ebook img

Oilfield Water Technology PDF

712 Pages·2006·32.042 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Oilfield Water Technology

Oilfield Water Technology Michael Davies and P. J.B. Scott &NACE INTEINATIONAL 1440 South Creek Drive Houston, Texas 77084 I N T E R N A T I O N A L 0 2006 NACE International All rights reserved. ISBN: 1-57590-204-4 Library of Congress Control Number: 2006928764 Printed in the United States of America. All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the copyright owners. Neither NACE International, its officers, directors, nor members thereof accept any responsibility for the use of the methods and materials discussed herein. The information is advisory only and the use of the materials and methods is solely at the risk of the user. Acknowledgments NACE wishes to thank the many sources of information and graphics materials from which portions of this book were drawn with permission. xv List of Figures xvii List of Tables xix About the Authors 1 1 Introduction 3 References 5 2 Types of Waters 6 2.1 Fresh Water 6 2.2 Seawater 9 2.3 Brines 10 2.4 Formation Waters 10 2.5 Injection Waters 12 2.6 Produced Waters 16 2.7 Oilfield Waste Waters 17 References 21 3 Oil Production Techniques 22 3.1 Waterflood 22 3.2 Enhanced Oil Recovery (EOR) 24 3.3 Thermal Processes 24 3.3.1 Steam Injection 27 3.3.2 Fireflooding 27 3.4 CO2 Injection 28 3.5 Chemical Injection 28 References 31 4 Analysis of Water 32 4.1 Sample Collection 37 4.1.1 Sampling Scale and Deposits 38 4.1.1.1 Removing Deposits 38 4.1.1.2 Quantity of Sample 38 4.1.1.3 Analysis of Water-Formed Deposits V vi Contents 4.2 Test Equipment 39 4.3 Test Methods and Checks 40 4.4 Determination of Major Components 42 4.4.1 Calcium 42 4.4.2 Magnesium 42 4.4.3 Sodium 42 4.4.4 Chloride 43 4.4.5 Sulfate 43 4.4.6 Bicarbonate and Carbonate 43 4.5 Determination of Minor Components 44 4.5.1 Barium 44 4.5.2 Carbon Dioxide 44 4.5.3 Hydrogen Sulfide 44 4.5.4 Iron 45 4.5.5 Manganese 45 4.5.6 Oxygen 45 4.5.7 Phosphate 46 4.5.8 Silica 47 4.5.9 Sulfite 47 4.6 Determination of Biological Components 47 4.7 Determination of Physical and Other Components 48 4.7.1 Water Quality for Subsurface Injection 48 4.7.2 Oil in Water 48 4.7.3 Basic Sediment and Water (BS&W) 49 4.7.4 Specific Gravity 49 4.7.5 Specific Resistivity 49 4.7.6 Temperature 50 4.7.7 Total Dissolved Solids (TDS) 50 4.7.8 Turbidity 50 4.7.9 Alkalinity and Acidity 51 4.7.10 Hardness 52 4.7.11 pH 52 4.7.12 Water Compatibility 54 4.8 Expression of Water Analysis Results 55 4.8.1 Palmer’s Classification 57 4.8.2 Graphic Illustrations 59 4.8.2.1 Stiffs Method 59 4.8.2.2 Tickell’s Method 60 4.8.2.3 Reistle’s Method 60 4.8.2.4 Cummer‘s Method 61 4.8.2.5 Telkessy’s Diagram 61 4.8.2.6 Schoeller’s Semilogarithmic Diagram 61 4.8.2.7 Hill’s Trilinear Method 61 4.8.2.8 Langelier’s Single-Point Method 61 4.8.2.9 Langelier’s Single-Point Diagram of Mixtures 62 References 62 Contents vii 5 Corrosion Mechanisms 65 5.1 General Corrosion 65 5.2 Localized Corrosion 65 5.2.1 Crevice Corrosion 66 5.2.2 Underdeposit Corrosion 66 5.2.3 Tuberculation 66 5.2.4 Pitting Corrosion 66 5.2.5 MicrobiologicallyI nfluenced Corrosion (MIC) 67 5.3 Environmentally Assisted Cracking (EAC) 67 5.3.1 Stress Corrosion Cracking (SCC) 68 5.3.2 Hydrogen Effects 68 5.3.3 Corrosion Fatigue 69 5.4 Velocity-Influenced Corrosion 69 5.4.1 Erosion Corrosion 70 5.4.2 Cavitation 70 5.5 Galvanic Corrosion 70 5.6 Intergranular Corrosion 71 5.7 Dealloying or Selective Attack 71 References 71 6 Corrosion of Metals 73 6.1 Carbon Steels and Cast Irons 73 6.2 Alloy Steels 77 6.3 Stainless Steels 78 6.3.1 Martensitic Stainless Steels 78 6.3.2 Precipitation-Hardening Stainless