ebook img

Olfactory Receptor Accessory Proteins Play Crucial Roles in Receptor Function and Gene Choice by PDF

171 Pages·2017·8.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Olfactory Receptor Accessory Proteins Play Crucial Roles in Receptor Function and Gene Choice by

Olfactory  Receptor  Accessory  Proteins  Play  Crucial  Roles  in  Receptor  Function  and   Gene  Choice   by   Ruchira  Sharma   Department  of  Molecular  Genetics  and  Microbiology   Duke  University     Date:_______________________   Approved:     ___________________________   Hiroaki  Matsunami,  Supervisor     ___________________________   Debra  Silver     ___________________________   Nina  Sherwood     ___________________________   Richard  Mooney     ___________________________   William  Wetsel     Dissertation  submitted  in  partial  fulfillment  of   the  requirements  for  the  degree  of  Doctor   of  Philosophy  in  the  Department  of   Molecular  Genetics  and  Microbiology  in  the  Graduate  School   of  Duke  University     2017 ABSTRACT   Olfactory  Receptor  Accessory  Proteins  Play  Crucial  Roles  in  Receptor  Function  and   Gene  Choice   by   Ruchira  Sharma   Department  of  Department  of   Molecular  Genetics  and  Microbiology   Duke  University     Date:_______________________   Approved:     ___________________________   Hiroaki  Matsunami,  Supervisor     ___________________________   Debra  Silver     ___________________________   Nina  Sherwood     ___________________________   Richard  Mooney     ___________________________   William  Wetsel     An  abstract  of  a  dissertation  submitted  in  partial   fulfillment  of  the  requirements  for  the  degree   of  Doctor  of  Philosophy  in  the  Department  of  Molecular  Genetics  and  Microbiology  in   the  Graduate  School  of   Duke  University     2017 Copyright  by   Ruchira  Sharma   2017 Abstract   Understanding  how  we  detect  our  environment  is  crucial  to  understanding  how   life  evolved  and  now  functions.  Volatile  chemicals  from  our  surroundings  are  sensed  by   our  olfactory  system,  a  primitive  sense  that  organisms  have  relied  on  for  survival  for   millions  of  years.  Mammals  express  a  large  family  of  odorant  receptor  (OR)  genes  in  the   sensory  neurons  in  the  nose  that  mediate  this  chemosensation.  Each  mature  olfactory   sensory  neuron  (OSN)  expresses  a  single  allele  of  a  single  OR  gene  at  one  time  although   in  the  absence  of  a  functional  gene  OSNs  can  switch  to  another  OR  gene.  A  functional   OR  can  inhibit  the  expression  of  another  OR  by  co-­‐‑opting  the  unfolded  protein  response   (UPR).  How  OSNs  make  their  initial  OR  gene  choice  and  the  mechanisms  by  which  the   ORs  interact  with  UPR  factors  remain  unknown.     In  this  study,  I  make  use  of  a  mouse  that  has  both  RTP1  and  RTP2  knocked  out   while  keeping  the  intervening  sequence  intact.  These  proteins  are  required  for  the   efficient  surface  trafficking  of  ORs  in  heterologous  cells  and  the  double  knock-­‐‑out  mouse   could  be  used  to  study  the  gene  regulation  of  OSNs  during  a  large-­‐‑scale  perturbation  of   the  trafficking  of  ORs  to  the  cell  surface.  We  initially  generate  and  validate  the  RTP1  and   RTP2  double  knock  out  mouse  (RTP1,2DKO)  and  show  that  consistent  with  our   heterologous  expression  system,  the  mutant  mice  have  OR  trafficking  defects.  These  OR   trafficking  defects  give  rise  to  higher  rates  of  cell  death  and  the  mutant  mice  have  fewer     iv mature  OSNs.  Surprisingly  we  identified  a  subset  of  ORs  that  were  overrepresented  in   the  RTP1,2DKO  animals.  Some  of  these  ORs  can  target  the  cell  surface  in  the  absence  of   the  RTPs.  This  finding  gave  rise  to  two  cohorts  of  ORs,  those  that  are  underrepresented   in  the  mutants  and  presumably  dependent  on  the  RTPs  for  cell  surface  trafficking  and   ORs  that  are  overrepresented  in  RTP1,2DKO.  Previous  studies  have  shown  that  OSNs   co-­‐‑opt  the  unfolded  protein  response  (UPR)  to  stabilize  OR  gene  choice  of  a  functional   OR.  We  show  that  OSNs  expressing  underrepresented  receptors  were  more  likely  to  be   unable  to  terminate  UPR  and  had  a  higher  tendency  to  switch  the  OR  it  was  initially   expressing.    Using  these  two  cohorts  we  showed  that  the  trafficking  of  ORs  to  the  cell   surface  is  a  crucial  step  in  the  stabilization  of  the  expression  of  the  OR.  In  the  absence  of   this  cell  surface  trafficking  the  OSN  is  unable  to  terminate  the  UPR  pathway  and  either   undergoes  cell  death  or  OR  gene  switching.         v Dedication   To  Amma  for  pushing  and  Daddy  for  worrying.       vi Contents   Abstract  ..........................................................................................................................................  iv   List  of  Tables  ................................................................................................................................  xii   List  of  Figures  .............................................................................................................................  xiii   Acknowledgements  ...................................................................................................................  xvi   1.  