by ℓ+1 Theorem 3.1. The established relation between a sum over the Gelfand-Zetlin patterns for gl ℓ+1 andtheGivental integrals forgl isaspecialcaseof ageneral relation between theGelfand-Zetlin ℓ+1 patterns and the Givental type integrals for classical series of Lie algebras [GLO4]. This relation elucidates the identification of the Givental and the Gelfand-Zetlin graphs noticed in [GLO4]. The relation between the Gelfand-Zetlin and Givental constructions described in this note should be also compared with the duality type relation introduced in [GLO5]. We are going to discuss the 1 general form of the relation between the Gelfand-Zetlin and the Givental constructions for classical Lie algebras elsewhere. Acknowledgments: The authors are grateful to A. Borodin and G. Olshanski for their interest in this work. The research was supported by Grant RFBR-09-01-93108-NCNIL-a. AG was also partly supported by Science Foundation Ireland grant. The research of SO was partially supported by P. Deligne’s 2004 Balzan Prize in Mathematics. 1 q-deformed gl -Whittaker function ℓ+1 In this Section we recall the explicit construction of the class one q-deformed gl -Whittaker ℓ+1 functions derived in [GLO1]. Quantum q-deformed gl -Toda chain (see e.g. [Ru], [Et]) is defined ℓ+1 gl by a set of ℓ + 1 mutually commuting functionally independent quantum Hamiltonians ℓ+1, r H r = 1,...,ℓ+1: glℓ+1(p ) = X1−δi2−i1,1 ... X1−δir−ir−1,1 X1−δir+1−ir,1 T ... T , Hr ℓ+1 i1 · · ir−1 · ir i1 · · ir (1.1) XIr (cid:0) (cid:1) e e e where r = 1,...,ℓ +1 and i = ℓ + 2. The summation in (1.1) goes over all ordered subsets r+1 I = i < i < < i of 1,2, ,ℓ+1 . Here we use the notations r 1 2 r { ··· } { ··· } T f(p ) = f(p ), p = p +δ , i ℓ+1 ℓ+1 ℓ+1,k ℓ+1,k k,i Xi = 1 qpℓ+1,i−pℓ+1e,i+1+1, i= 1,e...,ℓ, Xℓ+1 = 1. − The corresponding eigenvalue problem can be written in the following form: e e gl gl gl ℓ+1(p )Ψ ℓ+1 (p ) = ( z ) Ψ ℓ+1 (p ), Hr ℓ+1 z1,...,zℓ+1 ℓ+1 i z1,...,zℓ+1 ℓ+1 (1.2) XIr iY∈Ir and the first nontrivial Hamiltonian is given by ℓ H1glℓ+1(pℓ+1) = (1−qpℓ+1,i−pℓ+1,i+1+1)Ti + Tℓ+1. (1.3) i=1 X Oneofthemainresultsof[GLO1]nowcanbeformulatedasfollows. Givenp = (p ,...,p ) ℓ+1 ℓ+1,1 ℓ+1,ℓ+1 let us denote by (ℓ+1)(p ) a set of collections of the integer parameters p , k = 1,...,ℓ, P ℓ+1 k,i i = 1,...,k satisfying the Gelfand-Zetlin conditions p p p . Let (p ) be a k+1,i ≥ k,i ≥ k+1,i+1 Pℓ+1,ℓ ℓ+1 set of p = (p ,...,p ), p Z, satisfying the conditions p p p . ℓ ℓ,1 ℓ,ℓ ℓ,i ∈ ℓ+1,i ≥ ℓ,i ≥ ℓ+1,i+1 Theorem 1.1 A common solution of the eigenvalue problem (1.2) can be written in the following form. For p being in the dominant domain p ... p , the solution is given by ℓ+1 ℓ+1,1 ≥ ≥ ℓ+1,ℓ+1 ℓ+1 Ψglℓ+1 (p ) = zPipk,i−Pipk−1,i z1,...,zℓ+1 ℓ+1 k pk,i∈P(Xℓ+1)(pℓ+1) kY=1 ℓ k−1 (1.4) (p p ) ! k,i k,i+1 q − k=2i=1 , × ℓ k Q Q (p p ) ! (p p ) ! k+1,i k,i q k,i k+1,i+1 q − − k=1i=1 Q Q 2 where we use the notation (n) ! = (1 q)...(1 qn). When p is outside the dominant domain q − − ℓ+1 we set gl Ψ ℓ+1 (p ,...,p ) = 0. z1,...,zℓ+1 ℓ+1,1 ℓ+1,ℓ+1 Example 1.1 Let g = gl , p := p Z, p := p Z and p := p Z. The function 2 2,1 1 ∈ 2,2 2 ∈ 1,1 ∈ zpzp1+p2−p Ψgz1l2,z2(p1,p2)= (p 1p)2!(p p ) !, p1 ≥ p2, 1 q 2 q p2≤Xp≤p1 − − Ψgzl12,z2(p1,p2) = 0, p1 < p2, is a common eigenfunction of mutually commuting Hamiltonians gl2 = (1 qp1−p2+1)T +T , gl2 = T T . H1 − 1 2 H2 1 2 The formula (1.4) can be easily rewritten in the recursive form. Corollary 1.1 The following recursive relation holds Ψzg1lℓ,+..1.,zℓ+1(pℓ+1) = ∆(pℓ) zℓP+i1pℓ+1,i−Pipℓ,i Qℓ+1,ℓ(pℓ+1,pℓ|q)Ψgz1lℓ,...,zℓ(pℓ), (1.5) pℓ∈Pℓ+X1,ℓ(pℓ+1) where 1 Q (p ,p q) = , ℓ+1,ℓ ℓ+1 ℓ| ℓ (p p ) ! (p p ) ! ℓ+1,i ℓ,i q ℓ,i ℓ+1,i+1 q − − i=1 (1.6) Q ℓ−1 ∆(p )= (p p ) ! . ℓ ℓ,i− ℓ,i+1 q i=1 Y The following representations of the class one q-deformed gl -Whittaker function are a con- ℓ+1 sequence of the positivity and integrality of the coefficients of the q-series expansions of each term in the sum (1.4) (see [GLO1] for details). Proposition 1.1 (i). There exists a C∗ GL (C) module V such that the common eigenfunction ℓ+1 × (1.4) of the q-deformed Toda chain allows the following representation for p p ... ℓ+1,1 ℓ+1,2 ≥ ≥ ≥ p : ℓ+1,ℓ+1 Ψλglℓ+1(pℓ+1) = TrV qL0 ℓi=+11qλiHi, (1.7) where H := E , i= 1,...,ℓ+1 are Cartan generatorsQof gl = Lie(GL ) and L is a generator i i,i ℓ+1 ℓ+1 0 of Lie(C∗). (ii). There exists a finite-dimensional C∗ GL (C) module V such that the following repre- ℓ+1 f × sentation holds for p p ... p : ℓ+1,1 ℓ+1,2 ℓ+1,ℓ+1 ≥ ≥ ≥ ℓ+1 Ψglℓ+1(p ) = ∆(p ) Ψglℓ+1(p ) = Tr qL0 qλiHi. (1.8) λ ℓ+1 ℓ+1 λ ℓ+1 Vf i=1 Y e The module V entering (1.7) and the module V entering (1.8) have a structure of modules under f the action of (quantum) affine Lie algebras [GLO1]. 