ebook img

Offbeat Integral Geometry on Symmetric Spaces PDF

591 Pages·2013·4.243 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Offbeat Integral Geometry on Symmetric Spaces

Valery V. Volchkov • Vitaly V. Volchkov Offbeat Integral Geometry on Symmetric Spaces Valery V. Volchkov Vitaly V. Volchkov Department of Mathematics Donetsk National University Donetsk Ukraine ISBN 978-3-0348-0571-1 ISBN 978-3-0348-0572-8 (eBook) DOI 10.1007/978-3-0348-0572-8 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2013931100 Mathematics Subject Classification (2010): 33C05, 33C10, 33C15, 33C45, 33C55, 33C80, 35P10, 42A38, 42A55, 42A65, 42A75, 42A85, 42B35, 42C30, 42C15, 43A32, 43A45, 43A85, 43A90, 44A12, 44A15, 44A20, 44A35, 45A05, 46F12, 53C35 © Springer Basel 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printedonacid-freepaper Springer Basel is part of Springer Science+Business Media (www.birkhauser-science.com) Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Part I Analysis on Symmetric Spaces 1 Preliminaries 1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Some transcendental functions . . . . . . . . . . . . . . . . . . . . . 18 1.4 Spherical harmonics. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5 The Gegenbauer polynomials . . . . . . . . . . . . . . . . . . . . . 34 1.6 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 38 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 The Euclidean Case 2.1 Homeomorphisms with the generalized transmutation property . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Some completeness results . . . . . . . . . . . . . . . . . . . . . . . 53 2.3 Systems of convolution equations . . . . . . . . . . . . . . . . . . . 57 2.4 Abel type integral equations . . . . . . . . . . . . . . . . . . . . . . 64 2.5 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 78 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 Symmetric Spaces of the Non-compact Type 3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2 The mapping 𝔄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 𝛿 3.3 Uniqueness theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.4 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 103 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 v vi Contents 4 Analogies for Compact Two-point Homogeneous Spaces 4.1 Introductory considerations . . . . . . . . . . . . . . . . . . . . . . 111 4.2 The functions Φ . . . . . . . . . . . . . . . . . . . . . . . . 117 𝜆,𝜂,𝑘,𝑚,𝑗 4.3 Generalized spherical transform . . . . . . . . . . . . . . . . . . . . 121 4.4 The mapping 𝔄 . . . . . . . . . . . . . . . . . . . . . . . . . . 127 𝑘,𝑚,𝑗 4.5 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 131 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5 The Phase Space Associated to the Heisenberg Group 5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 The functions 𝜙 . . . . . . . . . . . . . . . . . . . . . . . . . 138 𝜆,𝜂,𝑝,𝑞,𝑙 5.3 The transform ℱ(𝑝,𝑞) . . . . . . . . . . . . . . . . . . . . . . . . . . 143 𝑙 5.4 The mapping 𝔄 . . . . . . . . . . . . . . . . . . . . . . . . . . 148 (𝑝,𝑞),𝑙 5.5 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 150 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Part II Offbeat Integral Geometry 1 Functions with Zero Ball Means on Euclidean Space 1.1 Simplest properties of functions with zero integrals over balls . . . 159 1.2 Uniqueness results . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 1.3 Description of functions in the classes 𝑉 (𝐵 ) and 𝑈 (𝐵 ) . . . . . 172 𝑟 𝑅 𝑟 𝑅 1.4 Local two-radii theorems . . . . . . . . . . . . . . . . . . . . . . . . 178 1.5 Functions with zero integrals over balls in a spherical annulus . . . 197 1.6 The Liouville property . . . . . . . . . . . . . . . . . . . . . . . . . 201 1.7 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 223 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 2 Two-radii Theorems in Symmetric Spaces 2.1 Auxiliary constructions . . . . . . . . . . . . . . . . . . . . . . . . . 229 2.2 The Jacobi functions . . . . . . . . . . . . . . . . . . . . . . . . . . 233 2.3 The operator 𝒜 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 2.4 Functions with vanishing averages over geodesic balls . . . . . . . . 241 2.5 A definitive version of the local two-radii theorem . . . . . . . . . . 248 2.6 A local two-radii theorem for weighted ball means . . . . . . . . . . 252 2.7 The compact case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2.8 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 259 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Contents vii 3 The Problem of Finding a Function from Its Ball Means 3.1 The Berenstein–Gay–Ygerresult . . . . . . . . . . . . . . . . . . . 265 3.2 The Berenstein–Gay–Ygertheorem generalized . . . . . . . . . . . 272 3.3 The case of a ball and a sphere . . . . . . . . . . . . . . . . . . . . 281 3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 A. One-radius theorem on two-point homogeneous spaces . . . . . . . . . 295 B. Over-determined interpolation problems . . . . . . . . . . . . . . . . . 300 3.5 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 303 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 4 Sets with the Pompeiu Property 4.1 The Pompeiu problem . . . . . . . . . . . . . . . . . . . . . . . . . 309 4.2 Some examples of Pompeiu sets . . . . . . . . . . . . . . . . . . . . 313 4.3 A characterizationof Pompeiu sets . . . . . . . . . . . . . . . . . . 324 4.4 The local Pompeiu property . . . . . . . . . . . . . . . . . . . . . . 327 4.5 Upper and lower estimates for ℛ(𝐴) . . . . . . . . . . . . . . . . . 