Introduction  ...............................................................................................................................  1   1.1  Mammalian  olfactory  system  .........................................................................................  2   1.2  Mammalian  olfactory  receptors  .....................................................................................  4   1.2.1  Canonical  odorant  receptor  signaling  ......................................................................  5   1.2.2  Multiple  signaling  pathways  observed  in  OSNs  ....................................................  7   1.2.3  Desensitization  and  adaptation  .................................................................................  8   1.3  OR  gene  expression  ..........................................................................................................  9   1.3.1  All  OR  genes  are  silenced  by  default  ......................................................................  11   1.3.2  A  single  OR  gene  is  chosen  for  expression  ............................................................  11   1.3.3  Immature  OSNs  contain  transcripts  from  multiple  OR  genes  ...........................  13   1.3.4  Negative  feedback  loop  ............................................................................................  13   1.3.5  OSNs  co-­‐‑opt  the  unfolded  protein  response  (UPR)  pathway  to  stabilize  OR   gene  choice  ..........................................................................................................................  14   1.4  Axon  targeting  ................................................................................................................  17   1.4.1.  ORs  play  a  pivotal  role  in  axon  targeting  .............................................................  17   1.4.2  The  region  where  an  OR  is  expressed  in  the  OE  determines  the  position  of  its   glomerulus  ...........................................................................................................................  18     vii 1.4.3  The  number  of  OSNs  expressing  an  OR  is  correlated  to  the  size  of  the   glomerulus  ...........................................................................................................................  19   1.5  Odor  coding  ....................................................................................................................  20   1.6  Cell  surface  trafficking  of  ORs  ......................................................................................  21   1.6.1  RTP1  and  RTP2  ..........................................................................................................  22   2.  RTP1  and  RTP2  double  knock-­‐‑out  mice  show  defects  in  their  olfactory  system  ..........  24   2.1  Introduction  .....................................................................................................................  24   2.2  Results  ..............................................................................................................................  25   2.2.1  Generation  of  RTP1,2DKO  mice  ..............................................................................  25   2.2.2  RTP1,2DKO  OSNs  show  defects  in  OR  trafficking  ..............................................  27   2.2.3  RTP1,2DKO  mice  have  fewer  mature  sensory  neurons  ......................................  28   2.2.4  Odorant  evoked  electrophysiological  responses  in  RTP1,2DKO  mice  are   diminished  ...........................................................................................................................  32   2.2.5  RTP1,2DKO  can  detect  odorants  .............................................................................  33   2.2.6  RTP1,2DKO  show  mating  depression  ....................................................................  34   2.3  Conclusions  .....................................................................................................................  35   3.  RTP1,2DKO  mice  express  a  biased  OR  repertoire  .............................................................  37   3.1  Introduction  .....................................................................................................................  37   3.2  Results  ..............................................................................................................................  37   3.2.1  RNA-­‐‑seq  gene  expression  analysis  on  the  RTP1,2DKO  OE  ................................  37   3.2.2  OR  are  one  of  the  most  differentially  expressed  gene  families  ..........................  39   3.2.3  The  proportion  of  OSNs  expressing  oORs  increases  in  older  RTP1,2DKO  mice  ...............................................................................................................................................  44     viii 3.2.4  Underrepresentation  or  overrepresentation  cannot  be  predicted  using   sequence  similarity  .............................................................................................................  46   3.2.5  Protein  sequence  determines  whether  an  OR  is  underrepresented  or   overrepresented  ..................................................................................................................  47   3.2.6  OSNs  expressing  oORs  can  mature  ........................................................................  