Steels 80 6.3.3 Ferritic Stainless Steels 80 6.3.4 Austenitic Stainless Steels 81 6.3.5 Duplex Stainless Steels 83 6.3.6 Cast Stainless Steels 85 6.3.7 Stainless Steels in Oilfield Waters 85 6.4 Nickel Alloys 89 6.5 Copper Alloys 94 6.6 Titanium and Its Alloys 96 References 100 7 Nonmetallic Behavior 107 7.1 Plastics 107 7.1.1 Thermoplastic 107 7.1.1.1 Polyvinyl Chloride (PVC) 107 7.1.1.2 Polyolefines-Polyethylene, Polypropylene, and Polybutylene 108 7.1.1.3 Fluorocarbons 109 7.1.1.4 Other Thermoplastics 110 7.1.2 Thermosetting Resins 113 7.1.2.1 Polyesters 113 viii Contents 7.1.2.2 Viiyl Esters 113 7.1.2.3 Epoxies 114 7.1.3 Fiber-Reinforced Plastics (FRP) 114 7.1.3.1 Dual Laminate Construction 119 7.1.4 Elastomers 120 7.1.5 Environmental Degradation of Plastics 122 7.1.5.1 Biodeterioration 123 7.1.5.1.1 Materials Attacked 124 7.1.5.1.2 Remedial Measures 125 7.2 Concrete 125 7.2.1 Reinforced Concrete 125 7.2.2 Prestressed Concrete 126 7.2.3 Deterioration of Concrete in Waters 126 7.2.3.1 Corrosion of Reinforcement 127 7.3 Coatings and Linings 128 7.3.1 Coatings 129 7.3.2 Linings 130 7.3.2.1 Thermoplastics 130 7.3.2.2 Thermosets 131 7.3.2.3 Rubber 132 7.3.2.4 Cement and Concrete 133 References 133 8 Corrosion in Waters 139 8.1 Effect of Oil in Water 139 8.2 Effect of Velocity 144 8.3 Effect of Biofilms and Chlorination in Seawater 150 8.4 Galvanic Effects 153 8.5 Effect of Oxygen 159 8.6 Effect of CO2 162 8.7 Effect of Sulfides 165 8.8 Effect of Salts 169 8.9 Influence of pH 172 8.10 Influence of Temperature 174 References 176 9 Corrosion Monitoring 183 9.1 Corrosion Monitoring Techniques 184 9.1.1 Operating Conditions 184 9.1.1.1 Chemical Composition 185 9.1.1.2 Physical Conditions 187 9.1.1.3 Operating Equipment 187 9.1.1.4 Inspection 188 9.1.1.4.1 Inspection Protocol 189 9.1.1.5 Failure Analysis 189 Contents ix 9.1.2 Corrosion Monitors 190 9.1.2.1 Corrosion Coupons 191 9.1.2.2 Electrical Resistance (ER) Method 192 9.1.2.3 Inductive Resistance (IR) Method 193 9.1.2.4 Hydrogen Probes 194 9.1.2.5 Acoustic Emission 194 9.1.2.6 Sand-Erosion Monitors 195 9.1.2.7 Sentinel Holes 195 9.1.3 Electrochemical Corrosion Monitoring Techniques 195 9.1.3.1 Linear Polarization Resistance (LPR) 195 9.1.3.2 Zero-Resistance Ammeter (ZRA) or Galvanic Probes 196 9.1.3.3 AC Impedance 197 9.1.3.4 Electrochemical Noise 197 9.1.3.5 Other Techniques 197 References 198 10 Corrosion Control 201 10.1 Process Changes 201 10.2 Cathodic Protection 203 10.3 Corrosion Inhibitors 204 References 211 11 Oilfield Water Microbiology 213 11.1 Types of Bacteria 215 11.1.1 General Aerobic Bacteria (GAB) 216 11.1.2 Sulfate-Reducing Bacteria (SRB) and Sulfide-Producing Bacteria (SPB) 216 11.1.3 Sulfur-Oxidizing Bacteria (SOB) 218 11.1.4 Iron and Manganese Oxidizing Bacteria (IOB and MOB) 218 11.1.5 Metal-Reducing Bacteria (MRB) 218 11.1.6 Nitrogen-Utilizing Bacteria 219 11.1.7 Methanogens 219 11.1.8 Acid-Producing Bacteria (APB) 219 11.1.9 Thermophilic Bacteria 220 11.2 Problems Caused by Bacteria 221 11.2.1 Souring 231 11.2.2 Plugging and Loss of Injectivity 232 11.2.3 Equipment Failures 232 11.2.4 Storage Problems 232 11.2.5 Pipeline Attack 232 11.2.6 Injection Water Problems 233 References 234 x Contents 12 Monitoring for MIC 243 12.1 Sample Collection and Storage 244 12.2 Sampling Methods and Techniques 246 12.2.1 Cultures 246 12.2.2 Serial Dilutions and Most Probable Number 247 12.2.3 Sampling and Monitoring Techniques for Sessile Bacteria 247 12.2.4 Other Methods 249 12.3 Monitoring SRB 251 12.4 Microbial Sampling of Equipment Surfaces 253 12.5 Biocide Monitoring 253 12.5.1 Biocide Quantity 253 12.5.2 Biocide Efficacy 255 References 255 13 Biological Control 261 13.1 Biodispersants 262 