OH-PLIF MEASUREMENTS AND ACCURACY INVESTIGATION IN HIGH PRESSURE GH /GO COMBUSTION 2 2 By ARAVIND VAIDYANATHAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Aravind Vaidyanathan 2 To my Guru ‘Sainath of Shirdi’ 3 ACKNOWLEDGMENTS I express my sincere gratitude to my advisor, Dr. Corin Segal, for giving me the opportunity to do research under his valuable guidance and providing me with moral support and encouragement during the ups and downs of my graduate studies. I am also grateful to all the members of the PhD advisory committee for their critical evaluation and valuable suggestions on my research work. I am indebted to Dr. Jonas Gustavsson for his continued patience and guidance like an elder brother. I thank all my colleagues in the Combustion and Propulsion Laboratory; moreover working with people of diverse cultural background is a memorable experience. I am grateful to all my friends and relatives for their continued support and encouragement. I also express my sincere gratitude to my Master of Science advisor Prof. Job Kurian of IIT Madras, India and all my teachers who have helped me push the limits of my thinking and imagination. Finally I am extremely thankful to my parents for their endless support to me in pursuing higher education. This work has been performed with the support from NASA Grant NCC3-994 with Claudia Meyer as the Program Manager. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES.........................................................................................................................8 NOMENCLATURE......................................................................................................................12 ABSTRACT...................................................................................................................................16 CHAPTER 1 INTRODUCTION..................................................................................................................17 Hydroxyl Radical (OH) in Non-premixed Flames.................................................................25 Motivation for the Current Work............................................................................................28 2 OH PLANAR LASER INDUCED FLUORESCENCE - THEORY AND REVIEW...........29 Fluorescence Modeling...........................................................................................................29 Fluorescence and Interference Signals............................................................................37 Laser................................................................................................................................38 Absorption and Excitation, Line Shape and Fluorescence Efficiency............................38 Experimental Constants...................................................................................................38 Review of OH PLIF Diagnostic Studies.................................................................................39 Fluorescence Strategy and Interference Signals..............................................................64 Laser................................................................................................................................64 Absorption & Excitation, Line Shape and Fluorescence Efficiency...............................65 Experimental Constants...................................................................................................66 3 EXPERIMENTAL FACILITY AND DIAGNOSTICS METHODS.....................................68 Experimental Test Facility and Operating Conditions...........................................................68 OH-PLIF Diagnostics.............................................................................................................72 Wall Boundary Conditions.....................................................................................................75 4 OH-PLIF IMAGE PROCESSING AND QUANTITATIVE ANALYSIS............................77 Fluorescence and Interference Signals...................................................................................77 Laser.......................................................................................................................................82 Absorption and Excitation, Line Shape, and Fluorescence Efficiency..................................84 Experimental Constants..........................................................................................................86 5 5 RESULTS AND UNCERTAINTY ANALYSIS...................................................................89 Chamber Pressure Measurements...........................................................................................89 OH-PLIF Measurements.........................................................................................................92 Quantification of OH Concentration and Uncertainty at 10, 27, 37 and 53 bar...................100 6 CONCLUSIONS..................................................................................................................121 7 FUTURE WORK..................................................................................................................123 APPENDIX A MATLAB® SCRIPTS USED FOR DATA PROCESSING.................................................125 B PROPOSED NEW METHODOLOGY FOR PHOTON CALIBRATION..........................154 C OH ABSORPTION PROFILES...........................................................................................160 OH Absorption Profiles at 10 bar and 2500–3500 K Temperature Range...........................160 OH Absorption Profiles at 27 bar and 2500–3500 K Temperature Range...........................163 OH Absorption Profiles at 37 bar and 2500–3500 K Temperature Range...........................166 OH Absorption Profiles at 53 bar and 2500–3500 K Temperature Range...........................169 D OH NUMBER DENSITY CONTOURS..............................................................................172 Thirteen Instantaneous OH Number Density Contours at 10 bar.........................................172 Thirteen instantaneous OH Number Density Contours at 27 bar.........................................176 Thirteen Instantaneous OH Number Density Contours at 37 bar.........................................180 Thirteen Instantaneous OH Number Density Contours at 53 bar.........................................185 E TEMPERTURE MEASUREMENTS AND BOUNDARY CONDITIONS........................190 LIST OF REFERENCES.............................................................................................................196 BIOGRAPHICAL SKETCH.......................................................................................................203 6 LIST OF TABLES Table page 1-1 Previous Experimental Studies on Rocket Injectors..........................................................21 2-1 Review of OH-PLIF Diagnostics.......................................................................................40 3-1 Experimental Operating Conditions..................................................................................72 4-1 Colliding Species Cross Section for Collisional Quenching.............................................86 7 LIST OF FIGURES Figure page 1-1 Chamber wall cracks due to local heating. Blanching indicates regions of insufficient wall cooling........................................................................................................................17 1-2 Comparison of CFD predicted wall heat flux measurements with experimental results.................................................................................................................................18 2-1 Two-State Quasi-Steady Two-Step Modeling of Fluorescence.........................................29 2-2 Physical significance of the terms in OH number density expression...............................37 2-3 Pressure range in the reviewed studies..............................................................................67 3-1 Combustion Chamber Cross Section.................................................................................68 3-2 Injector Details...................................................................................................................69 3-4 Laser spectral profile measured using Burleigh