3 2 Classical limit of q-deformed Toda chain InthisSectionwedefinealimitq 1oftheq-deformedgl -Todachainreproducingthestandard ℓ+1 → gl -Toda chain. We provide an explicit check that the firsttwo generators of the ring of quantum ℓ+1 Hamiltonians of gl -Toda chain arise as a limit of some combinations of the following quantum ℓ+1 Hamiltonians of the q-deformed Toda chain ℓ H1glℓ+1(pℓ+1|q) = 1 − qpℓ+1,i−pℓ+1,i+1+1 Ti + Tℓ+1, Xi=1(cid:16) (cid:17) gl ℓ+1(p q) = T T T . Hℓ+1 ℓ+1| 1 2··· ℓ+1 Let us introduce the following parametrization: q = e−ǫ, p = (ℓ+2 2k)m(ǫ)+x ǫ−1. (2.1) ℓ+1,k ℓ+1,k − Here m(ǫ) Z is given by ∈ m(ǫ) = [ǫ−1ln ǫ], − and [x] Z is the integer part of x. ∈ Proposition 2.1 The following limiting relations hold: gl 1 gl H ℓ+1(x ) = lim ℓ+1(p (x,ǫ)q(ǫ)) (ℓ+1) , 1 ℓ+1 ǫ→0 ǫ H1 ℓ+1 | − h i gl 1 gl gl H ℓ+1(x ) = lim ℓ+1(p (x,ǫ)q(ǫ)) ℓ+1(p (x,ǫ)q(ǫ)) ℓ 2 ℓ+1 − ǫ→0 ǫ2 H1 ℓ+1 | −Hℓ+1 ℓ+1 | − h +1( glℓ+1(p (x,ǫ)q(ǫ)) 1)2 2 Hℓ+1 ℓ+1 | − i gl where H ℓ+1, i = 1,2 are the standard quantum Hamiltonians of the gl -Toda chain: i ℓ+1 ℓ+1 gl ∂ H ℓ+1(x ) = , 1 ℓ+1 ∂x ℓ+1,i i=1 X Hglℓ+1(x ) = 1 ℓ+1 ∂2 + ℓ exi+1−xi. 2 ℓ+1 −2 ∂x2 i=1 i i=1 X X Proof. Using the fact that exp(ǫ[2(ǫ)−1ln(ǫ)] = ǫ2(1+O(ǫ2/lnǫ)) we have glℓ+1(p q) = (ℓ+1) + ǫℓ+1 ∂ +ǫ2 1 ℓ+1 ∂2 ℓ exℓ+1,k+1−xℓ+1,k + O(ǫ3), H1 ℓ+1| ∂x 2 ∂x2 − Xi=1 ℓ+1,i (cid:16) Xi=1 ℓ+1,i Xk=1 (cid:17) glℓ+1(p q) = 1 + ǫℓ+1 ∂ + 1ǫ2 ℓ+1 ∂2 + O(ǫ3). Hℓ+1 ℓ+1| ∂x 2 ∂x ∂x ℓ+1,i ℓ+1,i ℓ+1,j i=1 i,j=1 X X 4 Now the limiting formulas can be straightforwardly verified. We have glℓ+1(p q) glℓ+1(p q) ℓ = ǫ2 1 ℓ+1 ∂2 ℓ exℓ+1,k+1−xℓ+1,k + O(ǫ3), H1 ℓ+1| −Hℓ+1 ℓ+1| − − 2 ∂x ∂x − ℓ+1,i ℓ+1,j (cid:16) Xi6=j Xk=1 (cid:17) 1( glℓ+1(p q) 1)2 = 1ǫ2 ℓ+1 ∂2 + O(ǫ3), 2 Hℓ+1 ℓ+1| − 2 ∂x ∂x ℓ+1,i ℓ+1,j (cid:16)iX,j=1 (cid:17) and thus glℓ+1(p q) glℓ+1(p q) ℓ+ 1( glℓ+1(p q) 1)2 H1 ℓ+1| −Hℓ+1 ℓ+1| − 2 Hℓ+1 ℓ+1| − 1 ℓ+1 ∂2 ℓ = ǫ2 exℓ+1,k+1−xℓ+1,k + O(ǫ3). 2 ∂x2 − (cid:16) Xi=1 ℓ+1,i Xk=1 (cid:17) 2 It is easy to see that the eigenfunction problem (1.2) is transformed into the standard eigen- function problem if we use the following parametrization of the spectral variables zi = eıǫλi, i = 1,...,ℓ+1. 3 Classical limit of class one Whittaker function In the limit q 1 defined in the previous Section the class one solution (1.4) of the q-deformed → gl -Toda chain should goes to the class one solution of the classical gl -Toda chain. In the ℓ+1 ℓ+1 classical setting an integral representation for class one gl -Whittaker function was constructed ℓ+1 by Givental [Gi], (see [GKLO] for a choice of the contour realizing class one condition) ℓ ψglℓ+1 (x ,...,x ) = dx eFglℓ+1(x), (3.1) λ1,...,λℓ+1 1 ℓ+1 k ZCk=1 Y and the function glℓ+1(x) is given by F ℓ+1 n n−1 ℓ k glℓ+1(x) = ı λn xn,i xn−1,i exk,i−xk+1,i +exk+1,i+1−xk,i . (3.2) F − − nX=1 (cid:16)Xi=1 Xi=1 (cid:17) Xk=1Xi=1(cid:16) (cid:17) Here C N+ is a small deformation of the subspace R(ℓ+21)ℓ C(ℓ+21)ℓ making the integral (3.2) ⊂ ⊂ convergent. Besides,weusethefollowingnotation: λ = (λ ,...,λ );x := x , i = 1,...,ℓ+1. 1 ℓ+1 i ℓ+1,i The integral representation (3.1) allows a recursive presentation analogous to (1.5) ψglℓ+1 (x ,...,x ) = dx Qglℓ+1(x ;x ;λ )ψglℓ (x ,...,x ), λ1,...,λℓ+1 1 ℓ+1 ℓ glℓ ℓ+1 ℓ ℓ+1 λ1,...,λℓ ℓ,1 ℓℓ (3.3) Z Rℓ where ℓ+1 ℓ gl Q ℓ+1(x ;x ;λ ) = exp ıλ x x glℓ ℓ+1 ℓ ℓ+1 ℓ+1 ℓ+1,i− ℓ,i n (cid:16)Xi=1 Xi=1 (cid:17) (3.4) ℓ exℓ,i−xℓ+1,i +exℓ+1,i+1−xℓ,i , − Xi=1(cid:16) (cid:17)o 5 and we assume Qgl1(x ; λ ) = eıλ1x11. gl 11 1 0 In the following we demonstrate that in the previously defined limit q 1 the class one q- → deformed gl -Whittaker function given by the sum (1.4) indeed turns into the classical class one ℓ+1 gl -Whittaker function given by the integral representation (3.1). In particular iterative formula ℓ+1 (1.5)turnsinto (3.3). For this purposeweneed thefollowing asymptotic of theq-factorials entering (1.4). Lemma 3.1 Let us introduce the following functions f (y,ǫ) =(y/ǫ+αm(ǫ)) !, α = 1,2, α q where m(ǫ)= [ǫ−1lnǫ], q = e−ǫ. Then for ǫ +0 the following expansions hold: − → f (y,ǫ) = eA(ǫ)+e−y+O(ǫ); (3.5) 1 f (y,ǫ) = eA(ǫ)+O(ǫα−1), (3.6) 2 where A(ǫ) = π21 1 ln ǫ . − 6 ǫ − 2 2π Proof. Taking into account the identity N N N +∞ 1 +∞ qr 1 qNr ln (1 qn) = ln(1 qn) = qnr = − , − − − r − r 1 qr n=1 n=1 n=1r=1 r=1 (cid:18) − (cid:19) Y X XX X and using the substitution q = e−ǫ, N = ǫ−1y+αm(ǫ) we obtain +∞ e−rǫ 1 e−αrǫm(ǫ)e−ry ln f (y,ǫ) = − . α − r 1 e−rǫ ! r=1 − X Now expanding the denominator over small ǫ we have +∞ e−rǫ 1 ǫαre−ry +∞ e−rǫ 1 ǫαre−ry ln f (y,ǫ) = − + = − + , α − r 1 e−rǫ ··· − r2ǫ 1 1rǫ+ 1r2ǫ2+ ! ··· r=1 (cid:18) − (cid:19) r=1 − 2 3! ··· X X and for the derivative we obtain +∞ 1 ǫαre−ry−rǫ +∞ ∂ ln f (y,ǫ) = + = c I (y,ǫ), y α − rǫ 1 1rǫ+ 1r2ǫ2+ ! ··· k α,k r=1 − 2 3! ··· k=−1 X X where +∞ +∞ I (y,ǫ) = ǫk+αrrke−yr = ǫk trrk, t =e−yǫα, α,k r=1 r=1 X X and c = 1. Let us separately analyze the term I and the other terms I . We have −1 α,−1 α,k≥0 − ∂ k 1 ∂k 1 I (y,ǫ) = ǫk t = ǫk , α,k≥0 ∂t 1 t ∂yk 1 ǫαe−y (cid:18) (cid:19) − − and thus I = ǫk+αe−y + , α = 1,2. α,k≥0 ··· 6 Now consider the case of k = 1 − 1 +∞ tr 1 1 c I (y,ǫ) = = ln(1 t) = ln(1 ǫαe−y)) = ǫα−1e−y + , t = e−yǫα. −1 α,−1 −ǫ r −ǫ − −ǫ − ··· r=1 X Thisgives (3.5),(3.6)withanunknownA(ǫ). Tocalculate A(ǫ)wetakee−y = 0andnoticethatthe resulting function does not depend on α. Thus we should calculate the asymptotic of the following function: +∞ e−rǫ 1 ǫrαe−ry +∞ 1 e−rǫ ln fα(y,ǫ)|ey=0 = − r 1− e−rǫ ey=0 =− r 1 e−rǫ = Xr=1 (cid:18) − (cid:19)(cid:12) Xr=1 (cid:18) − (cid:19) (cid:12) (cid:12) +∞+∞ +∞ 1 = e−nrǫ = ln (1 e−nǫ). − r − n=1r=1 n=1 XX Y It can be easily done using the modular properties η( τ−1) = √ ıτ η(τ), − − of the Dedekind eta function ∞ η(τ) = eı1π2τ (1 e2πınτ). − n=1 Y Namely, taking τ = ıǫ we have 2π ∞ fα y; ǫ = √2πǫ−1e−π62ǫ−1 1 e−ǫ−1(2π)2n . e−y=0 − (cid:0) (cid:1)(cid:12)(cid:12) nY=1(cid:0) (cid:1) (cid:12) This allows to infer the following result for the leading coefficients in the asymptotic expansion of lnf (y,ǫ : α e−y=0 (cid:12) (cid:1)(cid:12) (cid:12) 1 ǫ π2 A(ǫ) = ln ǫ−1, ǫ +0. (3.7) −2 2π − 6 −→ This completes the proof of Lemma. 2 Theorem 3.1 Let us use the following parametrization q = e−ǫ, p = (ℓ+2 2k)m(ǫ)+ǫ−1x , z = eıǫλk, (3.8) ℓ+1,k ℓ+1,k k − where k = 1,...,ℓ + 1, m(ǫ) = ǫ−1lnǫ . The integral representation (3.1) of the classical − gl -Whittaker function is given by the following limit of the q-deformed class one gl -Whittaker ℓ+1 (cid:2) (cid:3) ℓ+1 function represented as a sum (1.4) ψλgl1ℓ,+..1.,λℓ+1(x1,...,xℓ+1) = ǫ→lim+0 ǫℓ(ℓ2+1) eℓ(ℓ2+3)A(ǫ) Ψzgl1ℓ,+..1.,zℓ+1(pℓ+1) , (3.9) h i where A(ǫ) = π21 1 ln ǫ and x = x , i = 1,...,ℓ+1. − 6 ǫ − 2 2π i ℓ+1,i 7 Proof. We prove (3.9) by relating the recursive relation (1.5) ℓ+1 ℓ P pℓ+1,i−P pℓ,j Ψzg1lℓ,+..1.,zℓ+1(pℓ+1) = ∆(pℓ) zℓi=+11 j=1 Qℓ+1,ℓ(pℓ+1,pℓ|q) Ψgzl1ℓ,...,zℓ(pℓ), pℓ∈Pℓ+X1,ℓ(pℓ+1) where 1 Q (p ,p q) = , ℓ+1,ℓ ℓ+1 ℓ| ℓ (p p ) ! (p p ) ! ℓ+1,i ℓ,i q ℓ,i ℓ+1,i+1 q − − i=1 (3.10) Q ℓ−1 ∆(p )= (p p ) !, ℓ ℓ,i− ℓ,i+1 q i=1 Y with the recursive relation (3.3) for the classical Whittaker function. Let us introduce the following parametrization of the elements of the Gelfand-Zetlin patterns p (p ): ℓ ∈ Pℓ+1,ℓ ℓ+1 p = ǫ−1x + a m(ǫ), m(ǫ) = ǫ−1lnǫ , (3.11) ℓ,k ℓ,k k − where a are some constants. The Gelfand-Zetlin conditions on(cid:2)weights(cid:3)p reads as follows: k ℓ+1 p p p , k = 1,...,ℓ, ℓ+1,k ℓ,k ℓ+1,k+1 ≥ ≥ and they lead to ǫ−1x +(ℓ+2 2k)m(ǫ) ǫ−1x +a m(ǫ) ǫ−1x +(ℓ 2k)m(ǫ). (3.12) ℓ+1,k ℓ,k k ℓ+1,k+1 − ≥ ≥ − The requirement that the limit ǫ +0 preserves the conditions (3.12) implies the following re- → strictions on the parameters a : k ℓ 2k+2 > a > ℓ 2k, k = 1,...,ℓ. (3.13) k − − Since p = (p ,...,p ) Zℓ the only consistent choice in the limit ǫ +0 is a = ℓ+1 2k, ℓ ℓ,1 ℓ,ℓ ∈ → k − k = 1,...,ℓ. Although the variables p are restricted to be in positive Weyl chamber i.e. p ℓ,k ℓ,k ≥ p , in the limit ǫ +0 the variables x have no such restrictions. This follows from a simple ℓ,k+1 ℓ,k → observation that the limit ǫ +0 the a b[ǫ−1lnǫ] + / depends only on the sign of → ǫ − → ∞ −∞ non-zero coefficient b. Thus we have p = ǫ−1x + (ℓ+1 2k)m(ǫ). (3.14) ℓ,k ℓ,k − Now using Lemma 3.1 it is easy to obtain the following limiting formulas: e2ℓA(ǫ) lim e2ℓA(ǫ) (p ,p q) = lim ǫ→+0 Qℓ+1,ℓ ℓ+1 ℓ| ǫ→+0 ℓ f (x x ,ǫ) f (x x ,ǫ) 1 ℓ+1,i − ℓ,i 1 ℓ,i − ℓ+1,i+1 (3.15) i=1 Q gl = Q ℓ+1 x ;x ; λ , gl ℓ+1 ℓ ℓ+1 ℓ λℓ+1=0 (cid:12) (cid:0) (cid:1)(cid:12) (cid:12) ℓ−1 lim e(1−ℓ)A(ǫ)∆(p ) = lim e(1−ℓ)A(ǫ) f (x x ,ǫ) = 1, (3.16) ǫ→+0 ℓ ǫ→+0 2 ℓ,i− ℓ,i+1 i=1 Y 8 gl where Q ℓ+1 x ;x ; λ is given by (3.4). This implies the following identity: gl ℓ+1 ℓ ℓ+1 ℓ (cid:0) (cid:1) ℓ+1 ℓ P pℓ+1,i−P pℓ,j lim ǫℓ zi=1 j=1 e(ℓ+1)A(ǫ)Q p ;p q ∆(p ) ǫ→+0 ℓ+1 ℓ+1,ℓ ℓ+1 ℓ ℓ npℓ∈Pℓ+X1,ℓ(pℓ+1) h (cid:0) (cid:12) (cid:1) i (cid:12) × ǫℓ(ℓ2−1)e(ℓ−1)2(ℓ+2)A(ǫ)Ψgzl1ℓ,...,zℓ(pℓ) o ℓ+1 ℓ = dx exp ıλ x x ℓ ℓ+1 ℓ+1,i ℓ,j − RZℓ n (cid:0)Xi=1 Xj=1 (cid:1)o (3.17) lim e(ℓ+1)A(ǫ)Q p (x , ǫ); p (x , ǫ) q(ǫ) ∆ x (x , ǫ) ×ǫ→+0 ℓ+1,ℓ ℓ+1 ℓ+1 ℓ ℓ ℓ ℓ h ×ǫ→lim+0 ǫℓ(ℓ2−1(cid:0))e(ℓ−1)2(ℓ+2)A(ǫ)Ψgz1lℓ,...,zℓ p(cid:12)(cid:12)ℓ(x, ǫ(cid:1)) (cid:0). (cid:1)i h i (cid:0) (cid:1) Thuswerecovertherecursiverelations(3.3)fortheGiventalintegralsdirectlyleadingtotheintegral representation (3.1) for the classical gl -Whittaker function. Using (3.17) iteratively over ℓ we ℓ+1 obtain (3.9). 2 Example 3.1 For ℓ = 1 we have zp1,1zp2,1+p2,2−p1,1 Ψgz1l2,z2(p2,1,p2,2) = (p 1 p 2) !(p p ) !, p2,2 ≤ p2,1, 1,1 2,2 q 2,1 1,1 q p2,2≤Xp1,1≤p2,1 − − Ψ (p ,p ) = 0, p > p . z1,z2 2,1 2,2 2,2 2,1 Using the parametrization q = e−ǫ, p = m(ǫ)+x ǫ−1 p = m(ǫ)+x ǫ−1 z = eıǫλi, i = 1,2, 21 21 22 21 i − with m(ǫ) = [ǫ−1ln ǫ] we obtain − eıλ1x11+ıλ2(x21+x22−x11) Ψgzl12,z2(p21,p22)= ((x x )/ǫ+m(ǫ)) ! ((x x )/ǫ+m(ǫ)) !, 11 22 q 21 11 q x22−ǫm(ǫ)≤xX11≤x2,1+ǫm(ǫ) − − where we use the notations p = x /ǫ. Taking into account 11 11 1 = e+π621ǫ+21ln2ǫπ−e−y+O(ǫ), (y/ǫ+m(ǫ)) ! q we obtain ψλgl12,λ2(x1,x2) = ǫ→lim+0 ǫe−π321ǫ−ln2ǫπ Ψgz1l2,z2(p21,p22) = dx eıλ1x11eıλ2(x21+x22−x11)e−ex11−x21−ex22−x11. 