13.2 Biocides 262 13.2.1 Biocide Selection 262 13.2.2 Biocide Application 263 13.2.3 Regulatory Considerations 264 13.3 Biocide Experience in the Oil and Gas Industry 265 13.3.1 Oxidizing Biocides 266 13.3.2 Nonoxidizing Biocides 267 13.4 Nitrate Addition and Biocompetitive Exclusion 268 13.5 Effect of Corrosion Inhibitors on MIC 271 References 272 14 Scales and Sludges Deposited from Water 277 14.1 Calcium Carbonate 280 14.2 Scaling Prediction 286 14.2.1 Langelier Saturation Index 287 14.2.2 Ryznar Stability Index 288 14.2.3 Puckorius Scaling Index 289 14.2.4 Stiff-Davis Index 290 14.2.5 Oddo-Tomson Index 292 14.2.6 Larson-Skold Index 292 14.2.7 Common Ion Indices 293 14.2.8 Computer Programs 295 14.3 Magnesium Carbonate and Hydroxide Deposits 297 14.4 Calcium Sulfate Deposits 298 14.4.1 Predicting Calcium Sulfate Deposition from Water 301 14.5 Barium Sulfate 303 14.5.1 Prediction of Barium Sulfate Solubility 305 Contents xi 14.6 Strontium Sulfate 306 14.7 Iron Deposits 307 14.8 Silica Deposits 308 14.9 Naturally Occurring Radioactive Materials (NORM) 309 References 310 15 Scale Control 313 15.1 Scale-InhibitingC hemicals 314 15.2 Modification of Water Composition 324 15.3 Examples of Scale Control 324 15.4 Scale Removal 329 15.4.1 Chemical Removal 330 15.4.2 Mechanical Removal 332 References 333 16 Water Systems 337 16.1 Injection Waters 337 16.2 Enhanced Oil Recovery (EOR) 351 16.3 Produced Waters 355 16.3.1 Treatment of Produced Water for Reuse 370 16.4 OilSands 382 16.5 Boiler Feedwater 384 16.5.1 Boiler Feedwater Treatment 386 16.5.1.1 Boiler Blowdown 390 16.5.1.2 Caustic Embrittlement 391 16.5.1.3 Condensate Returns 392 16.5.1.4 Treatment for Hardness 392 16.5.1.5 Removal of Condensate Gases 392 16.5.1.6 Oil Removal 392 16.5.1.7 Treatment for Corrosion 393 16.6 Cooling Water 397 16.6.1 Softening the Water 398 16.6.2 Acid Treatment 398 16.6.3 Use of Chemicals to Prevent Scale Formation 399 16.6.4 Controlled Calcium Carbonate Scale Deposition 400 16.7 Cooling Towers 401 16.7.1 Prevention of Cooling Tower Fouling 402 16.7.1.1 Suspended Materials 403 16.7.1.2 Slime Prevention 403 16.7.2 Blowdown 404 16.7.2.1 Drift, Windage Loss, or Carry-Over 405 16.7.3 Cycles of Concentration 405 16.7.4 Evaporation Rate 405 16.7.5 Estimating Treatment Dosage 405 xii Contents 16.8 Specific Equipment 406 16.8.1 Tanks and Separators 406 16.8.2 Pumps 406 16.8.3 Piping and Pipelines 408 References 412 17 Water Treatment Processes and Equipment 419 17.1 Sedimentation and Coagulation 419 17.1.1 Sedimentation 420 17.1.1.1 Theory of Sedimentation 420 17.1.1.2 Design of Sedimentation Basins 425 17.1.1.3 Detention Time 426 17.1.1.4 Sludge Storage and Disposal 427 17.1.2 Coagulation 428 17.1.2.1 Coagulants 429 17.1.2.1.1 Aluminum Sulfate 430 17.1.2.1.2 Ferric Sulfate 431 17.1.2.1.3 Ferrous Sulfate 431 17.1.2.1.4 Potash Alum and Ammonia Alum 432 17.1.2.1.5 Sodium Aluminate 432 17.1.2.1.6 Coagulation Aids 433 17.1.2.1.7 Activated Silica 433 17.1.2.1.8 Polyelectrolytes 434 17.1.2.1.9 Clay 435 17.1.2.2 Zeta Potential 436 17.1.2.3 Mixing 436 17.1.2.4 Quantity of Coagulant and Xme 438 17.1.2.5 Temperature 438 17.2 Filtration 438 17.2.1 Theory of Filtration 440 17.2.2 Filter Media 442 17.2.3 Filtration Rate 446 17.2.3.1 Required Quality of Filtered Water 446 17.2.3.2 Character of Applied Water 446 17.2.3.3 Filter Bed Condition 448 17.2.4 Turbulent Flow 448 17.2.5 Washing Filters 449 17.2.6 Distribution Area 450 17.2.7 Velocity of Backwash Flow 450 17.2.8 Viscosity of Water 451 17.2.9 Size and Shape of Sand 451 17.2.10 Surface Wash 453 17.2.11 Air Scour 454 17.2.12 Frequency of Backwash 454 17.2.13 Precautions in Washing 456

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.