Wavemeter before doubling to 283 nm......................................................................................................................................73 3-5 OH-PLIF Experimental Set-up..........................................................................................74 4-1 Average of 13 instantaneous images obtained at near steady state for chamber pressure of 10 bar...............................................................................................................78 4-2 Average of 13 instantaneous images obtained at near steady state for chamber pressure of 27 bar...............................................................................................................79 4-3 Average of 13 instantaneous images obtained at near steady state for chamber pressure of 37 bar...............................................................................................................80 4-4 Average of 13 instantaneous images obtained at near steady state for chamber pressure of 53 bar...............................................................................................................81 4-5 Normalized laser sheet intensity profile variation obtained from acetone fluorescence images................................................................................................................................83 4-6 Camera calibration corresponding to the detection strategy employed in the OH- PLIF measurements and region of interest........................................................................87 5-1 Chamber pressure versus time for GH /GO combustion for 10 bar and O/F mass 2 2 flow of 3.7..........................................................................................................................90 5-2 Chamber pressure versus time for GH /GO combustion for 27 bar and O/F mass 2 2 flow of 3.7..........................................................................................................................90 8 5-3 Chamber pressure versus time for GH /GO combustion for 37 bar and O/F mass 2 2 flow of 3.7..........................................................................................................................91 5-4 Chamber pressure versus time for GH /GO combustion for 53 bar and O/F mass 2 2 flow of 3.7..........................................................................................................................91 5-5 Instantaneous image-processed OH-PLIF images at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar.................................................................93 5-6 Average of thirteen instantaneous image-processed OH-PLIF images at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar..........................................94 5-7 Average of thirteen instantaneous image-processed OH-PLIF images at near steady state chamber pressure of (a) 35, (b) 36, and (c) 37 bar indicating the repeatability and reliability of OH-PLIF measurements for determination of OH concentration..........95 5-8 Mean position of reaction zone determined from the average OH-PLIF images at (a) 10, (b) 27, (c) 37 and (d) 53 bar.........................................................................................97 5-9 Temperature and specie mole fraction variation based on equilibrium calculations with equivalence ratios of 0.5–3 at (a) 10, (b) 27, (c) 37 and (d) 53 bar.........................102 9 5-10 Absorption coefficient (∑ f B' ) variation with equivalence ratio and temperature B 12 1 (2500–3500 K) at (a) 10, (b) 27, (c) 37 and (d) 53 bar showing that the variation with respect to mean is 12.4, 14.6, 14.5 and 15.1% respectively............................................104 5-11 Absorption profile of OH at (a) 3017 K and 10 bar, (b) 3085 K and 27 bar, (c) 3103 K and 37 bar, and (d) 3125 K and 53 bar simulated using LIFBASE showing a complete overlap with the laser spectral profile at all pressures.....................................106 5-12 Overlap integral ∫Φ Φ dν variation at (a) 10, (b) 27, (c) 37 and (d) 53 bar with laser abs temperature corresponding to equivalence ratio of 0.5–3, indicating that the variation with respect to mean is 1.3, 1, 0.8 and 0.5% respectively and can be assumed negligible..........................................................................................................................109 5-13 Collisional quench rate Q variation at (a) 10, (b) 27, (c) 37 and (d) 53 bar with 21 temperature and colliding species mole fraction corresponding to equivalence ratio of 0.5–3 indicating that the variation with respect to mean is 4.1, 3.9, 3.8 and 3.7 % respectively......................................................................................................................112 5-14 Instantaneous OH number density contours at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar.................................................................................113 5-15 Average of thirteen instantaneous OH number density contours at near steady state chamber pressure of (a) 10, (b) 27, (c) 37 and (d) 53 bar................................................114 9 5-16 OH-PLIF measurement uncertainties at (a) 10, (b) 27, (c) 37 and (d) 53 bar.................117 B-1 Calibration set-up for photon calibration.........................................................................154 B-2 A series of 900 images of 32x32 pixel size was obtained at each exposure....................156 B-3 A series of 900 images of 32x32 pixel size was obtained each exposure........................157 B-4 Counts vs exposure time at 532 nm.................................................................................158 B-5 Photons vs counts at 310 nm............................................................................................158 C-1 Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2.5 and (f) 3 corresponding to temperatures of 2500–3500 K for gaseous H -O flame at 10 bar...................................................................................162 2 2 C-2 Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2.5 and (f) 3 corresponding to temperatures of 2500–3500 K for gaseous H -O flame at 27 bar...................................................................................165 2 2 C-3 Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2.5 and (f) 3 corresponding to temperatures of 2500–3500 K for gaseous H -O flame at 37 bar.........................................................................................168 2 2 C-4 Absorption profile of OH simulated using LIFBASE at equivalence ratio of (a) 0.5, (b) 1, (c) 1.5, (d) 2, (e) 2.5 and (f) 3 corresponding to temperatures of 2500–3500 K for gaseous H -O flame at 53 bar...................................................................................171 2 2 D-1 Thirteen instantaneous OH number density contours at near steady state chamber pressure of 10 bar.............................................................................................................176 D-2 Thirteen instantaneous OH number density contours at near steady state chamber pressure of 27 bar.............................................................................................................180 D-3 Thirteen instantaneous OH number density contours at near steady state chamber pressure of 37 bar.............................................................................................................184 D-4 Thirteen instantaneous OH number density contours at near steady state chamber pressure of 53 bar.............................................................................................................189 E-1 Chamber wall temperatures vs time at inner locations of 37, 47, 58, 70, 89 and 102 mm from the injector face................................................................................................190 E-2 Chamber wall temperatures vs time at middle locations of 37, 47, 58, 70, 89 and 102 mm from the injector face................................................................................................190 E-3 Chamber wall temperatures at inner and middle locations along the chamber wall at end of the 8 s....................................................................................................................191 10
Description: