ebook img

OFDM Channel Estimation Based on Adaptive Thresholding for Sparse Signal Detection PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview OFDM Channel Estimation Based on Adaptive Thresholding for Sparse Signal Detection

OFDMCHANNELESTIMATION BASED ONADAPTIVETHRESHOLDINGFORSPARSE SIGNALDETECTION MahdiSoltanolkotabi,ArashAminiand FarokhMarvasti Advanced CommunicationResearch Institute(ACRI) EE Department,SharifUniversityofTechnology {msoltan, arashsil}@ee.sharif.eduand [email protected] 9 0 0 ABSTRACT in[?]asparsity-basedestimationmethodemploying theMatching 2 Pursuitisdevised. WirelessOFDMchannelscanbeapproximatedbyatimevaryingfil- Amaindrawbackofthesemethodsisthattheydonotconsider n terwithsparsetimedomaintaps.Recentachievementsinsparsesig- zeropaddingintheirscenario.IncurrentOFDMstandardstheband- a nalprocessing suchascompressed sensinghavefacilitatedtheuse widthisnotfullyoccupied;anumberofthesubcarriersatbothedges J of sparsity in estimation, which improves the performance signifi- ofthebandwidtharesettozero(hencethenamezeropadding)toin- 6 cantly. Theproblemofthesesparse-basedmethodsistheneedfor creasetheallowabletransitionbandoftheanalogbandpassfilterat 2 a stable transformation matrix which is not fulfilled in the current thereceiver. Zeropaddingresultsinanunstablefrequencytotime transmission setups. To assist the analog filtering at the receiver, transformation(ill-conditionedtransformationmatrix). Inaddition, ] the transmitter leaves some of the subcarriers at both edges of the T duetothelackofpilotinzeropaddedparts,commontimedomain bandwidth unused whichresultsinanill-conditionedDFTsubma- techniquesareimpractical. Inthispaperweproposeasparsechan- I trix. To overcome this difficulty we propose Adaptive Threshold- . nelestimationmethodcalledAdaptiveThresholdingforDetectionof s ingforSparseSignalDetection(ATSSD).Simulationresultsconfirm c SparseSignals(ATSSD)thatworksadequatelyevenforzero-padded thattheproposedmethodworkswellintime-invariantandspecially [ OFDMsystems. SimulationresultsusingtheDVB-Hstandardcon- time-varyingchannelswhereothermethodsmaynotworkaswell. firmthat ATSSDestimatesalmost theexact CFRintime-invariant 1 IndexTerms— Sparsechannel,Adaptivethresholding,OFDM channels. Furthermore, unlike the previous methods, the perfor- v channelestimation,MMSE manceundervaryingchannelsdegradesonlyslightlyastheDoppler 8 frequencyincreases. 4 9 1. INTRODUCTION 3 2. SPARSEOFDMCHANNELESTIMATION 1. Recent standards such as [?, ?, ?] introduce OFDM communica- 0 tionasoneofthebestoptionsforwirelesstransmissionofmultime- ToshowhowtheaforementionedchallengesinOFDMchanneles- 9 diasignalsincludingvideo. OFDMtransmission,althoughresistant timationcanbeovercomeusingtheinherentchannelproperties,we 0 againstmultipathfading,requiresaccurateestimationoftheChannel willbrieflyexplaintheproblemintwosubsections. In2.1OFDM : FrquencyResponse(CFR)atthereceiver forappropriatedecoding systemcomponents relatedtochannel estimation arereviewed. In v ofthedata. 2.2,inadditiontorestatingtheOFDMchannelestimationasasparse i X Formobilereception,thetransmitterreservessomeofthesub- signal processing problem, wewill explain thedifficultyof partial carriersineach OFDMsymbol (whichmayvary indifferent sym- useofbandwidth(zeropadding)inestimatingsparsechannels. r a bols) for a predefined pattern of data, referred to as Pilot tones, whichareaprioryknownatthereceiver. SinceinOFDMtransmis- 2.1. ReviewofOFDMSystemComponents sionthedataaredirectlysent inthefrequency domain, thesepilot tonesprovidethereceiverwithirregularnoisysamplesoftheCFR AttheOFDMtransmitter,codedbinarydataareinterleaved,grouped in the time interval of that symbol. The main task of the channel andmapped toconstellationpointsbasedonaspecificmodulation estimator block of the receiver istoestimate CFRat the non-pilot scheme. The resulting complex symbols which will form the fre- subcarriersusingtheobtainedsamplesatpilottones. Conventional quencydomainofthetransmittingsignalarerearrangedintoblocks methods involve some sort of interpolation between the obtained andforeachblockanumberofpilotsareinsertedamongthedataat samples,rangingfromthesimpleLinearInterpolation(LI)tomore predefinedlocations. TofacilitatetheRFanalogfilteringatthere- complicatedapproacheslikesplines.Underlimitedtimespreadand ceiver,theseblocksarezeropaddedtoformthefinalblocks(OFDM Dopplerfrequency,thetimevaryingOFDMchannelcanbeviewed symbols, denoted by X(n) wheren istheblock number); i.e., the asalowpass2Dsignal[?]. Inthissensetheproblemofchanneles- bandwidth is not fully occupied. The resulting symbols are con- timationbecomesequivalenttothereconstructionofa2-Dlowpass vertedintothetimedomain(x(n))bytheuseoftheIFFTalgorithm, signalfromitsirregularsamples[?]. where each symbol is extended by a Cyclic Prefix (CP, a copy of Recent resultsinsparsesignal processingsuchasCompressed thelast partof eachOFDMsymbol) andthesefinalblocks arese- Sensing[?],pavedthewaytoexploittheinherenttimedomainspar- riallytransmitted. Thecyclicprefixisinsertedtoprevent possible sityofthechannelinitsestimation[?,?,?]. Usingl minimization Inter-SymbolInterference(ISI)inexistenceofmultipathchannels. 1 algorithms(BasisPursuit)introducedin[?],reductionofthenum- Atthereceiver,thecyclicprefixisremovedandthereceivedsig- berofrequiredpilotsforchannelestimationisproposedin[?]while nals,y(n),aresenttoanFFTblock.Whenthedurationofthechan- nelimpulseresponseisshorterthanthecyclicprefixlength,noISI 3. PROPOSEDMETHOD isexpected between OFDM symbols. Assuming also no synchro- nizationerror,theequationrelatingthenthtransmittedandreceived Aspreviouslystated,theOFDMChannelImpulseResponse(CIR)is symbols,respectivelyX(n)andY(n),is: sparse.InthissectionwewillproposeanewschemecalledAdaptive ThresholdingforSparseSignalDetection(ATSSD)thatcanexploit Y(n)=X(n)⊙H(n)+W(n) (1) thisinherentsparsityevenwithill-conditionedmatrices,F . p,CP where⊙representselement byelement multiplicationoftwovec- In this method, the spectrum of the channel is initially esti- tors, H(n) is avector containing the samples of the Channel Fre- mated using linear interpolation between pilot subcarriers. The quency Response (CFR) corresponding to the nth OFDM symbol zero-paddedpartsofthebandwidthwhicharepossiblymeasuredas andWdenotesthesampledvector oftheAWGNnoiseinthefre- nonzeroduetothenoise,areinitiallyestimatedaszerowhileatthe quencydomain.Sincethereceiverispriorlyawareofpilotpositions middle subcarriers which are equipped with comb-type pilots, the andvalues, itcanobtainanoisyestimateofthechannelfrequency mentionedlinearinterpolationusingthenoisysamplesofthechan- spectrumat thesesubcarriers. Inthissense, theOFDMchannel is nelatpilotlocationsisemployed. Thisinitialestimateisimproved similar to a 2-D lattice in the discrete time-frequency plane from inaseriesofiterationsthatfindsthesparsesttimedomainresponse. which certain points are known due to pilots; the goal of channel The initially estimated spectrum is passed through the IFFT estimationistoestimatetherestviainterpolation. Theinterpolated block to obtain a crude version of the time domain impulse re- channelestimateisthenusedintheequalizationblocktoobtainan sponse. This initial estimate is fed to the ATSSD block which estimateofthetransmittedconstellationpoints(X(n)).Afterequal- consists of several iterations. In each iteration this method tries ization, the approximated OFDM symbol is demodulated, deinter- to find the location of the taps via a thresholding scheme on the leaved,anddecodedtoproducethebinaryoutputdata. estimatedchannel fromthepreviousiteration(orinthecaseofthe firstiteration,thecrudeversiondiscussedabove). Thethresholding 2.2. RestatingOFDMChannelEstimationasaSparseProblem scheme isfurther described insec. 3.1. After findingthe location of the taps ineach iteration (locations whose previously estimated Considering the sparse distribution of the scattering objects, the amplitudes stay above the threshold), their respective amplitudes OFDMchannel becomes sparse in thetime domain. Thus, by ex- are again found using the Minimum Mean Square Error (MMSE) ploitingthissparsity, abetter estimatecould beobtainedusing the criteriondiscussedinsec.3.2.Ineachiteration,duetothresholding, time domain. The resulting estimate is then transformed into the some of the fake taps which are noise samples whose amplitudes frequency domain by use of the FFTalgorithm. In this sense, the were above the threshold in the previous iteration, are discarded. problem of channel estimation becomes equivalent to finding the Thus, the new iteration starts with a lower number of fake taps. sparseChannelImpulseResponse(CIR)(h)fromtheequation: Moreover,becauseoftheMMSEestimator,thevalidtapsapproach theiractualvaluesineachnewiteration.Inthelastiteration,theac- Hp =Fp·h+Wp (2) tualtapsaredetectedandtheMMSEestimatorgivestheirrespective values.Themainstepsoftheproposedalgorithmare: whereH isthevectorofobservedchannelcoefficientsatpilotsub- p e carriers,F isthesub-matrixoftheDFTmatrixobtainedbykeep- p 1. Usinglinearinterpolation,setthecrudetime-domainchannel ing theerows of the FFT matrix that correspond to pilot positions asdescribedabovefortheinitialestimate. andW isthefrequency-domainnoisevectoratpilotpositions. As p statedearlier,inthecaseofnoISI,thelengthofthechannelcannot 2. Discardthetapswithamplitudesbellowthethreshold. exceedthelengthofthecyclicprefix(NCP). Thus,(2)canbefur- 3. Estimate the value of the remaining taps using the MMSE thersimplifiedinthezeroISIcase;onlythefirstNCP elementsof criterion. h(h )canhavenon-zerovalues. CP 4. Stopiftheestimatedchannel isthesameasthepreviousit- Hp =Fp,CP ·hCP +Wp (3) erationorwhenamaximumnumberofiterationsisreached, whereF isthesub-matrixoftheDFTmatrixobtainedbykeep- elsegotostep2. p,CP e ingonlythefirstNCP columnsofFp. Recentlytheideaofusing timedomainsparsityinOFDMchannelestimationwasproposedin [?]fordecreasingthenumberofpilots. Theauthorsproposedcom- 3.1. ChannelTapDetectionviaThresholding pressivesensing algorithmstofindthesparsest timedomain chan- Asmentionedearlier,ineachiteration,tapsbellowacertainthresh- nel. Theyprovedthatincaseofuniformpilotinsertion,thematrix F in(3)satisfiestheuniformuncertaintytheoremdescribedin oldarediscarded.Thethresholdintheithiterationissetas: p,CP [?]