332 4.6 The value of ℛ(𝐴) for some subsets of the plane . . . . . . . . . . . 342 4.7 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 353 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 5 Functions with Zero Integrals over Polytopes 5.1 The value ℛ(𝐴) for convex polytopes . . . . . . . . . . . . . . . . . 359 5.2 The value ℛ(𝐴) for rectangular parallelepipeds . . . . . . . . . . . 365 5.3 The class 𝔓(𝐴,𝐵 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 𝑟 5.4 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 385 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 6 Ellipsoidal Means 6.1 Requisite results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 6.2 Functions with zero averagesover ellipsoids . . . . . . . . . . . . . 397 6.3 The value of ℛ(𝐴) for ellipsoids . . . . . . . . . . . . . . . . . . . . 406 6.4 Reconstruction of a function by means of its integrals over ellipsoids of revolution . . . . . . . . . . . . . . . . . . . . . . 417 6.5 Mean-value characterizationof pluriharmonic and separately harmonic functions . . . . . . . . . . . . . . . . . . . . . 422 6.6 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 429 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 viii Contents 7 The Pompeiu Property on a Sphere 7.1 Auxiliary assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 7.2 The functions 𝜓 and Ψ𝑘,𝑙 . . . . . . . . . . . . . . . . . . . . . . 443 𝜈,𝑘 𝜈 7.3 Basic properties of the class 𝒱 (𝐵 ). . . . . . . . . . . . . . . . . . 447 𝑟 𝑅 7.4 Two-radii theorems for the class 𝒱 (𝐵 ) . . . . . . . . . . . . . . . 452 𝑟 𝑅 7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 A. Conical injectivity sets of the spherical Radon transform . . . . . . . . 457 B. Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 462 7.6 The hemispherical transform . . . . . . . . . . . . . . . . . . . . . . 464 7.7 Measures with the Pompeiu property . . . . . . . . . . . . . . . . . 471 7.8 The Pompeiu property for spherical polygons . . . . . . . . . . . . 478 7.9 Extremal versions of the Pompeiu problem on a sphere . . . . . . . 483 7.10 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 491 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 8 The Pompeiu Transform on Symmetric Spaces and Groups 8.1 Main problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 8.2 Pompeiu transforms for distributions with support on a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 8.3 The Pompeiu problem for groups . . . . . . . . . . . . . . . . . . . 511 8.4 Spherical means on the reduced Heisenberg group and the Pompeiu problem with a twist. . . . . . . . . . . . . . . . . . . 515 8.5 Pompeiu’s problem on discrete space . . . . . . . . . . . . . . . . . 518 8.6 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 521 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 9 Pompeiu Transforms on Manifolds 9.1 Pompeiu transforms on a complete Riemannian manifold . . . . . . 527 9.2 Radial Pompeiu transforms on a locally symmetric space . . . . . . 531 9.3 Freak theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 9.4 General Pompeiu transforms on locally symmetric spaces . . . . . . 540 9.5 Exercises and further results . . . . . . . . . . . . . . . . . . . . . . 553 Bibliographical notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 Preface A typical problem in offbeat integral geometry is as follows. Let ℝ𝑛 be the 𝑛- dimensional real Euclidean space, M(𝑛) the group of Euclidean motions of ℝ𝑛, and𝐴aboundedsubsetofℝ𝑛ofpositiveLebesguemeasure.Considerthefollowing problem: describe the class of locally integrable functions 𝑓 such that ∫ 𝑓(𝑥)𝑑𝑥=0 (∗) 𝑔𝐴 for each 𝑔 ∈ M(𝑛). This problem has various generalizations and modifications. Forinstance,inplaceof(∗)onecaninvestigatesolutionsofasystemofconvolution equations with fixed distributions. The first studies in this area were carried out in 1929, by the Rumanian mathematician D. Pompeiu, who investigated the question on the existence of non-trivial functions satisfying (∗) for some 𝐴. D. Pompeiu erroneously assumed thatif𝐴isaballthenequation(∗)hasonlythetrivialsolution.Lateron,F.John showed that a function 𝑓 ∈𝐶∞ with zero integrals over all balls of fixed radius 𝑟 is uniquely defined by its values in the ball of radius 𝑟. Afterthat,F.John,J.Delsarte,L.H¨ormander,L.Zalcman,C.A.Berenstein, andotherauthorsdiscovereddeepconnectionsbetweenthese questionsandmany areas of contemporary mathematics and its applications. In recent years, local versions of the above problem have become a point of attention, in which a function 𝑓 is defined in a bounded domain 𝒪 and equal- ity (∗) holds for 𝑔 ∈M(𝑛): 𝑔𝐴⊂𝒪. The transition from the global to the local case makes the problem considerably more complicated, which is related to the breakdown of the structure of a group action on the solution set of equation (∗). Among first results in this direction we point out H¨ormander’s approximation theorem for solutions of a convolution equation on convex domains and the local two-radii theorem by C.A. Berenstein and R. Gay. Until recently research in this areawas carriedoutmostly using the technique ofthe Fourier transformandcor- responding methods of complex analysis. A remarkable result by the first author at the end of the last century was the development of a universal method for the completesolutionofmanyproblemsofthis kind,whichallowedone,inparticular, toremovevirtually allsuperfluous assumptionsimposedbyhis predecessors.This method is based on the representation of solutions of a broad class of convolu- tion equations by series in special functions. The results obtained by this method ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.