49   3.2.7  The  OSNs  expressing  oORs  can  detect  odorants  ..................................................  51   3.2.8  OSNs  expressing  uORs  show  increased  rates  of  cell  death  in  RTP1,2DKO  OE52   3.3  Conclusions  .....................................................................................................................  53   4.  RTP1,2DKO  mice  expressing  uORs  show  persistent  UPR  and  unstable  OR  gene  choice ........................................................................................................................................................  56   4.1  Introduction  .....................................................................................................................  56   4.2  Results  ..............................................................................................................................  57   4.2.1  Ectopic  expression  of  nATF5  in  OSNs  from  RTP1,2DKO  OE  .............................  57   4.2.2  Protein  sequence  determines  whether  UPR  persists  in  the  OSN  .......................  58   4.2.3  OR  gene  expression  is  unstable  in  OSNs  expressing  Olfr151  in  RTP1,2DKO  ..  61   4.2.4  RTP1,2DKO  can  form  glomeruli  for  some  ORs.  ...................................................  64   4.3  Conclusions  .....................................................................................................................  66   5.  Effects  of  chronic  stimulation  on  the  representation  of  ORs  ............................................  68   5.1  Introduction  .....................................................................................................................  68   5.2  Results  ..............................................................................................................................  69   5.2.1  There  is  no  increase  in  Olfr151  gene  choice  stability  with  chronic  odor   exposure  ...............................................................................................................................  69   5.3  Conclusions  .....................................................................................................................  70     ix 6.  Conclusions  ..............................................................................................................................  71   6.1  Differential  control  of  OR  representations  by  RTPs  ..................................................  71   6.2  Prolonged  UPRs  in  OSNs  expressing  uORs  in  RTP1,2DKO  ....................................  72   6.3  RTP1,2DKO  mice  show  diminished  but  not  abolished  responses  to  odors  ..........  76   6.4  Functional  ORs  expressed  outside  olfactory  system  .................................................  78   6.5  Novel  factors  that  promote  OR  trafficking  to  the  cell  surface  .................................  79   7.  Materials  and  Methods  ..........................................................................................................  81   7.1  Media  and  Buffers  ..........................................................................................................  81   7.1.1  Bacterial  Culture  ........................................................................................................  81   7.1.2  Cell  Culture  ................................................................................................................  83   7.1.3  Fluorescence-­‐‑Activated  Cell  Sorting  (FACS)  ........................................................  84   7.1.4  In  Situ  Hybridization  ................................................................................................  85   7.1.5  LacZ  Staining  .............................................................................................................  86   7.2  Cell  Culture  .....................................................................................................................  87   7.2.1  Bacterial  cell  culture  ..................................................................................................  87   7.2.2  Mammalian  Cell  Culture  ..........................................................................................  96   7.3  Fluorescence-­‐‑Activated  Cell  Sorting  (FACS)  ..............................................................  97   7.4  Immunohistochemistry  (IHC)  ......................................................................................  99   7.5  In  situ  Hybridization  ....................................................................................................  101   7.6  RNA  Extraction  and  Sequencing  ................................................................................  105   7.7  Whole  mount  LacZ  Staining  .......................................................................................  107   7.8  Phospho  S6  Induction  ..................................................................................................  108     x

Description:
Figure 1: A representation of the cellular organization of the olfactory system: OSNs expressing the same receptors (represented here in the same color) project to the same glomeruli, which are innervated by afferent mitral and tufted cells. Interneurons connect neighboring glomeruli and coordinate
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.