. Asaresult,linear-programming-basedalgorithmsusedincom- pressedsensing,similartotheonesintroducedin[?]canbeapplied Threshold=βeαi (4) toOFDMchannel estimation. However, theauthorsof [?]didnot considerzero-paddingattheendpointsofthebandwidthintheirsce- whereirepresentstheiterationnumber;i.e.,thethresholdexponen- nario,whichisanessentialpartofcurrentOFDMstandards.Thisas- tiallyincreasesastheiterationsproceed. αandβareconstantsthat sumption,causesthematrixFp,CP tocontradicttheRestrictedIso- dependonthenumberoftapsandinitialpowersofnoiseandchannel metricProperty(RIP)definedin[?]andthustheuseofCompressive taps;sincetheseparametersarehardlyknown,aroughapproxima- Sensing(CS)algorithmsasdescribedin[?],unpractical.Inthepres- tionisused.Inthefirstiteration,thethresholdisasmallnumberand enceofzero-padding,thematrixFp,CP becomesill-conditioned(a witheach iterationit isgradually increased. Intuitively, this grad- smallvariationinH leadstoagreatchangeinh ).Duetozero- ualincreaseofthethreshold, resultsinagradual reductionoffake p CP paddingwedonothaveanypilotsinthezeropaddedparts,further taps(tapsthatarecreatedduetonoise). Thisisfurtherexplainedin complicatingtheueseoftime-domaintechniques. section4fromamathematicalpointofview. 3.2. EstimationofChannelTapValuesviaMMSE Assumingηasthethresholdfortheithiteration,weexpecttheover- allnoisepower(realandimaginary)ofthenextiterationtobeequal Afterfindingtime-domainchanneltappositions,ineachiterationwe toΣ . Althoughthisisonlyaroughstatisticalapproximation, needtofindanestimateoftheirvalue. Thisisequivalenttosolving tap|n simulationresultsconfirmthatafterMMSEestimation,thenoisein alinearequationinthepresenceofnoise.Thatis,wewishtoobtain theremainingtaps(locationsthatstayedabovethethresholdinthe thevalueoftheCIRvectorhattappositions(T),fromtheequation previous iteration) is almost normal with zero mean and variance Hp =Fp,ThT +Wp (5) 0.5Σtap|n: Fwhp,eTreisthtehevesuctbo-rmHatpreixisotfhethmeeDaFsuTremdaCtriFxR(Fve)cotobrtaaitnepdilobtypsoeslietciotinnsg, σn2,i+1 ≈ Σta2p|n =σn2,i 1+ 2ση22 (10) therowsandcolumensthatpertaintothepilotpositions(p)andlikely ˛˛η ` n,i´ channel taps(T), respectively, andWp isthenoisevector atpilot Forthechoiceofη,in[?]iti˛˛sshownthatthethresholdwhichmaxi- positions. TheMMSEestimatortriestofindtheestimatevectorhˆT mizesSNRofthesignalafterthresholding(consideringbothmissed thatminimizesE{khT −hˆTk2},hencethenameMinimumMean andfaketaps)isfoundas: SquaredError.Thisestimatevectorisgivenby: wherehˆ.HT d=enRotheTsFthHpe,TH`eFrmp,TitRianhTopFeHpr,aTtio+nRanWd´R−h1Hpand RW a(6re) ηopt,i=σn2,is2σn2,iσ+t2apσt2ap ln„1−ptapptapσn2,iσ+n2,iσt2ap« (11) Te theauto-covariancematricesofh andW respectively. Whenthe Using(11)in(10)weget: T p noisevectorWisarandomcomplexwhiteGaussianprocess,RW isequalto2σW2 I,wherevarianceofbothrealandimaginaryparts σn2,i+1 =1+ σn2,i+σt2ap ln 1−ptapσn2,i+σt2ap (12) areassumedtobeσW2 . AlsoRhT canbeapproximatedwithPhI σn2,i σt2ap „ ptap σn2,i « wherePh istheaverage power of thechannel. Thus, theestimate vectorcanbewrittenas: which shows the increase inthe noise variance; the noise samples whichstayabove thethreshold shouldhavehigher amplitudesand hˆT ≈FHp,T Fp,TFHp,T + 2Pσhw2 I −1Hp (7) tnheel,reσfot2arpe,ihsilgahrgereveanroiuangchet.oFhoarveretahseonfoalblloewSinNgRapvparluoexsimoafttihoensc:han- wherethechannelpow`erPhcaneasilybees´timaetedbydividingthe σn2,i poweroftheto-be-equalizeddatabytheconstellationpower(power oftheequalizeddataisthesameastheaverageconstellationpower). 8 ηopt,i≈σn2,is2ln„1−ptpatpap σσt2n2a,pi« Inthissectionw4.epMreAseTnHtEaMmaAtTheImCaAtiLcaAlNinAtuLitYioSnISfortheproposed >>>>>>< σn2,i+1 ≈σn2,i„1+ln 1−ptapptapσσtn22a,0p −ln(σσn2n2,,0i)« (13) ` ´ cmtalupedtshianongdd.tthFheoeriansdiitmdiaiptlilviiteceinrtyaotiiosofentihfneotrhamneeatdliymbseiysd,loiwnmeeaaarisnisnuattmetrhepeothliaathttiobitnoe)trhaatrcieohnazne(nrione--l >>>>>>:Ascanbeseenin|(13), σn2,i{+kz1 < kσn2,i}; however, weassume meannormalcomplexrandomvariableswithequalrealandimagi- theupperboundforthenoiseandthus: naryvariances σ2 andσ2 , respectively. Therefore, theirampli- tap n,i σ2 ≈ kσ2 ⇒σ2 ≈σ2 ki tudeswhichareofmainconcerninATSSDhaveRayleighprobabil- n,i+1 n,i n,i n,0 itydistributionfunction. Inaddition,weassumethattheprobability tohfealteinmgethsaomfptlheebceyincglicacphreafinxn,elwtaepeixsppetcatp;toi.eh.a,vifeNaCcPharnenperleswenitths ⇒ηopt,i ≈ σn2,0eiln(k)s2ln 1−ptapptapσt2ap −4iln(k) ` ´ ptap·NCP taps. Now, ifwesetathreshold(η)todistinguish the ≈ βeiln(k) (14) noiseandvalidsamples,weprobablymisssomeoftheoriginaltaps whiledetectinganumberoffakelocations.TheprobabilityofFalse whereβisaconstant. Similarto(4),(14)showsthesameexponen- Alarm(FA);i.e.,detectionoffaketaps,usingtheRayleighdistribu- tialincreaseinthethresholdwithrespecttotheiterationnumber. tionisgivenby: pfa=Zη∞ σxn2,ie−2σxn22,i ·dx=e−2σηn22,i (8) Toverify the effic5a.cySoIfMthUeLpArTopIOosNedRcEhSanUnLeTl eSstimation, weper- Moreover,theaveragepowerofthesefaketaps(Σ )is: formed computer simulations based on the DVB-H standard using tap|n MATLAB.Themainsimulationparametersandoptionsareshown Σtap|n = E |w|2 |w|>η inTable1and2. Toshow therobustness of ATSSDinestimating 2 the CFR for time-invariant channels, we compared the BER after = 1˘ ∞˛˛ x3 e−2σx¯n2,i ·dx Viterbi decoding of the proposed method to that of the hypotheti- p σ2 fa Zη n,i calidealchannelinFig. 1; byidealchannelwemeanthatfordata = p1 2σn2,i 1+ 2ση22 e−2σηn22,i ecqanuableizsaetieonni,nwFeigu.s1ed,ththeeBeExRactpecrhfaonrmnealnicnestoefadtheofpirtospeossteimdamtee.thAods fa n,i almostcoincideswiththatoftheidealchannel. Thus,inthissense, ` η2 ´ theATSSDestimationisperfect. Moreover, theBERperformance = 2σ2 1+ (9) n,i 2σ2 ofLinearInterpolation(aconventionalchannelestimationmethod) n,i ` ´ Table1.SimulationParameters Parameter Specifications 10−1 DVB-Hmode 2K Numberofcarriers 1705 Numberofpilotcarriers 146 10−2 OFDMsymbolduration 224µs GaurdInterval 1/8(256) R SignalConstellation QAM-16 BE10−3 ConvolutionalEncoder 171OCT and133OCT Fd = 100 Codingrate 1/2 Fd = 75 [itermax, α, β] [5, 0.8, 0.008] 10−4 FFdd == 5300 No Doppler 10−5 10 15 20 25 Table2.Multi-PathProfile(BrazilChannelD) Carrier to Noise (dB) Delay(µs) 0.0 0.48 2.07 2.90 5.71 5.78 Amp.(dB) −0.1 −3.9 −2.6 −1.3 0.0 −2.8 Fig. 2. Performance of the proposed method at different Doppler frequenciesforBrazilDchannel. thesameasifweusedtheexactchannelevenfortime-varyingchan- isalsoshownfor comparison. Theproposed methodisalsoeffec- nels. tiveintime-varyingchannels. ThisfactisverifiedinFig. 2where hamashalakie theBERperformance (afterViterbidecoding) of ATSSDisshown for different Doppler frequencies. As obvious in Fig. 2, ATSSD shows littleperformance degradation withincrease of the Doppler frequency. 100 10−1 10−2 R E B 10−3 Ideal channel ATSSD 10−4 linear Interpolation 10−5 0 5 10 15 20 Carrier to Noise (dB) Fig. 1. Performance of the ideal, linear-interpolated and the pro- posedchannelestimatesundertime-invariantBrazilDchannel. 6. CONCLUSION DuetothepartialuseofbandwidthinOFDMtransmission,there- duced frequency to time transformation is no longer stable; there- fore,mostofthesparsity-basedchannelestimationmethodsdiverge. Wehaveproposedathresholdingmethodwhichsolvesthisproblem whilebenefitingfromthesparsitycriterion.Simulationresultsshow thattheperformanceofthismethodafterdataequalizationisalmost

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.