11 R Z 9 References [Et] P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, Amer. Math. Soc. Transl. Ser.2, 194, 9–25, Amer. Math. Soc., Providence, RI, 1999; [arXiv:math.QA/9901053]. [CS] W. Casselman, J. Shalika, The unramified principal series of p-adic groups II. The Whittaker function. Comp. Math. 41 (1980) 207–231 . [GKLO] A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a Gauss-Givental representation of quantum Toda chain wave function, Int. Math. Res. Notices, (2006), Aricle ID96489, 23 pages, [arXiv:math.RT/0505310]. [GLO1] A. Gerasimov, D. Lebedev, S. Oblezin, On q-deformed gl -Whittaker functions I,II,III, ℓ+1 Comm. Math. Phys. 294 (2010), 97–119, [math.RT/0803.0145]; Comm. Math. Phys. 294 (2010), 121–143, [math.RT/0803.0970]; [math.RT/0805.3754]. [GLO2] A. Gerasimov, D. Lebedev, S. Oblezin, Parabolic Whittaker Functions and Topological Field Theories I, [arXiv:1002.2622]. [GLO3] A. Gerasimov, D. Lebedev and S. Oblezin, From Archimedean L-factors to Topological Field Theories Let. Math. Phys. DOI 10.1007/sl 105-010-0407-3; Mathematische Arbeitsta- gung, 2009, MPIM 2009-401. [GLO4] A.Gerasimov, D.Lebedev,S.Oblezin,New integral representations of Whittaker functions for classical groups, [arXiv:math.RT/0705.2886]. [GLO5] A. Gerasimov, D. Lebedev, S. Oblezin, Baxter operator and archimedean Hecke algebras, Commun. Math. Phys. 284(3), (2008), 867–896; [arXiv:0706.3476]. [G] A. Gerasimov, A Quantum Field Theory Model of Archimedean Geometry, talk at Rencontres Itzykson 2010: New trends in quantum integrability, 21-23 June, 2010, IPhT Saclay, France (see link on the webpage of the conference). [Gi] A. Givental, Stationary Phase Integrals, Quantum Toda Lattices, Flag Manifolds and the Mirror Conjecture. Topics inSingularity Theory,Amer.Math.Soc.Transl.Ser.,2 180,AMS, Providence, Rhode Island, 1997, 103–115 [arXiv:alg-geom/9612001]. [Ru] S. N. M. Ruijsenaars, Relativistic Toda system, Comm. Math. Phys. 133 (1990), 217–247. [Sh] T.Shintani,On an explicit formula for class 1 Whittaker functions on GL over p-adic fields. n Proc. Japan Acad. 52 (1976), 180–182 A.G.InstituteforTheoreticalandExperimentalPhysics,117259,Moscow,Russia; SchoolofMathematics,TrinityCollegeDublin,Dublin2,Ireland; Hamilton Mathematics Institute, Trinity College Dublin, Dublin 2, Ireland; D.L. Institute for Theoretical and Experimental Physics, 117259,Moscow, Russia; E-mail address: [email protected] 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.